Properties

Label 161.2.m.a.100.8
Level $161$
Weight $2$
Character 161.100
Analytic conductor $1.286$
Analytic rank $0$
Dimension $280$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [161,2,Mod(2,161)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(66))
 
chi = DirichletCharacter(H, H._module([22, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("161.2");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 161.m (of order \(33\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.28559147254\)
Analytic rank: \(0\)
Dimension: \(280\)
Relative dimension: \(14\) over \(\Q(\zeta_{33})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{33}]$

Embedding invariants

Embedding label 100.8
Character \(\chi\) \(=\) 161.100
Dual form 161.2.m.a.95.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.108223 + 0.0851077i) q^{2} +(-0.832270 + 1.16876i) q^{3} +(-0.467049 - 1.92520i) q^{4} +(1.72524 - 0.332512i) q^{5} +(-0.189542 + 0.0556544i) q^{6} +(2.52712 - 0.783361i) q^{7} +(0.227692 - 0.498576i) q^{8} +(0.307877 + 0.889553i) q^{9} +O(q^{10})\) \(q+(0.108223 + 0.0851077i) q^{2} +(-0.832270 + 1.16876i) q^{3} +(-0.467049 - 1.92520i) q^{4} +(1.72524 - 0.332512i) q^{5} +(-0.189542 + 0.0556544i) q^{6} +(2.52712 - 0.783361i) q^{7} +(0.227692 - 0.498576i) q^{8} +(0.307877 + 0.889553i) q^{9} +(0.215010 + 0.110845i) q^{10} +(-1.08035 + 0.849597i) q^{11} +(2.63881 + 1.05642i) q^{12} +(3.83399 - 2.46395i) q^{13} +(0.340163 + 0.130300i) q^{14} +(-1.04724 + 2.29313i) q^{15} +(-3.45457 + 1.78095i) q^{16} +(1.60917 + 1.53434i) q^{17} +(-0.0423884 + 0.122473i) q^{18} +(1.45599 - 1.38828i) q^{19} +(-1.44592 - 3.16613i) q^{20} +(-1.18769 + 3.60557i) q^{21} -0.189226 q^{22} +(-4.76811 - 0.514940i) q^{23} +(0.393215 + 0.681068i) q^{24} +(-1.77596 + 0.710988i) q^{25} +(0.624628 + 0.0596448i) q^{26} +(-5.42598 - 1.59321i) q^{27} +(-2.68842 - 4.49935i) q^{28} +(-1.15302 + 0.338557i) q^{29} +(-0.308498 + 0.159042i) q^{30} +(-3.60391 + 0.344132i) q^{31} +(-1.60184 - 0.308730i) q^{32} +(-0.0938314 - 1.96976i) q^{33} +(0.0435654 + 0.303004i) q^{34} +(4.09941 - 2.19178i) q^{35} +(1.56878 - 1.00819i) q^{36} +(0.141957 + 0.410157i) q^{37} +(0.275725 - 0.0263286i) q^{38} +(-0.311143 + 6.53169i) q^{39} +(0.227040 - 0.935872i) q^{40} +(-2.22449 - 2.56720i) q^{41} +(-0.435397 + 0.289125i) q^{42} +(-1.18656 - 2.59821i) q^{43} +(2.14022 + 1.68309i) q^{44} +(0.826949 + 1.43232i) q^{45} +(-0.472195 - 0.461531i) q^{46} +(-3.67499 + 6.36528i) q^{47} +(0.793628 - 5.51980i) q^{48} +(5.77269 - 3.95930i) q^{49} +(-0.252711 - 0.0742026i) q^{50} +(-3.13254 + 0.603747i) q^{51} +(-6.53427 - 6.23041i) q^{52} +(-0.525620 + 11.0341i) q^{53} +(-0.451622 - 0.634215i) q^{54} +(-1.58136 + 1.82499i) q^{55} +(0.184840 - 1.43833i) q^{56} +(0.410793 + 2.85713i) q^{57} +(-0.153597 - 0.0614911i) q^{58} +(8.80046 + 4.53695i) q^{59} +(4.90385 + 0.945139i) q^{60} +(4.17419 + 5.86183i) q^{61} +(-0.419316 - 0.269478i) q^{62} +(1.47489 + 2.00683i) q^{63} +(4.94332 + 5.70489i) q^{64} +(5.79524 - 5.52575i) q^{65} +(0.157487 - 0.221160i) q^{66} +(-12.8779 + 5.15553i) q^{67} +(2.20235 - 3.81459i) q^{68} +(4.57020 - 5.14420i) q^{69} +(0.630189 + 0.111689i) q^{70} +(-0.620250 + 4.31393i) q^{71} +(0.513611 + 0.0490439i) q^{72} +(-3.73166 - 15.3821i) q^{73} +(-0.0195445 + 0.0564701i) q^{74} +(0.647106 - 2.66741i) q^{75} +(-3.35274 - 2.15468i) q^{76} +(-2.06464 + 2.99334i) q^{77} +(-0.589570 + 0.680400i) q^{78} +(-0.590472 - 12.3955i) q^{79} +(-5.36776 + 4.22126i) q^{80} +(4.15817 - 3.27002i) q^{81} +(-0.0222532 - 0.467152i) q^{82} +(-2.88663 + 3.33135i) q^{83} +(7.49615 + 0.602561i) q^{84} +(3.28638 + 2.11203i) q^{85} +(0.0927139 - 0.382172i) q^{86} +(0.563932 - 1.62937i) q^{87} +(0.177601 + 0.732083i) q^{88} +(8.76530 + 0.836984i) q^{89} +(-0.0324062 + 0.225390i) q^{90} +(7.75879 - 9.23011i) q^{91} +(1.23558 + 9.42007i) q^{92} +(2.59722 - 4.49852i) q^{93} +(-0.939454 + 0.376101i) q^{94} +(2.05030 - 2.87925i) q^{95} +(1.69400 - 1.61522i) q^{96} +(-1.15455 - 1.33242i) q^{97} +(0.961706 + 0.0628121i) q^{98} +(-1.08838 - 0.699457i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 280 q - 11 q^{2} - 9 q^{3} + q^{4} - 11 q^{5} - 52 q^{6} - 20 q^{7} - 32 q^{8} + 5 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 280 q - 11 q^{2} - 9 q^{3} + q^{4} - 11 q^{5} - 52 q^{6} - 20 q^{7} - 32 q^{8} + 5 q^{9} - 21 q^{10} - 7 q^{11} - 17 q^{12} - 36 q^{13} - 18 q^{14} - 32 q^{15} + 11 q^{16} - 21 q^{17} + 23 q^{18} - 13 q^{19} + 36 q^{20} - 90 q^{21} - 48 q^{22} + 11 q^{23} - 2 q^{24} + 9 q^{25} + 17 q^{26} + 6 q^{27} - 80 q^{28} - 40 q^{29} + 41 q^{30} - 7 q^{31} + 9 q^{32} - 33 q^{33} - 76 q^{34} - 6 q^{35} - 234 q^{36} + 27 q^{37} + 89 q^{38} + q^{39} - 35 q^{40} - 72 q^{41} + 62 q^{42} - 128 q^{43} + 30 q^{44} + 108 q^{45} - 11 q^{46} - 6 q^{47} + 68 q^{48} + 80 q^{49} - 226 q^{50} + 21 q^{51} + 189 q^{52} - 21 q^{53} + 55 q^{54} - 48 q^{55} + 83 q^{56} - 76 q^{57} + 10 q^{58} + 47 q^{59} - 15 q^{60} + 65 q^{61} + 4 q^{62} + 25 q^{63} + 24 q^{64} - 66 q^{65} - 44 q^{66} - 21 q^{67} + 202 q^{68} - 60 q^{69} - 6 q^{70} - 28 q^{71} - 129 q^{72} + 15 q^{73} - 34 q^{74} + 139 q^{75} - 44 q^{76} + 61 q^{77} + 244 q^{78} - 69 q^{79} - 102 q^{80} + 151 q^{81} + 137 q^{82} + 24 q^{83} + 32 q^{84} + 124 q^{85} - 55 q^{86} - 129 q^{87} + 64 q^{88} - 21 q^{89} - 28 q^{90} - 62 q^{91} + 154 q^{92} + 4 q^{93} - 98 q^{94} + 38 q^{95} + 165 q^{96} - 12 q^{97} + 12 q^{98} + 202 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/161\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(120\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.108223 + 0.0851077i 0.0765254 + 0.0601802i 0.655689 0.755031i \(-0.272378\pi\)
−0.579164 + 0.815211i \(0.696621\pi\)
\(3\) −0.832270 + 1.16876i −0.480512 + 0.674784i −0.981674 0.190569i \(-0.938967\pi\)
0.501162 + 0.865353i \(0.332906\pi\)
\(4\) −0.467049 1.92520i −0.233524 0.962601i
\(5\) 1.72524 0.332512i 0.771549 0.148704i 0.211741 0.977326i \(-0.432087\pi\)
0.559809 + 0.828622i \(0.310875\pi\)
\(6\) −0.189542 + 0.0556544i −0.0773800 + 0.0227208i
\(7\) 2.52712 0.783361i 0.955162 0.296083i
\(8\) 0.227692 0.498576i 0.0805013 0.176273i
\(9\) 0.307877 + 0.889553i 0.102626 + 0.296518i
\(10\) 0.215010 + 0.110845i 0.0679922 + 0.0350524i
\(11\) −1.08035 + 0.849597i −0.325738 + 0.256163i −0.767613 0.640913i \(-0.778556\pi\)
0.441875 + 0.897076i \(0.354313\pi\)
\(12\) 2.63881 + 1.05642i 0.761759 + 0.304962i
\(13\) 3.83399 2.46395i 1.06336 0.683378i 0.112702 0.993629i \(-0.464049\pi\)
0.950655 + 0.310251i \(0.100413\pi\)
\(14\) 0.340163 + 0.130300i 0.0909125 + 0.0348240i
\(15\) −1.04724 + 2.29313i −0.270395 + 0.592083i
\(16\) −3.45457 + 1.78095i −0.863643 + 0.445239i
\(17\) 1.60917 + 1.53434i 0.390281 + 0.372132i 0.859662 0.510864i \(-0.170674\pi\)
−0.469381 + 0.882996i \(0.655523\pi\)
\(18\) −0.0423884 + 0.122473i −0.00999103 + 0.0288672i
\(19\) 1.45599 1.38828i 0.334027 0.318494i −0.504440 0.863447i \(-0.668301\pi\)
0.838467 + 0.544953i \(0.183453\pi\)
\(20\) −1.44592 3.16613i −0.323318 0.707968i
\(21\) −1.18769 + 3.60557i −0.259175 + 0.786799i
\(22\) −0.189226 −0.0403432
\(23\) −4.76811 0.514940i −0.994219 0.107372i
\(24\) 0.393215 + 0.681068i 0.0802646 + 0.139022i
\(25\) −1.77596 + 0.710988i −0.355192 + 0.142198i
\(26\) 0.624628 + 0.0596448i 0.122500 + 0.0116973i
\(27\) −5.42598 1.59321i −1.04423 0.306614i
\(28\) −2.68842 4.49935i −0.508063 0.850298i
\(29\) −1.15302 + 0.338557i −0.214110 + 0.0628684i −0.387029 0.922068i \(-0.626499\pi\)
0.172918 + 0.984936i \(0.444680\pi\)
\(30\) −0.308498 + 0.159042i −0.0563238 + 0.0290369i
\(31\) −3.60391 + 0.344132i −0.647282 + 0.0618079i −0.413533 0.910489i \(-0.635705\pi\)
−0.233749 + 0.972297i \(0.575099\pi\)
\(32\) −1.60184 0.308730i −0.283169 0.0545763i
\(33\) −0.0938314 1.96976i −0.0163340 0.342892i
\(34\) 0.0435654 + 0.303004i 0.00747140 + 0.0519647i
\(35\) 4.09941 2.19178i 0.692926 0.370479i
\(36\) 1.56878 1.00819i 0.261463 0.168032i
\(37\) 0.141957 + 0.410157i 0.0233375 + 0.0674294i 0.956068 0.293145i \(-0.0947019\pi\)
−0.932730 + 0.360574i \(0.882581\pi\)
\(38\) 0.275725 0.0263286i 0.0447286 0.00427106i
\(39\) −0.311143 + 6.53169i −0.0498227 + 1.04591i
\(40\) 0.227040 0.935872i 0.0358982 0.147974i
\(41\) −2.22449 2.56720i −0.347407 0.400929i 0.554974 0.831867i \(-0.312728\pi\)
−0.902381 + 0.430938i \(0.858183\pi\)
\(42\) −0.435397 + 0.289125i −0.0671832 + 0.0446130i
\(43\) −1.18656 2.59821i −0.180949 0.396223i 0.797322 0.603554i \(-0.206249\pi\)
−0.978271 + 0.207332i \(0.933522\pi\)
\(44\) 2.14022 + 1.68309i 0.322651 + 0.253735i
\(45\) 0.826949 + 1.43232i 0.123274 + 0.213517i
\(46\) −0.472195 0.461531i −0.0696213 0.0680490i
\(47\) −3.67499 + 6.36528i −0.536053 + 0.928471i 0.463059 + 0.886328i \(0.346752\pi\)
−0.999112 + 0.0421433i \(0.986581\pi\)
\(48\) 0.793628 5.51980i 0.114550 0.796715i
\(49\) 5.77269 3.95930i 0.824670 0.565614i
\(50\) −0.252711 0.0742026i −0.0357387 0.0104938i
\(51\) −3.13254 + 0.603747i −0.438643 + 0.0845415i
\(52\) −6.53427 6.23041i −0.906140 0.864003i
\(53\) −0.525620 + 11.0341i −0.0721994 + 1.51565i 0.614620 + 0.788824i \(0.289310\pi\)
−0.686819 + 0.726828i \(0.740994\pi\)
\(54\) −0.451622 0.634215i −0.0614580 0.0863057i
\(55\) −1.58136 + 1.82499i −0.213230 + 0.246081i
\(56\) 0.184840 1.43833i 0.0247003 0.192205i
\(57\) 0.410793 + 2.85713i 0.0544109 + 0.378436i
\(58\) −0.153597 0.0614911i −0.0201683 0.00807417i
\(59\) 8.80046 + 4.53695i 1.14572 + 0.590661i 0.923220 0.384271i \(-0.125547\pi\)
0.222502 + 0.974932i \(0.428578\pi\)
\(60\) 4.90385 + 0.945139i 0.633084 + 0.122017i
\(61\) 4.17419 + 5.86183i 0.534450 + 0.750530i 0.990212 0.139572i \(-0.0445726\pi\)
−0.455762 + 0.890102i \(0.650633\pi\)
\(62\) −0.419316 0.269478i −0.0532531 0.0342237i
\(63\) 1.47489 + 2.00683i 0.185818 + 0.252837i
\(64\) 4.94332 + 5.70489i 0.617914 + 0.713111i
\(65\) 5.79524 5.52575i 0.718811 0.685385i
\(66\) 0.157487 0.221160i 0.0193854 0.0272229i
\(67\) −12.8779 + 5.15553i −1.57328 + 0.629848i −0.984014 0.178089i \(-0.943008\pi\)
−0.589269 + 0.807937i \(0.700584\pi\)
\(68\) 2.20235 3.81459i 0.267074 0.462586i
\(69\) 4.57020 5.14420i 0.550187 0.619289i
\(70\) 0.630189 + 0.111689i 0.0753220 + 0.0133494i
\(71\) −0.620250 + 4.31393i −0.0736101 + 0.511970i 0.919343 + 0.393458i \(0.128721\pi\)
−0.992953 + 0.118512i \(0.962188\pi\)
\(72\) 0.513611 + 0.0490439i 0.0605297 + 0.00577988i
\(73\) −3.73166 15.3821i −0.436758 1.80034i −0.584593 0.811327i \(-0.698746\pi\)
0.147835 0.989012i \(-0.452769\pi\)
\(74\) −0.0195445 + 0.0564701i −0.00227200 + 0.00656452i
\(75\) 0.647106 2.66741i 0.0747214 0.308006i
\(76\) −3.35274 2.15468i −0.384586 0.247158i
\(77\) −2.06464 + 2.99334i −0.235287 + 0.341123i
\(78\) −0.589570 + 0.680400i −0.0667557 + 0.0770401i
\(79\) −0.590472 12.3955i −0.0664333 1.39461i −0.748412 0.663234i \(-0.769183\pi\)
0.681979 0.731372i \(-0.261120\pi\)
\(80\) −5.36776 + 4.22126i −0.600134 + 0.471951i
\(81\) 4.15817 3.27002i 0.462018 0.363335i
\(82\) −0.0222532 0.467152i −0.00245745 0.0515883i
\(83\) −2.88663 + 3.33135i −0.316849 + 0.365663i −0.891725 0.452577i \(-0.850505\pi\)
0.574876 + 0.818240i \(0.305050\pi\)
\(84\) 7.49615 + 0.602561i 0.817898 + 0.0657448i
\(85\) 3.28638 + 2.11203i 0.356458 + 0.229082i
\(86\) 0.0927139 0.382172i 0.00999759 0.0412106i
\(87\) 0.563932 1.62937i 0.0604598 0.174687i
\(88\) 0.177601 + 0.732083i 0.0189324 + 0.0780403i
\(89\) 8.76530 + 0.836984i 0.929120 + 0.0887202i 0.548630 0.836065i \(-0.315150\pi\)
0.380489 + 0.924785i \(0.375756\pi\)
\(90\) −0.0324062 + 0.225390i −0.00341591 + 0.0237582i
\(91\) 7.75879 9.23011i 0.813342 0.967579i
\(92\) 1.23558 + 9.42007i 0.128818 + 0.982110i
\(93\) 2.59722 4.49852i 0.269319 0.466475i
\(94\) −0.939454 + 0.376101i −0.0968973 + 0.0387918i
\(95\) 2.05030 2.87925i 0.210357 0.295405i
\(96\) 1.69400 1.61522i 0.172893 0.164853i
\(97\) −1.15455 1.33242i −0.117226 0.135286i 0.694103 0.719876i \(-0.255801\pi\)
−0.811329 + 0.584589i \(0.801256\pi\)
\(98\) 0.961706 + 0.0628121i 0.0971470 + 0.00634498i
\(99\) −1.08838 0.699457i −0.109386 0.0702981i
\(100\) 2.19826 + 3.08702i 0.219826 + 0.308702i
\(101\) 13.3624 + 2.57540i 1.32961 + 0.256261i 0.804084 0.594516i \(-0.202656\pi\)
0.525527 + 0.850777i \(0.323868\pi\)
\(102\) −0.390397 0.201264i −0.0386551 0.0199281i
\(103\) −8.92020 3.57111i −0.878933 0.351872i −0.112084 0.993699i \(-0.535753\pi\)
−0.766850 + 0.641827i \(0.778177\pi\)
\(104\) −0.355500 2.47256i −0.0348597 0.242454i
\(105\) −0.850146 + 6.61538i −0.0829658 + 0.645595i
\(106\) −0.995972 + 1.14941i −0.0967374 + 0.111641i
\(107\) 0.883571 + 1.24080i 0.0854181 + 0.119953i 0.855074 0.518506i \(-0.173512\pi\)
−0.769656 + 0.638459i \(0.779572\pi\)
\(108\) −0.533055 + 11.1902i −0.0512933 + 1.07678i
\(109\) 0.859729 + 0.819750i 0.0823471 + 0.0785178i 0.730135 0.683303i \(-0.239457\pi\)
−0.647788 + 0.761821i \(0.724306\pi\)
\(110\) −0.326460 + 0.0629200i −0.0311268 + 0.00599919i
\(111\) −0.597521 0.175448i −0.0567142 0.0166528i
\(112\) −7.33499 + 7.20687i −0.693091 + 0.680985i
\(113\) 2.32825 16.1934i 0.219024 1.52334i −0.522629 0.852560i \(-0.675049\pi\)
0.741653 0.670784i \(-0.234042\pi\)
\(114\) −0.198706 + 0.344169i −0.0186105 + 0.0322344i
\(115\) −8.39734 + 0.697060i −0.783056 + 0.0650012i
\(116\) 1.19031 + 2.06167i 0.110517 + 0.191421i
\(117\) 3.37222 + 2.65194i 0.311762 + 0.245172i
\(118\) 0.566285 + 1.23999i 0.0521308 + 0.114150i
\(119\) 5.26851 + 2.61690i 0.482963 + 0.239891i
\(120\) 0.904852 + 1.04425i 0.0826013 + 0.0953269i
\(121\) −2.14801 + 8.85420i −0.195273 + 0.804928i
\(122\) −0.0471424 + 0.989642i −0.00426808 + 0.0895979i
\(123\) 4.85182 0.463292i 0.437474 0.0417737i
\(124\) 2.34573 + 6.77753i 0.210653 + 0.608641i
\(125\) −10.2179 + 6.56665i −0.913917 + 0.587339i
\(126\) −0.0111798 + 0.342710i −0.000995978 + 0.0305310i
\(127\) −0.924892 6.43277i −0.0820709 0.570816i −0.988816 0.149138i \(-0.952350\pi\)
0.906746 0.421678i \(-0.138559\pi\)
\(128\) 0.204695 + 4.29707i 0.0180926 + 0.379811i
\(129\) 4.02422 + 0.775605i 0.354313 + 0.0682882i
\(130\) 1.09746 0.104795i 0.0962540 0.00919114i
\(131\) −8.40736 + 4.33429i −0.734554 + 0.378689i −0.784554 0.620060i \(-0.787108\pi\)
0.0500000 + 0.998749i \(0.484078\pi\)
\(132\) −3.74837 + 1.10062i −0.326254 + 0.0957968i
\(133\) 2.59193 4.64892i 0.224749 0.403113i
\(134\) −1.83246 0.538059i −0.158301 0.0464812i
\(135\) −9.89086 0.944462i −0.851269 0.0812864i
\(136\) 1.13138 0.452936i 0.0970150 0.0388389i
\(137\) −10.9056 18.8890i −0.931728 1.61380i −0.780368 0.625321i \(-0.784968\pi\)
−0.151360 0.988479i \(-0.548365\pi\)
\(138\) 0.932413 0.167764i 0.0793723 0.0142810i
\(139\) 2.22270 0.188527 0.0942636 0.995547i \(-0.469950\pi\)
0.0942636 + 0.995547i \(0.469950\pi\)
\(140\) −6.13425 6.86852i −0.518439 0.580496i
\(141\) −4.38089 9.59282i −0.368938 0.807861i
\(142\) −0.434274 + 0.414080i −0.0364435 + 0.0347488i
\(143\) −2.04868 + 5.91928i −0.171319 + 0.494995i
\(144\) −2.64784 2.52471i −0.220653 0.210392i
\(145\) −1.87666 + 0.967484i −0.155848 + 0.0803451i
\(146\) 0.905283 1.98229i 0.0749218 0.164056i
\(147\) −0.176967 + 10.0421i −0.0145960 + 0.828258i
\(148\) 0.723334 0.464858i 0.0594577 0.0382111i
\(149\) −15.0068 6.00783i −1.22941 0.492181i −0.336186 0.941796i \(-0.609137\pi\)
−0.893223 + 0.449615i \(0.851561\pi\)
\(150\) 0.297049 0.233602i 0.0242539 0.0190735i
\(151\) 4.48877 + 2.31412i 0.365291 + 0.188321i 0.631093 0.775707i \(-0.282606\pi\)
−0.265802 + 0.964028i \(0.585637\pi\)
\(152\) −0.360647 1.04202i −0.0292524 0.0845192i
\(153\) −0.869450 + 1.90383i −0.0702908 + 0.153915i
\(154\) −0.478198 + 0.148233i −0.0385343 + 0.0119449i
\(155\) −6.10318 + 1.79205i −0.490219 + 0.143941i
\(156\) 12.7201 2.45161i 1.01843 0.196286i
\(157\) −2.60204 10.7257i −0.207665 0.856007i −0.976318 0.216341i \(-0.930588\pi\)
0.768653 0.639666i \(-0.220927\pi\)
\(158\) 0.991052 1.39174i 0.0788439 0.110721i
\(159\) −12.4588 9.79769i −0.988045 0.777007i
\(160\) −2.86621 −0.226594
\(161\) −12.4530 + 2.43383i −0.981431 + 0.191813i
\(162\) 0.728314 0.0572218
\(163\) 10.5255 + 8.27733i 0.824419 + 0.648331i 0.938553 0.345135i \(-0.112167\pi\)
−0.114134 + 0.993465i \(0.536409\pi\)
\(164\) −3.90343 + 5.48160i −0.304807 + 0.428041i
\(165\) −0.816852 3.36711i −0.0635919 0.262129i
\(166\) −0.595924 + 0.114855i −0.0462527 + 0.00891447i
\(167\) 15.4057 4.52352i 1.19213 0.350041i 0.375291 0.926907i \(-0.377543\pi\)
0.816838 + 0.576867i \(0.195725\pi\)
\(168\) 1.52722 + 1.41311i 0.117828 + 0.109024i
\(169\) 3.22800 7.06833i 0.248307 0.543717i
\(170\) 0.175913 + 0.508267i 0.0134919 + 0.0389823i
\(171\) 1.68322 + 0.867759i 0.128719 + 0.0663592i
\(172\) −4.44789 + 3.49786i −0.339148 + 0.266709i
\(173\) 13.8824 + 5.55769i 1.05546 + 0.422543i 0.833504 0.552513i \(-0.186331\pi\)
0.221958 + 0.975056i \(0.428755\pi\)
\(174\) 0.199703 0.128341i 0.0151394 0.00972952i
\(175\) −3.93111 + 3.18797i −0.297164 + 0.240988i
\(176\) 2.21905 4.85905i 0.167267 0.366264i
\(177\) −12.6270 + 6.50966i −0.949101 + 0.489296i
\(178\) 0.877375 + 0.836576i 0.0657620 + 0.0627040i
\(179\) 4.65088 13.4378i 0.347623 1.00439i −0.626704 0.779257i \(-0.715597\pi\)
0.974328 0.225135i \(-0.0722822\pi\)
\(180\) 2.37127 2.26101i 0.176744 0.168525i
\(181\) 2.14675 + 4.70073i 0.159567 + 0.349403i 0.972481 0.232980i \(-0.0748477\pi\)
−0.812915 + 0.582383i \(0.802120\pi\)
\(182\) 1.62523 0.338580i 0.120470 0.0250972i
\(183\) −10.3251 −0.763255
\(184\) −1.34240 + 2.26002i −0.0989628 + 0.166611i
\(185\) 0.381291 + 0.660415i 0.0280331 + 0.0485547i
\(186\) 0.663939 0.265801i 0.0486824 0.0194895i
\(187\) −3.04203 0.290479i −0.222456 0.0212419i
\(188\) 13.9708 + 4.10221i 1.01893 + 0.299184i
\(189\) −14.9602 + 0.224264i −1.08819 + 0.0163128i
\(190\) 0.466937 0.137105i 0.0338752 0.00994665i
\(191\) −13.5359 + 6.97825i −0.979424 + 0.504928i −0.872117 0.489298i \(-0.837253\pi\)
−0.107307 + 0.994226i \(0.534223\pi\)
\(192\) −10.7818 + 1.02954i −0.778111 + 0.0743006i
\(193\) 17.4108 + 3.35565i 1.25326 + 0.241545i 0.772333 0.635218i \(-0.219090\pi\)
0.480923 + 0.876763i \(0.340302\pi\)
\(194\) −0.0115498 0.242459i −0.000829224 0.0174076i
\(195\) 1.63507 + 11.3722i 0.117090 + 0.814378i
\(196\) −10.3186 9.26441i −0.737041 0.661743i
\(197\) −22.2989 + 14.3306i −1.58873 + 1.02102i −0.616394 + 0.787438i \(0.711407\pi\)
−0.972338 + 0.233579i \(0.924956\pi\)
\(198\) −0.0582585 0.168327i −0.00414025 0.0119625i
\(199\) 23.5804 2.25165i 1.67157 0.159616i 0.784148 0.620574i \(-0.213100\pi\)
0.887422 + 0.460958i \(0.152494\pi\)
\(200\) −0.0498909 + 1.04734i −0.00352782 + 0.0740580i
\(201\) 4.69231 19.3419i 0.330970 1.36428i
\(202\) 1.22694 + 1.41596i 0.0863271 + 0.0996268i
\(203\) −2.64861 + 1.75880i −0.185896 + 0.123444i
\(204\) 2.62538 + 5.74879i 0.183814 + 0.402496i
\(205\) −4.69140 3.68936i −0.327661 0.257676i
\(206\) −0.661444 1.14565i −0.0460850 0.0798215i
\(207\) −1.00993 4.40002i −0.0701947 0.305823i
\(208\) −8.85659 + 15.3401i −0.614094 + 1.06364i
\(209\) −0.393497 + 2.73683i −0.0272188 + 0.189311i
\(210\) −0.655025 + 0.643584i −0.0452011 + 0.0444115i
\(211\) 18.2447 + 5.35712i 1.25602 + 0.368800i 0.841010 0.541019i \(-0.181961\pi\)
0.415006 + 0.909819i \(0.363779\pi\)
\(212\) 21.4884 4.14155i 1.47583 0.284443i
\(213\) −4.52574 4.31528i −0.310098 0.295678i
\(214\) −0.00997888 + 0.209482i −0.000682142 + 0.0143199i
\(215\) −2.91103 4.08797i −0.198531 0.278798i
\(216\) −2.02979 + 2.34250i −0.138110 + 0.159387i
\(217\) −8.83795 + 3.69283i −0.599959 + 0.250686i
\(218\) 0.0232756 + 0.161886i 0.00157643 + 0.0109643i
\(219\) 21.0837 + 8.44066i 1.42471 + 0.570367i
\(220\) 4.25204 + 2.19208i 0.286672 + 0.147790i
\(221\) 9.95007 + 1.91772i 0.669314 + 0.129000i
\(222\) −0.0497337 0.0698412i −0.00333791 0.00468744i
\(223\) 14.3926 + 9.24955i 0.963799 + 0.619396i 0.925047 0.379853i \(-0.124025\pi\)
0.0387519 + 0.999249i \(0.487662\pi\)
\(224\) −4.28990 + 0.474624i −0.286631 + 0.0317121i
\(225\) −1.17924 1.36092i −0.0786160 0.0907277i
\(226\) 1.63015 1.55435i 0.108436 0.103394i
\(227\) −1.47179 + 2.06684i −0.0976863 + 0.137181i −0.860526 0.509406i \(-0.829865\pi\)
0.762840 + 0.646587i \(0.223804\pi\)
\(228\) 5.30869 2.12528i 0.351576 0.140750i
\(229\) −4.00850 + 6.94293i −0.264889 + 0.458802i −0.967535 0.252738i \(-0.918669\pi\)
0.702645 + 0.711540i \(0.252002\pi\)
\(230\) −0.968112 0.639240i −0.0638354 0.0421502i
\(231\) −1.78016 4.90433i −0.117126 0.322681i
\(232\) −0.0937369 + 0.651954i −0.00615413 + 0.0428029i
\(233\) 10.6816 + 1.01997i 0.699773 + 0.0668203i 0.438878 0.898547i \(-0.355376\pi\)
0.260896 + 0.965367i \(0.415982\pi\)
\(234\) 0.139252 + 0.574003i 0.00910317 + 0.0375238i
\(235\) −4.22370 + 12.2036i −0.275524 + 0.796074i
\(236\) 4.62430 19.0616i 0.301017 1.24081i
\(237\) 14.9788 + 9.62631i 0.972980 + 0.625296i
\(238\) 0.347456 + 0.731600i 0.0225223 + 0.0474226i
\(239\) 17.1318 19.7712i 1.10817 1.27889i 0.151259 0.988494i \(-0.451667\pi\)
0.956906 0.290397i \(-0.0937874\pi\)
\(240\) −0.466205 9.78686i −0.0300934 0.631739i
\(241\) 8.86897 6.97463i 0.571300 0.449276i −0.290248 0.956952i \(-0.593738\pi\)
0.861548 + 0.507676i \(0.169495\pi\)
\(242\) −0.986025 + 0.775419i −0.0633841 + 0.0498458i
\(243\) −0.446085 9.36448i −0.0286164 0.600732i
\(244\) 9.33565 10.7739i 0.597654 0.689729i
\(245\) 8.64274 8.75022i 0.552165 0.559031i
\(246\) 0.564509 + 0.362788i 0.0359918 + 0.0231305i
\(247\) 2.16158 8.91015i 0.137538 0.566939i
\(248\) −0.649007 + 1.87518i −0.0412120 + 0.119074i
\(249\) −1.49109 6.14636i −0.0944941 0.389510i
\(250\) −1.66469 0.158958i −0.105284 0.0100534i
\(251\) −3.44149 + 23.9361i −0.217225 + 1.51083i 0.530991 + 0.847377i \(0.321820\pi\)
−0.748216 + 0.663455i \(0.769089\pi\)
\(252\) 3.17471 3.77674i 0.199988 0.237912i
\(253\) 5.58872 3.49465i 0.351360 0.219707i
\(254\) 0.447383 0.774891i 0.0280713 0.0486210i
\(255\) −5.20362 + 2.08321i −0.325863 + 0.130456i
\(256\) 8.41373 11.8154i 0.525858 0.738465i
\(257\) 5.76088 5.49299i 0.359354 0.342643i −0.488798 0.872397i \(-0.662564\pi\)
0.848151 + 0.529754i \(0.177716\pi\)
\(258\) 0.369504 + 0.426431i 0.0230043 + 0.0265484i
\(259\) 0.680043 + 0.925313i 0.0422558 + 0.0574961i
\(260\) −13.3449 8.57621i −0.827613 0.531874i
\(261\) −0.656153 0.921438i −0.0406148 0.0570356i
\(262\) −1.27875 0.246460i −0.0790017 0.0152263i
\(263\) −27.6636 14.2616i −1.70581 0.879407i −0.981873 0.189542i \(-0.939300\pi\)
−0.723938 0.689865i \(-0.757670\pi\)
\(264\) −1.00344 0.401718i −0.0617576 0.0247240i
\(265\) 2.76216 + 19.2112i 0.169678 + 1.18014i
\(266\) 0.676167 0.282528i 0.0414585 0.0173229i
\(267\) −8.27333 + 9.54793i −0.506320 + 0.584324i
\(268\) 15.9400 + 22.3846i 0.973692 + 1.36736i
\(269\) 0.741219 15.5601i 0.0451929 0.948716i −0.856449 0.516232i \(-0.827334\pi\)
0.901642 0.432484i \(-0.142363\pi\)
\(270\) −0.990040 0.944001i −0.0602519 0.0574501i
\(271\) −25.4453 + 4.90418i −1.54569 + 0.297907i −0.889588 0.456764i \(-0.849008\pi\)
−0.656103 + 0.754672i \(0.727796\pi\)
\(272\) −8.29157 2.43463i −0.502751 0.147621i
\(273\) 4.33038 + 16.7501i 0.262086 + 1.01376i
\(274\) 0.427364 2.97238i 0.0258180 0.179568i
\(275\) 1.31461 2.27697i 0.0792738 0.137306i
\(276\) −12.0381 6.39595i −0.724611 0.384991i
\(277\) 2.01931 + 3.49754i 0.121328 + 0.210147i 0.920292 0.391233i \(-0.127951\pi\)
−0.798963 + 0.601380i \(0.794618\pi\)
\(278\) 0.240548 + 0.189169i 0.0144271 + 0.0113456i
\(279\) −1.41569 3.09992i −0.0847550 0.185587i
\(280\) −0.159368 2.54292i −0.00952407 0.151968i
\(281\) 11.5645 + 13.3461i 0.689877 + 0.796161i 0.987348 0.158570i \(-0.0506884\pi\)
−0.297470 + 0.954731i \(0.596143\pi\)
\(282\) 0.342308 1.41101i 0.0203842 0.0840247i
\(283\) 0.584895 12.2785i 0.0347684 0.729879i −0.912430 0.409232i \(-0.865797\pi\)
0.947199 0.320647i \(-0.103900\pi\)
\(284\) 8.59488 0.820711i 0.510012 0.0487003i
\(285\) 1.65875 + 4.79263i 0.0982556 + 0.283891i
\(286\) −0.725491 + 0.466245i −0.0428992 + 0.0275696i
\(287\) −7.63260 4.74504i −0.450538 0.280091i
\(288\) −0.218539 1.51998i −0.0128776 0.0895654i
\(289\) −0.573666 12.0427i −0.0337450 0.708396i
\(290\) −0.285438 0.0550137i −0.0167615 0.00323052i
\(291\) 2.51817 0.240456i 0.147618 0.0140958i
\(292\) −27.8708 + 14.3684i −1.63101 + 0.840846i
\(293\) 0.979238 0.287530i 0.0572077 0.0167977i −0.253003 0.967465i \(-0.581418\pi\)
0.310211 + 0.950668i \(0.399600\pi\)
\(294\) −0.873812 + 1.07173i −0.0509617 + 0.0625044i
\(295\) 16.6915 + 4.90106i 0.971815 + 0.285351i
\(296\) 0.236817 + 0.0226133i 0.0137647 + 0.00131437i
\(297\) 7.21554 2.88867i 0.418688 0.167617i
\(298\) −1.11278 1.92739i −0.0644614 0.111650i
\(299\) −19.5496 + 9.77412i −1.13059 + 0.565252i
\(300\) −5.43753 −0.313936
\(301\) −5.03392 5.63648i −0.290150 0.324881i
\(302\) 0.288840 + 0.632471i 0.0166209 + 0.0363946i
\(303\) −14.1312 + 13.4740i −0.811814 + 0.774063i
\(304\) −2.55735 + 7.38897i −0.146674 + 0.423786i
\(305\) 9.15059 + 8.72507i 0.523961 + 0.499596i
\(306\) −0.256125 + 0.132042i −0.0146417 + 0.00754832i
\(307\) 2.92437 6.40349i 0.166903 0.365466i −0.807637 0.589680i \(-0.799254\pi\)
0.974540 + 0.224213i \(0.0719813\pi\)
\(308\) 6.72707 + 2.57680i 0.383310 + 0.146827i
\(309\) 11.5978 7.45345i 0.659775 0.424012i
\(310\) −0.813023 0.325485i −0.0461766 0.0184863i
\(311\) 11.1591 8.77558i 0.632772 0.497617i −0.249489 0.968378i \(-0.580263\pi\)
0.882261 + 0.470760i \(0.156020\pi\)
\(312\) 3.18570 + 1.64234i 0.180355 + 0.0929793i
\(313\) 2.98680 + 8.62978i 0.168824 + 0.487784i 0.997398 0.0720956i \(-0.0229687\pi\)
−0.828574 + 0.559879i \(0.810847\pi\)
\(314\) 0.631242 1.38223i 0.0356231 0.0780036i
\(315\) 3.21182 + 2.97184i 0.180966 + 0.167444i
\(316\) −23.5881 + 6.92610i −1.32694 + 0.389623i
\(317\) −1.30156 + 0.250854i −0.0731027 + 0.0140894i −0.225671 0.974203i \(-0.572458\pi\)
0.152569 + 0.988293i \(0.451245\pi\)
\(318\) −0.514470 2.12068i −0.0288501 0.118922i
\(319\) 0.958027 1.34536i 0.0536392 0.0753258i
\(320\) 10.4253 + 8.19858i 0.582794 + 0.458314i
\(321\) −2.18557 −0.121987
\(322\) −1.55484 0.796446i −0.0866478 0.0443842i
\(323\) 4.47303 0.248886
\(324\) −8.23751 6.47805i −0.457640 0.359892i
\(325\) −5.05717 + 7.10181i −0.280522 + 0.393937i
\(326\) 0.434637 + 1.79160i 0.0240723 + 0.0992275i
\(327\) −1.67362 + 0.322564i −0.0925513 + 0.0178378i
\(328\) −1.78644 + 0.524547i −0.0986398 + 0.0289633i
\(329\) −4.30085 + 18.9647i −0.237113 + 1.04556i
\(330\) 0.198165 0.433920i 0.0109086 0.0238865i
\(331\) −2.94088 8.49711i −0.161645 0.467043i 0.834871 0.550446i \(-0.185542\pi\)
−0.996516 + 0.0834029i \(0.973421\pi\)
\(332\) 7.76172 + 4.00144i 0.425979 + 0.219608i
\(333\) −0.321151 + 0.252556i −0.0175990 + 0.0138400i
\(334\) 2.05224 + 0.821594i 0.112294 + 0.0449556i
\(335\) −20.5031 + 13.1766i −1.12021 + 0.719912i
\(336\) −2.31841 14.5709i −0.126479 0.794908i
\(337\) −0.275284 + 0.602788i −0.0149957 + 0.0328359i −0.916982 0.398929i \(-0.869382\pi\)
0.901986 + 0.431765i \(0.142109\pi\)
\(338\) 0.950913 0.490230i 0.0517229 0.0266650i
\(339\) 16.9884 + 16.1984i 0.922685 + 0.879778i
\(340\) 2.53118 7.31337i 0.137273 0.396623i
\(341\) 3.60111 3.43366i 0.195011 0.185943i
\(342\) 0.108310 + 0.237166i 0.00585675 + 0.0128245i
\(343\) 11.4867 14.5277i 0.620225 0.784424i
\(344\) −1.56557 −0.0844101
\(345\) 6.17416 10.3946i 0.332406 0.559627i
\(346\) 1.02940 + 1.78297i 0.0553409 + 0.0958533i
\(347\) 19.2477 7.70562i 1.03327 0.413659i 0.207841 0.978163i \(-0.433356\pi\)
0.825431 + 0.564503i \(0.190932\pi\)
\(348\) −3.40026 0.324685i −0.182273 0.0174049i
\(349\) −4.79891 1.40909i −0.256880 0.0754266i 0.150757 0.988571i \(-0.451829\pi\)
−0.407637 + 0.913144i \(0.633647\pi\)
\(350\) −0.696759 + 0.0104449i −0.0372433 + 0.000558304i
\(351\) −24.7287 + 7.26101i −1.31992 + 0.387564i
\(352\) 1.99285 1.02738i 0.106219 0.0547598i
\(353\) −33.9084 + 3.23786i −1.80476 + 0.172334i −0.942518 0.334156i \(-0.891549\pi\)
−0.862246 + 0.506490i \(0.830943\pi\)
\(354\) −1.92055 0.370157i −0.102076 0.0196736i
\(355\) 0.364357 + 7.64880i 0.0193381 + 0.405956i
\(356\) −2.48246 17.2659i −0.131570 0.915090i
\(357\) −7.44335 + 3.97965i −0.393944 + 0.210625i
\(358\) 1.64700 1.05846i 0.0870466 0.0559414i
\(359\) 0.932820 + 2.69521i 0.0492323 + 0.142248i 0.966937 0.255017i \(-0.0820809\pi\)
−0.917704 + 0.397264i \(0.869960\pi\)
\(360\) 0.902409 0.0861696i 0.0475611 0.00454154i
\(361\) −0.711481 + 14.9358i −0.0374464 + 0.786096i
\(362\) −0.167740 + 0.691434i −0.00881622 + 0.0363410i
\(363\) −8.56072 9.87960i −0.449321 0.518544i
\(364\) −21.3936 10.6263i −1.12133 0.556970i
\(365\) −11.5527 25.2969i −0.604698 1.32410i
\(366\) −1.11742 0.878748i −0.0584084 0.0459329i
\(367\) −0.996128 1.72534i −0.0519974 0.0900622i 0.838855 0.544355i \(-0.183225\pi\)
−0.890853 + 0.454293i \(0.849892\pi\)
\(368\) 17.3888 6.71289i 0.906456 0.349933i
\(369\) 1.59879 2.76918i 0.0832297 0.144158i
\(370\) −0.0149419 + 0.103923i −0.000776792 + 0.00540270i
\(371\) 7.31539 + 28.2963i 0.379796 + 1.46907i
\(372\) −9.87359 2.89915i −0.511922 0.150314i
\(373\) 11.5713 2.23018i 0.599137 0.115474i 0.119340 0.992854i \(-0.461922\pi\)
0.479797 + 0.877379i \(0.340710\pi\)
\(374\) −0.304497 0.290337i −0.0157452 0.0150130i
\(375\) 0.829222 17.4075i 0.0428208 0.898920i
\(376\) 2.33681 + 3.28159i 0.120512 + 0.169235i
\(377\) −3.58647 + 4.13901i −0.184713 + 0.213170i
\(378\) −1.63812 1.24895i −0.0842560 0.0642393i
\(379\) 2.17003 + 15.0929i 0.111467 + 0.775270i 0.966495 + 0.256687i \(0.0826310\pi\)
−0.855028 + 0.518583i \(0.826460\pi\)
\(380\) −6.50073 2.60250i −0.333480 0.133505i
\(381\) 8.28812 + 4.27283i 0.424613 + 0.218903i
\(382\) −2.05880 0.396802i −0.105338 0.0203021i
\(383\) −14.8275 20.8224i −0.757652 1.06397i −0.995692 0.0927177i \(-0.970445\pi\)
0.238041 0.971255i \(-0.423495\pi\)
\(384\) −5.19260 3.33708i −0.264984 0.170295i
\(385\) −2.56666 + 5.85074i −0.130809 + 0.298181i
\(386\) 1.59866 + 1.84495i 0.0813696 + 0.0939056i
\(387\) 1.94593 1.85544i 0.0989170 0.0943172i
\(388\) −2.02594 + 2.84504i −0.102852 + 0.144435i
\(389\) −28.4044 + 11.3714i −1.44016 + 0.576553i −0.954664 0.297685i \(-0.903785\pi\)
−0.485497 + 0.874239i \(0.661361\pi\)
\(390\) −0.790907 + 1.36989i −0.0400491 + 0.0693671i
\(391\) −6.88259 8.14452i −0.348068 0.411886i
\(392\) −0.659616 3.77963i −0.0333157 0.190900i
\(393\) 1.93144 13.4335i 0.0974285 0.677630i
\(394\) −3.63291 0.346901i −0.183023 0.0174766i
\(395\) −5.14037 21.1889i −0.258640 1.06613i
\(396\) −0.838271 + 2.42203i −0.0421247 + 0.121711i
\(397\) −2.41944 + 9.97306i −0.121428 + 0.500534i 0.878320 + 0.478074i \(0.158665\pi\)
−0.999748 + 0.0224597i \(0.992850\pi\)
\(398\) 2.74358 + 1.76319i 0.137523 + 0.0883808i
\(399\) 3.27629 + 6.89851i 0.164020 + 0.345358i
\(400\) 4.86895 5.61907i 0.243447 0.280953i
\(401\) 0.628482 + 13.1935i 0.0313849 + 0.658850i 0.958675 + 0.284505i \(0.0918292\pi\)
−0.927290 + 0.374345i \(0.877868\pi\)
\(402\) 2.15397 1.69390i 0.107430 0.0844839i
\(403\) −12.9694 + 10.1993i −0.646054 + 0.508062i
\(404\) −1.28275 26.9282i −0.0638191 1.33973i
\(405\) 6.08650 7.02420i 0.302441 0.349035i
\(406\) −0.436329 0.0350733i −0.0216546 0.00174066i
\(407\) −0.501831 0.322507i −0.0248748 0.0159861i
\(408\) −0.412240 + 1.69928i −0.0204089 + 0.0841267i
\(409\) −4.73305 + 13.6752i −0.234034 + 0.676197i 0.765432 + 0.643517i \(0.222525\pi\)
−0.999466 + 0.0326801i \(0.989596\pi\)
\(410\) −0.193726 0.798548i −0.00956743 0.0394375i
\(411\) 31.1532 + 2.97477i 1.53667 + 0.146734i
\(412\) −2.70894 + 18.8411i −0.133460 + 0.928233i
\(413\) 25.7939 + 4.57149i 1.26924 + 0.224948i
\(414\) 0.265178 0.562137i 0.0130328 0.0276275i
\(415\) −3.87241 + 6.70720i −0.190089 + 0.329244i
\(416\) −6.90214 + 2.76320i −0.338405 + 0.135477i
\(417\) −1.84989 + 2.59781i −0.0905895 + 0.127215i
\(418\) −0.275511 + 0.262699i −0.0134757 + 0.0128491i
\(419\) −7.93692 9.15970i −0.387744 0.447481i 0.527999 0.849245i \(-0.322943\pi\)
−0.915743 + 0.401764i \(0.868397\pi\)
\(420\) 13.1330 1.45300i 0.640825 0.0708993i
\(421\) 0.843782 + 0.542266i 0.0411234 + 0.0264284i 0.561041 0.827788i \(-0.310401\pi\)
−0.519918 + 0.854216i \(0.674037\pi\)
\(422\) 1.51857 + 2.13253i 0.0739227 + 0.103810i
\(423\) −6.79370 1.30938i −0.330321 0.0636642i
\(424\) 5.38167 + 2.77444i 0.261357 + 0.134739i
\(425\) −3.94872 1.58083i −0.191541 0.0766814i
\(426\) −0.122526 0.852189i −0.00593642 0.0412887i
\(427\) 15.1406 + 11.5437i 0.732705 + 0.558637i
\(428\) 1.97612 2.28057i 0.0955196 0.110235i
\(429\) −5.21316 7.32086i −0.251694 0.353454i
\(430\) 0.0328766 0.690165i 0.00158545 0.0332827i
\(431\) 9.23945 + 8.80979i 0.445048 + 0.424353i 0.879175 0.476499i \(-0.158094\pi\)
−0.434127 + 0.900852i \(0.642943\pi\)
\(432\) 21.5819 4.15956i 1.03836 0.200127i
\(433\) 5.63116 + 1.65346i 0.270616 + 0.0794600i 0.414225 0.910174i \(-0.364053\pi\)
−0.143609 + 0.989634i \(0.545871\pi\)
\(434\) −1.27076 0.352527i −0.0609984 0.0169219i
\(435\) 0.431129 2.99857i 0.0206711 0.143770i
\(436\) 1.17665 2.03802i 0.0563513 0.0976033i
\(437\) −7.65719 + 5.86973i −0.366293 + 0.280787i
\(438\) 1.56339 + 2.70786i 0.0747015 + 0.129387i
\(439\) 13.5801 + 10.6795i 0.648143 + 0.509705i 0.887251 0.461288i \(-0.152612\pi\)
−0.239107 + 0.970993i \(0.576855\pi\)
\(440\) 0.549831 + 1.20396i 0.0262122 + 0.0573967i
\(441\) 5.29929 + 3.91614i 0.252347 + 0.186483i
\(442\) 0.913617 + 1.05437i 0.0434563 + 0.0501513i
\(443\) −1.16829 + 4.81576i −0.0555071 + 0.228804i −0.992808 0.119718i \(-0.961801\pi\)
0.937301 + 0.348521i \(0.113316\pi\)
\(444\) −0.0587013 + 1.23229i −0.00278584 + 0.0584820i
\(445\) 15.4005 1.47057i 0.730055 0.0697118i
\(446\) 0.770404 + 2.22594i 0.0364797 + 0.105401i
\(447\) 19.5115 12.5393i 0.922861 0.593087i
\(448\) 16.9614 + 10.5446i 0.801349 + 0.498183i
\(449\) −2.46863 17.1697i −0.116502 0.810289i −0.961359 0.275297i \(-0.911224\pi\)
0.844857 0.534992i \(-0.179685\pi\)
\(450\) −0.0117968 0.247645i −0.000556106 0.0116741i
\(451\) 4.58431 + 0.883554i 0.215867 + 0.0416049i
\(452\) −32.2629 + 3.08073i −1.51752 + 0.144906i
\(453\) −6.44053 + 3.32032i −0.302603 + 0.156002i
\(454\) −0.335186 + 0.0984196i −0.0157311 + 0.00461906i
\(455\) 10.3166 18.5040i 0.483651 0.867482i
\(456\) 1.51803 + 0.445734i 0.0710883 + 0.0208734i
\(457\) −31.4148 2.99975i −1.46952 0.140323i −0.670629 0.741793i \(-0.733976\pi\)
−0.798895 + 0.601471i \(0.794582\pi\)
\(458\) −1.02471 + 0.410232i −0.0478816 + 0.0191689i
\(459\) −6.28679 10.8890i −0.293442 0.508256i
\(460\) 5.26395 + 15.8410i 0.245433 + 0.738591i
\(461\) 14.2646 0.664369 0.332185 0.943214i \(-0.392214\pi\)
0.332185 + 0.943214i \(0.392214\pi\)
\(462\) 0.224742 0.682268i 0.0104559 0.0317420i
\(463\) 9.07827 + 19.8786i 0.421903 + 0.923838i 0.994572 + 0.104052i \(0.0331807\pi\)
−0.572669 + 0.819787i \(0.694092\pi\)
\(464\) 3.38023 3.22304i 0.156923 0.149626i
\(465\) 2.98501 8.62462i 0.138427 0.399957i
\(466\) 1.06919 + 1.01947i 0.0495292 + 0.0472260i
\(467\) 33.4891 17.2649i 1.54969 0.798922i 0.550342 0.834939i \(-0.314497\pi\)
0.999351 + 0.0360172i \(0.0114671\pi\)
\(468\) 3.53053 7.73078i 0.163199 0.357356i
\(469\) −28.5053 + 23.1167i −1.31625 + 1.06743i
\(470\) −1.49572 + 0.961243i −0.0689925 + 0.0443388i
\(471\) 14.7014 + 5.88556i 0.677406 + 0.271192i
\(472\) 4.26581 3.35467i 0.196350 0.154411i
\(473\) 3.48933 + 1.79887i 0.160439 + 0.0827123i
\(474\) 0.801785 + 2.31661i 0.0368272 + 0.106405i
\(475\) −1.59873 + 3.50073i −0.0733547 + 0.160624i
\(476\) 2.57741 11.3652i 0.118136 0.520921i
\(477\) −9.97726 + 2.92959i −0.456827 + 0.134137i
\(478\) 3.53674 0.681651i 0.161767 0.0311780i
\(479\) 1.42915 + 5.89103i 0.0652995 + 0.269168i 0.995097 0.0989031i \(-0.0315334\pi\)
−0.929798 + 0.368071i \(0.880018\pi\)
\(480\) 2.38547 3.34992i 0.108881 0.152902i
\(481\) 1.55487 + 1.22276i 0.0708959 + 0.0557531i
\(482\) 1.55342 0.0707565
\(483\) 7.51967 16.5801i 0.342157 0.754423i
\(484\) 18.0494 0.820425
\(485\) −2.43491 1.91483i −0.110564 0.0869481i
\(486\) 0.748713 1.05142i 0.0339623 0.0476934i
\(487\) −0.634366 2.61489i −0.0287459 0.118492i 0.955631 0.294566i \(-0.0951752\pi\)
−0.984377 + 0.176074i \(0.943660\pi\)
\(488\) 3.87300 0.746459i 0.175322 0.0337906i
\(489\) −18.4343 + 5.41279i −0.833626 + 0.244775i
\(490\) 1.68006 0.211413i 0.0758972 0.00955068i
\(491\) −6.45652 + 14.1378i −0.291379 + 0.638031i −0.997546 0.0700146i \(-0.977695\pi\)
0.706167 + 0.708045i \(0.250423\pi\)
\(492\) −3.15797 9.12435i −0.142372 0.411357i
\(493\) −2.37486 1.22433i −0.106958 0.0551409i
\(494\) 0.992255 0.780318i 0.0446437 0.0351082i
\(495\) −2.11029 0.844831i −0.0948503 0.0379723i
\(496\) 11.8371 7.60724i 0.531501 0.341575i
\(497\) 1.81192 + 11.3877i 0.0812758 + 0.510809i
\(498\) 0.361732 0.792083i 0.0162096 0.0354941i
\(499\) 37.5200 19.3429i 1.67962 0.865907i 0.689736 0.724061i \(-0.257727\pi\)
0.989889 0.141846i \(-0.0453037\pi\)
\(500\) 17.4144 + 16.6046i 0.778795 + 0.742579i
\(501\) −7.53480 + 21.7704i −0.336630 + 0.972628i
\(502\) −2.40959 + 2.29754i −0.107545 + 0.102544i
\(503\) −8.78308 19.2323i −0.391618 0.857524i −0.998052 0.0623901i \(-0.980128\pi\)
0.606434 0.795134i \(-0.292600\pi\)
\(504\) 1.33638 0.278403i 0.0595270 0.0124011i
\(505\) 23.9097 1.06397
\(506\) 0.902251 + 0.0974401i 0.0401099 + 0.00433174i
\(507\) 5.57461 + 9.65551i 0.247577 + 0.428816i
\(508\) −11.9524 + 4.78502i −0.530302 + 0.212301i
\(509\) 27.3648 + 2.61302i 1.21292 + 0.115820i 0.681841 0.731500i \(-0.261180\pi\)
0.531082 + 0.847320i \(0.321786\pi\)
\(510\) −0.740450 0.217416i −0.0327877 0.00962733i
\(511\) −21.4801 35.9492i −0.950224 1.59030i
\(512\) 10.1715 2.98662i 0.449521 0.131991i
\(513\) −10.1120 + 5.21309i −0.446455 + 0.230164i
\(514\) 1.09096 0.104174i 0.0481200 0.00459491i
\(515\) −16.5769 3.19493i −0.730465 0.140786i
\(516\) −0.386312 8.10968i −0.0170064 0.357009i
\(517\) −1.43764 9.99899i −0.0632272 0.439755i
\(518\) −0.00515481 + 0.158017i −0.000226490 + 0.00694288i
\(519\) −18.0496 + 11.5997i −0.792288 + 0.509172i
\(520\) −1.43548 4.14754i −0.0629499 0.181882i
\(521\) −7.67259 + 0.732643i −0.336142 + 0.0320977i −0.261763 0.965132i \(-0.584304\pi\)
−0.0743797 + 0.997230i \(0.523698\pi\)
\(522\) 0.00741046 0.155565i 0.000324347 0.00680888i
\(523\) 7.10657 29.2937i 0.310749 1.28092i −0.575533 0.817778i \(-0.695206\pi\)
0.886282 0.463146i \(-0.153279\pi\)
\(524\) 12.2710 + 14.1615i 0.536063 + 0.618649i
\(525\) −0.454228 7.24778i −0.0198241 0.316319i
\(526\) −1.78008 3.89782i −0.0776150 0.169953i
\(527\) −6.32732 4.97586i −0.275622 0.216752i
\(528\) 3.83221 + 6.63758i 0.166776 + 0.288864i
\(529\) 22.4697 + 4.91058i 0.976942 + 0.213503i
\(530\) −1.33609 + 2.31418i −0.0580362 + 0.100522i
\(531\) −1.32640 + 9.22530i −0.0575608 + 0.400344i
\(532\) −10.1607 2.81872i −0.440521 0.122207i
\(533\) −14.8541 4.36157i −0.643404 0.188920i
\(534\) −1.70797 + 0.329184i −0.0739111 + 0.0142452i
\(535\) 1.93695 + 1.84688i 0.0837417 + 0.0798476i
\(536\) −0.361769 + 7.59448i −0.0156261 + 0.328031i
\(537\) 11.8348 + 16.6197i 0.510711 + 0.717193i
\(538\) 1.40450 1.62088i 0.0605524 0.0698812i
\(539\) −2.87272 + 9.18189i −0.123737 + 0.395492i
\(540\) 2.80123 + 19.4830i 0.120546 + 0.838415i
\(541\) −11.6129 4.64909i −0.499276 0.199880i 0.108335 0.994114i \(-0.465448\pi\)
−0.607611 + 0.794234i \(0.707872\pi\)
\(542\) −3.17115 1.63484i −0.136213 0.0702226i
\(543\) −7.28071 1.40324i −0.312445 0.0602189i
\(544\) −2.10394 2.95457i −0.0902056 0.126676i
\(545\) 1.75581 + 1.12839i 0.0752108 + 0.0483350i
\(546\) −0.956916 + 2.18130i −0.0409522 + 0.0933510i
\(547\) 14.7706 + 17.0461i 0.631544 + 0.728841i 0.977856 0.209279i \(-0.0671116\pi\)
−0.346312 + 0.938119i \(0.612566\pi\)
\(548\) −31.2718 + 29.8176i −1.33586 + 1.27374i
\(549\) −3.92927 + 5.51789i −0.167697 + 0.235498i
\(550\) 0.336059 0.134538i 0.0143296 0.00573670i
\(551\) −1.20877 + 2.09365i −0.0514953 + 0.0891925i
\(552\) −1.52418 3.44988i −0.0648734 0.146837i
\(553\) −11.2024 30.8625i −0.476373 1.31241i
\(554\) −0.0791318 + 0.550374i −0.00336199 + 0.0233831i
\(555\) −1.08920 0.104006i −0.0462341 0.00441483i
\(556\) −1.03811 4.27915i −0.0440257 0.181476i
\(557\) −1.94932 + 5.63218i −0.0825952 + 0.238643i −0.978735 0.205129i \(-0.934239\pi\)
0.896140 + 0.443772i \(0.146360\pi\)
\(558\) 0.110617 0.455970i 0.00468279 0.0193027i
\(559\) −10.9511 7.03786i −0.463183 0.297670i
\(560\) −10.2582 + 14.8725i −0.433489 + 0.628479i
\(561\) 2.87130 3.31365i 0.121226 0.139902i
\(562\) 0.115688 + 2.42858i 0.00487999 + 0.102444i
\(563\) 23.4232 18.4202i 0.987171 0.776320i 0.0124902 0.999922i \(-0.496024\pi\)
0.974680 + 0.223602i \(0.0717817\pi\)
\(564\) −16.4220 + 12.9144i −0.691492 + 0.543795i
\(565\) −1.36770 28.7116i −0.0575396 1.20790i
\(566\) 1.10829 1.27904i 0.0465850 0.0537619i
\(567\) 7.94659 11.5211i 0.333725 0.483840i
\(568\) 2.00960 + 1.29149i 0.0843209 + 0.0541897i
\(569\) 0.570113 2.35004i 0.0239004 0.0985188i −0.958612 0.284715i \(-0.908101\pi\)
0.982513 + 0.186196i \(0.0596161\pi\)
\(570\) −0.228375 + 0.659846i −0.00956557 + 0.0276379i
\(571\) 5.99427 + 24.7087i 0.250852 + 1.03403i 0.948296 + 0.317388i \(0.102806\pi\)
−0.697443 + 0.716640i \(0.745679\pi\)
\(572\) 12.3526 + 1.17953i 0.516490 + 0.0493188i
\(573\) 3.10964 21.6280i 0.129907 0.903524i
\(574\) −0.422185 1.16312i −0.0176217 0.0485476i
\(575\) 8.83409 2.47555i 0.368407 0.103238i
\(576\) −3.55287 + 6.15375i −0.148036 + 0.256406i
\(577\) −13.8703 + 5.55282i −0.577427 + 0.231167i −0.641946 0.766750i \(-0.721873\pi\)
0.0645194 + 0.997916i \(0.479449\pi\)
\(578\) 0.962845 1.35213i 0.0400491 0.0562410i
\(579\) −18.4124 + 17.5562i −0.765195 + 0.729612i
\(580\) 2.73909 + 3.16108i 0.113735 + 0.131257i
\(581\) −4.68522 + 10.6800i −0.194375 + 0.443081i
\(582\) 0.292989 + 0.188293i 0.0121448 + 0.00780498i
\(583\) −8.80669 12.3673i −0.364736 0.512200i
\(584\) −8.51882 1.64187i −0.352511 0.0679410i
\(585\) 6.69968 + 3.45392i 0.276997 + 0.142802i
\(586\) 0.130447 + 0.0522233i 0.00538873 + 0.00215732i
\(587\) −3.99513 27.7868i −0.164897 1.14688i −0.889239 0.457442i \(-0.848766\pi\)
0.724342 0.689440i \(-0.242143\pi\)
\(588\) 19.4157 4.34945i 0.800691 0.179368i
\(589\) −4.76950 + 5.50430i −0.196524 + 0.226801i
\(590\) 1.38929 + 1.95098i 0.0571961 + 0.0803206i
\(591\) 1.80964 37.9891i 0.0744387 1.56266i
\(592\) −1.22087 1.16410i −0.0501774 0.0478441i
\(593\) −44.8735 + 8.64865i −1.84273 + 0.355157i −0.986802 0.161934i \(-0.948227\pi\)
−0.855930 + 0.517091i \(0.827015\pi\)
\(594\) 1.02674 + 0.301477i 0.0421275 + 0.0123698i
\(595\) 9.95957 + 2.76293i 0.408303 + 0.113269i
\(596\) −4.55736 + 31.6972i −0.186677 + 1.29837i
\(597\) −16.9936 + 29.4338i −0.695502 + 1.20465i
\(598\) −2.94758 0.606039i −0.120536 0.0247828i
\(599\) −9.56177 16.5615i −0.390683 0.676683i 0.601856 0.798604i \(-0.294428\pi\)
−0.992540 + 0.121921i \(0.961095\pi\)
\(600\) −1.18256 0.929979i −0.0482780 0.0379662i
\(601\) −17.5868 38.5096i −0.717379 1.57084i −0.817542 0.575870i \(-0.804664\pi\)
0.100163 0.994971i \(-0.468064\pi\)
\(602\) −0.0650794 1.03842i −0.00265244 0.0423230i
\(603\) −8.55092 9.86829i −0.348220 0.401868i
\(604\) 2.35868 9.72261i 0.0959733 0.395607i
\(605\) −0.761690 + 15.9898i −0.0309671 + 0.650079i
\(606\) −2.67607 + 0.255533i −0.108708 + 0.0103803i
\(607\) −3.14879 9.09782i −0.127805 0.369269i 0.862886 0.505399i \(-0.168655\pi\)
−0.990691 + 0.136130i \(0.956534\pi\)
\(608\) −2.76087 + 1.77430i −0.111968 + 0.0719575i
\(609\) 0.148736 4.55939i 0.00602707 0.184756i
\(610\) 0.247736 + 1.72304i 0.0100305 + 0.0697639i
\(611\) 1.59387 + 33.4594i 0.0644810 + 1.35362i
\(612\) 4.07133 + 0.784685i 0.164574 + 0.0317190i
\(613\) −21.8086 + 2.08247i −0.880839 + 0.0841100i −0.525667 0.850691i \(-0.676184\pi\)
−0.355173 + 0.934801i \(0.615578\pi\)
\(614\) 0.861472 0.444119i 0.0347662 0.0179232i
\(615\) 8.21648 2.41258i 0.331321 0.0972845i
\(616\) 1.02231 + 1.71094i 0.0411899 + 0.0689356i
\(617\) 10.4777 + 3.07652i 0.421815 + 0.123856i 0.485750 0.874098i \(-0.338547\pi\)
−0.0639344 + 0.997954i \(0.520365\pi\)
\(618\) 1.88950 + 0.180425i 0.0760067 + 0.00725776i
\(619\) 18.0873 7.24108i 0.726992 0.291044i 0.0215070 0.999769i \(-0.493154\pi\)
0.705485 + 0.708725i \(0.250729\pi\)
\(620\) 6.30055 + 10.9129i 0.253036 + 0.438271i
\(621\) 25.0512 + 10.3906i 1.00527 + 0.416962i
\(622\) 1.95454 0.0783699
\(623\) 22.8066 4.75123i 0.913728 0.190354i
\(624\) −10.5578 23.1183i −0.422649 0.925473i
\(625\) −8.52232 + 8.12602i −0.340893 + 0.325041i
\(626\) −0.411220 + 1.18814i −0.0164357 + 0.0474877i
\(627\) −2.87121 2.73769i −0.114665 0.109333i
\(628\) −19.4339 + 10.0189i −0.775499 + 0.399797i
\(629\) −0.400887 + 0.877821i −0.0159844 + 0.0350010i
\(630\) 0.0946673 + 0.594973i 0.00377164 + 0.0237043i
\(631\) 24.5649 15.7869i 0.977911 0.628465i 0.0490122 0.998798i \(-0.484393\pi\)
0.928899 + 0.370333i \(0.120756\pi\)
\(632\) −6.31456 2.52797i −0.251180 0.100557i
\(633\) −21.4457 + 16.8651i −0.852391 + 0.670327i
\(634\) −0.162208 0.0836242i −0.00644211 0.00332114i
\(635\) −3.73463 10.7905i −0.148204 0.428208i
\(636\) −13.0437 + 28.5617i −0.517215 + 1.13254i
\(637\) 12.3769 29.4036i 0.490390 1.16501i
\(638\) 0.218181 0.0640638i 0.00863789 0.00253631i
\(639\) −4.02843 + 0.776417i −0.159362 + 0.0307146i
\(640\) 1.78197 + 7.34539i 0.0704387 + 0.290352i
\(641\) 14.5383 20.4162i 0.574229 0.806392i −0.420676 0.907211i \(-0.638207\pi\)
0.994905 + 0.100819i \(0.0321463\pi\)
\(642\) −0.236530 0.186009i −0.00933508 0.00734119i
\(643\) −6.26090 −0.246906 −0.123453 0.992350i \(-0.539397\pi\)
−0.123453 + 0.992350i \(0.539397\pi\)
\(644\) 10.5018 + 22.8378i 0.413828 + 0.899934i
\(645\) 7.20063 0.283525
\(646\) 0.484086 + 0.380689i 0.0190461 + 0.0149780i
\(647\) −10.5689 + 14.8419i −0.415506 + 0.583496i −0.968290 0.249828i \(-0.919626\pi\)
0.552784 + 0.833324i \(0.313565\pi\)
\(648\) −0.683571 2.81772i −0.0268532 0.110690i
\(649\) −13.3622 + 2.57535i −0.524511 + 0.101091i
\(650\) −1.15172 + 0.338176i −0.0451743 + 0.0132644i
\(651\) 3.03953 13.4029i 0.119129 0.525300i
\(652\) 11.0196 24.1296i 0.431562 0.944988i
\(653\) −3.81340 11.0181i −0.149230 0.431172i 0.845466 0.534029i \(-0.179323\pi\)
−0.994696 + 0.102857i \(0.967202\pi\)
\(654\) −0.208577 0.107529i −0.00815601 0.00420472i
\(655\) −13.0635 + 10.2732i −0.510432 + 0.401408i
\(656\) 12.2567 + 4.90685i 0.478545 + 0.191580i
\(657\) 12.5343 8.05531i 0.489010 0.314268i
\(658\) −2.07949 + 1.68638i −0.0810670 + 0.0657421i
\(659\) −15.3310 + 33.5701i −0.597210 + 1.30771i 0.333776 + 0.942652i \(0.391677\pi\)
−0.930986 + 0.365055i \(0.881050\pi\)
\(660\) −6.10086 + 3.14521i −0.237476 + 0.122427i
\(661\) −5.01481 4.78161i −0.195053 0.185983i 0.586258 0.810124i \(-0.300600\pi\)
−0.781311 + 0.624141i \(0.785449\pi\)
\(662\) 0.404898 1.16988i 0.0157368 0.0454685i
\(663\) −10.5225 + 10.0332i −0.408660 + 0.389657i
\(664\) 1.00367 + 2.19773i 0.0389499 + 0.0852883i
\(665\) 2.92588 8.88235i 0.113461 0.344443i
\(666\) −0.0562505 −0.00217966
\(667\) 5.67205 1.02054i 0.219623 0.0395155i
\(668\) −15.9039 27.5464i −0.615341 1.06580i
\(669\) −22.7890 + 9.12335i −0.881075 + 0.352729i
\(670\) −3.34034 0.318964i −0.129049 0.0123226i
\(671\) −9.48977 2.78645i −0.366349 0.107570i
\(672\) 3.01563 5.40888i 0.116331 0.208652i
\(673\) −27.9531 + 8.20777i −1.07751 + 0.316386i −0.771883 0.635764i \(-0.780685\pi\)
−0.305630 + 0.952150i \(0.598867\pi\)
\(674\) −0.0810940 + 0.0418069i −0.00312363 + 0.00161034i
\(675\) 10.7691 1.02832i 0.414502 0.0395802i
\(676\) −15.1156 2.91329i −0.581369 0.112050i
\(677\) 2.36850 + 49.7209i 0.0910289 + 1.91093i 0.336756 + 0.941592i \(0.390670\pi\)
−0.245727 + 0.969339i \(0.579027\pi\)
\(678\) 0.459931 + 3.19889i 0.0176636 + 0.122853i
\(679\) −3.96144 2.46275i −0.152026 0.0945118i
\(680\) 1.80129 1.15762i 0.0690764 0.0443927i
\(681\) −1.19071 3.44034i −0.0456283 0.131834i
\(682\) 0.681955 0.0651188i 0.0261134 0.00249353i
\(683\) −0.394813 + 8.28814i −0.0151071 + 0.317137i 0.978647 + 0.205547i \(0.0658973\pi\)
−0.993754 + 0.111590i \(0.964406\pi\)
\(684\) 0.884466 3.64582i 0.0338184 0.139401i
\(685\) −25.0956 28.9618i −0.958852 1.10657i
\(686\) 2.47955 0.594630i 0.0946698 0.0227031i
\(687\) −4.77846 10.4634i −0.182310 0.399203i
\(688\) 8.72635 + 6.86247i 0.332689 + 0.261629i
\(689\) 25.1723 + 43.5998i 0.958990 + 1.66102i
\(690\) 1.55285 0.599471i 0.0591160 0.0228215i
\(691\) −11.7834 + 20.4094i −0.448261 + 0.776410i −0.998273 0.0587465i \(-0.981290\pi\)
0.550012 + 0.835156i \(0.314623\pi\)
\(692\) 4.21590 29.3222i 0.160264 1.11466i
\(693\) −3.29839 0.915022i −0.125295 0.0347588i
\(694\) 2.73886 + 0.804201i 0.103966 + 0.0305271i
\(695\) 3.83469 0.739076i 0.145458 0.0280347i
\(696\) −0.683964 0.652158i −0.0259256 0.0247200i
\(697\) 0.359373 7.54418i 0.0136122 0.285756i
\(698\) −0.399429 0.560920i −0.0151186 0.0212311i
\(699\) −10.0821 + 11.6353i −0.381338 + 0.440088i
\(700\) 7.97351 + 6.07924i 0.301370 + 0.229774i
\(701\) −2.94881 20.5094i −0.111375 0.774630i −0.966585 0.256348i \(-0.917481\pi\)
0.855210 0.518282i \(-0.173428\pi\)
\(702\) −3.29419 1.31880i −0.124331 0.0497747i
\(703\) 0.776101 + 0.400108i 0.0292712 + 0.0150903i
\(704\) −10.1874 1.96345i −0.383951 0.0740005i
\(705\) −10.7478 15.0932i −0.404786 0.568442i
\(706\) −3.94525 2.53546i −0.148481 0.0954232i
\(707\) 35.7859 3.95927i 1.34587 0.148904i
\(708\) 18.4298 + 21.2691i 0.692635 + 0.799343i
\(709\) 32.7145 31.1932i 1.22862 1.17149i 0.249462 0.968385i \(-0.419746\pi\)
0.979158 0.203102i \(-0.0651024\pi\)
\(710\) −0.611540 + 0.858787i −0.0229507 + 0.0322297i
\(711\) 10.8447 4.34156i 0.406708 0.162821i
\(712\) 2.41309 4.17959i 0.0904343 0.156637i
\(713\) 17.3610 + 0.214941i 0.650176 + 0.00804960i
\(714\) −1.14424 0.202796i −0.0428222 0.00758944i
\(715\) −1.56623 + 10.8934i −0.0585737 + 0.407389i
\(716\) −28.0428 2.67776i −1.04801 0.100073i
\(717\) 8.84946 + 36.4780i 0.330489 + 1.36229i
\(718\) −0.128430 + 0.371074i −0.00479296 + 0.0138484i
\(719\) 7.03417 28.9953i 0.262330 1.08134i −0.676358 0.736573i \(-0.736443\pi\)
0.938688 0.344767i \(-0.112042\pi\)
\(720\) −5.40765 3.47528i −0.201531 0.129516i
\(721\) −25.3399 2.03689i −0.943707 0.0758577i
\(722\) −1.34815 + 1.55585i −0.0501731 + 0.0579028i
\(723\) 0.770295 + 16.1705i 0.0286476 + 0.601387i
\(724\) 8.04722 6.32840i 0.299073 0.235193i
\(725\) 1.80701 1.42105i 0.0671106 0.0527763i
\(726\) −0.0856391 1.79779i −0.00317836 0.0667221i
\(727\) −13.9064 + 16.0489i −0.515761 + 0.595220i −0.952564 0.304337i \(-0.901565\pi\)
0.436804 + 0.899557i \(0.356110\pi\)
\(728\) −2.83530 5.96997i −0.105083 0.221262i
\(729\) 24.6666 + 15.8523i 0.913578 + 0.587121i
\(730\) 0.902691 3.72094i 0.0334101 0.137718i
\(731\) 2.07715 6.00154i 0.0768262 0.221975i
\(732\) 4.82234 + 19.8779i 0.178239 + 0.734710i
\(733\) 39.2048 + 3.74360i 1.44806 + 0.138273i 0.789267 0.614050i \(-0.210461\pi\)
0.658794 + 0.752323i \(0.271067\pi\)
\(734\) 0.0390359 0.271500i 0.00144084 0.0100213i
\(735\) 3.03381 + 17.3838i 0.111904 + 0.641213i
\(736\) 7.47878 + 2.29691i 0.275671 + 0.0846652i
\(737\) 9.53250 16.5108i 0.351134 0.608182i
\(738\) 0.408705 0.163621i 0.0150446 0.00602297i
\(739\) 1.57866 2.21692i 0.0580721 0.0815508i −0.784519 0.620105i \(-0.787090\pi\)
0.842591 + 0.538554i \(0.181029\pi\)
\(740\) 1.09335 1.04251i 0.0401924 0.0383234i
\(741\) 8.61481 + 9.94202i 0.316473 + 0.365229i
\(742\) −1.61654 + 3.68491i −0.0593450 + 0.135277i
\(743\) −4.25688 2.73573i −0.156170 0.100364i 0.460222 0.887804i \(-0.347770\pi\)
−0.616392 + 0.787440i \(0.711406\pi\)
\(744\) −1.65149 2.31919i −0.0605465 0.0850257i
\(745\) −27.8880 5.37498i −1.02174 0.196924i
\(746\) 1.44208 + 0.743446i 0.0527985 + 0.0272195i
\(747\) −3.85214 1.54216i −0.140942 0.0564248i
\(748\) 0.861548 + 5.99220i 0.0315013 + 0.219096i
\(749\) 3.20489 + 2.44350i 0.117104 + 0.0892837i
\(750\) 1.57125 1.81332i 0.0573741 0.0662132i
\(751\) −11.2509 15.7997i −0.410551 0.576538i 0.556588 0.830789i \(-0.312110\pi\)
−0.967138 + 0.254251i \(0.918171\pi\)
\(752\) 1.35926 28.5343i 0.0495670 1.04054i
\(753\) −25.1113 23.9436i −0.915107 0.872552i
\(754\) −0.740401 + 0.142701i −0.0269638 + 0.00519685i
\(755\) 8.51367 + 2.49984i 0.309844 + 0.0909785i
\(756\) 7.41888 + 28.6966i 0.269822 + 1.04369i
\(757\) 1.51058 10.5063i 0.0549031 0.381859i −0.943781 0.330572i \(-0.892758\pi\)
0.998684 0.0512875i \(-0.0163325\pi\)
\(758\) −1.04967 + 1.81809i −0.0381259 + 0.0660359i
\(759\) −0.566912 + 9.44036i −0.0205776 + 0.342664i
\(760\) −0.968687 1.67782i −0.0351380 0.0608608i
\(761\) 13.3784 + 10.5209i 0.484968 + 0.381383i 0.830495 0.557026i \(-0.188057\pi\)
−0.345527 + 0.938409i \(0.612300\pi\)
\(762\) 0.533318 + 1.16780i 0.0193201 + 0.0423050i
\(763\) 2.81480 + 1.39813i 0.101903 + 0.0506157i
\(764\) 19.7565 + 22.8002i 0.714764 + 0.824881i
\(765\) −0.866960 + 3.57366i −0.0313450 + 0.129206i
\(766\) 0.167459 3.51540i 0.00605055 0.127017i
\(767\) 44.9197 4.28931i 1.62196 0.154878i
\(768\) 6.80691 + 19.6673i 0.245623 + 0.709682i
\(769\) −16.8217 + 10.8106i −0.606604 + 0.389841i −0.807582 0.589755i \(-0.799224\pi\)
0.200978 + 0.979596i \(0.435588\pi\)
\(770\) −0.775715 + 0.414743i −0.0279548 + 0.0149463i
\(771\) 1.62538 + 11.3047i 0.0585365 + 0.407130i
\(772\) −1.67138 35.0865i −0.0601542 1.26279i
\(773\) −53.9144 10.3912i −1.93917 0.373744i −0.999499 0.0316550i \(-0.989922\pi\)
−0.939668 0.342089i \(-0.888866\pi\)
\(774\) 0.368507 0.0351881i 0.0132457 0.00126481i
\(775\) 6.15574 3.17350i 0.221121 0.113996i
\(776\) −0.927192 + 0.272248i −0.0332842 + 0.00977314i
\(777\) −1.64745 + 0.0246964i −0.0591019 + 0.000885980i
\(778\) −4.04181 1.18678i −0.144906 0.0425482i
\(779\) −6.80283 0.649591i −0.243737 0.0232740i
\(780\) 21.1301 8.45920i 0.756578 0.302888i
\(781\) −2.99502 5.18752i −0.107170 0.185624i
\(782\) −0.0516956 1.46719i −0.00184863 0.0524665i
\(783\) 6.79565 0.242857
\(784\) −12.8908 + 23.9586i −0.460387 + 0.855664i
\(785\) −8.05557 17.6392i −0.287516 0.629571i
\(786\) 1.35232 1.28944i 0.0482357 0.0459926i
\(787\) 14.6708 42.3885i 0.522958 1.51099i −0.306196 0.951968i \(-0.599056\pi\)
0.829154 0.559020i \(-0.188822\pi\)
\(788\) 38.0041 + 36.2368i 1.35384 + 1.29088i
\(789\) 39.6920 20.4626i 1.41307 0.728489i
\(790\) 1.24703 2.73062i 0.0443673 0.0971509i
\(791\) −6.80148 42.7465i −0.241833 1.51989i
\(792\) −0.596548 + 0.383378i −0.0211974 + 0.0136227i
\(793\) 30.4471 + 12.1892i 1.08121 + 0.432850i
\(794\) −1.11062 + 0.873404i −0.0394146 + 0.0309960i
\(795\) −24.7522 12.7606i −0.877870 0.452573i
\(796\) −15.3481 44.3454i −0.543998 1.57178i
\(797\) 7.48634 16.3928i 0.265180 0.580663i −0.729465 0.684018i \(-0.760231\pi\)
0.994644 + 0.103356i \(0.0329580\pi\)
\(798\) −0.232546 + 1.02542i −0.00823204 + 0.0362994i
\(799\) −15.6802 + 4.60411i −0.554725 + 0.162882i
\(800\) 3.06431 0.590598i 0.108340 0.0208808i
\(801\) 1.95409 + 8.05489i 0.0690445 + 0.284605i
\(802\) −1.05485 + 1.48133i −0.0372480 + 0.0523075i
\(803\) 17.1001 + 13.4477i 0.603449 + 0.474557i
\(804\) −39.4287 −1.39054
\(805\) −20.6750 + 8.33970i −0.728700 + 0.293936i
\(806\) −2.27163 −0.0800148
\(807\) 17.5691 + 13.8165i 0.618463 + 0.486365i
\(808\) 4.32655 6.07579i 0.152207 0.213745i
\(809\) 5.37941 + 22.1742i 0.189130 + 0.779604i 0.984774 + 0.173840i \(0.0556174\pi\)
−0.795644 + 0.605764i \(0.792867\pi\)
\(810\) 1.25651 0.242173i 0.0441494 0.00850910i
\(811\) 22.0298 6.46853i 0.773570 0.227141i 0.128958 0.991650i \(-0.458837\pi\)
0.644613 + 0.764509i \(0.277019\pi\)
\(812\) 4.62308 + 4.27765i 0.162238 + 0.150116i
\(813\) 15.4455 33.8210i 0.541699 1.18616i
\(814\) −0.0268619 0.0776124i −0.000941510 0.00272031i
\(815\) 20.9113 + 10.7805i 0.732490 + 0.377625i
\(816\) 9.74633 7.66460i 0.341190 0.268315i
\(817\) −5.33466 2.13568i −0.186636 0.0747179i
\(818\) −1.67609 + 1.07716i −0.0586033 + 0.0376620i
\(819\) 10.5994 + 4.06011i 0.370374 + 0.141872i
\(820\) −4.91164 + 10.7550i −0.171522 + 0.375581i
\(821\) 20.0833 10.3537i 0.700912 0.361345i −0.0706485 0.997501i \(-0.522507\pi\)
0.771560 + 0.636156i \(0.219477\pi\)
\(822\) 3.11832 + 2.97331i 0.108764 + 0.103706i
\(823\) −6.83635 + 19.7523i −0.238300 + 0.688523i 0.760913 + 0.648854i \(0.224751\pi\)
−0.999213 + 0.0396687i \(0.987370\pi\)
\(824\) −3.81153 + 3.63428i −0.132781 + 0.126606i
\(825\) 1.56712 + 3.43151i 0.0545601 + 0.119470i
\(826\) 2.40243 + 2.69000i 0.0835913 + 0.0935972i
\(827\) −33.6913 −1.17156 −0.585781 0.810470i \(-0.699212\pi\)
−0.585781 + 0.810470i \(0.699212\pi\)
\(828\) −7.99925 + 3.99934i −0.277993 + 0.138987i
\(829\) −19.6514 34.0373i −0.682523 1.18216i −0.974208 0.225650i \(-0.927549\pi\)
0.291686 0.956514i \(-0.405784\pi\)
\(830\) −0.989919 + 0.396304i −0.0343606 + 0.0137559i
\(831\) −5.76840 0.550815i −0.200103 0.0191076i
\(832\) 33.0092 + 9.69238i 1.14439 + 0.336023i
\(833\) 15.3641 + 2.48608i 0.532336 + 0.0861377i
\(834\) −0.421294 + 0.123703i −0.0145882 + 0.00428349i
\(835\) 25.0744 12.9267i 0.867734 0.447348i
\(836\) 5.45274 0.520674i 0.188587 0.0180079i
\(837\) 20.1030 + 3.87454i 0.694862 + 0.133924i
\(838\) −0.0793988 1.66679i −0.00274279 0.0575782i
\(839\) 3.41567 + 23.7565i 0.117922 + 0.820165i 0.959838 + 0.280556i \(0.0905188\pi\)
−0.841916 + 0.539609i \(0.818572\pi\)
\(840\) 3.10470 + 1.93013i 0.107122 + 0.0665959i
\(841\) −23.1815 + 14.8979i −0.799363 + 0.513719i
\(842\) 0.0451659 + 0.130498i 0.00155652 + 0.00449726i
\(843\) −25.2231 + 2.40852i −0.868731 + 0.0829537i
\(844\) 1.79238 37.6268i 0.0616964 1.29517i
\(845\) 3.21875 13.2679i 0.110729 0.456429i
\(846\) −0.623798 0.719901i −0.0214466 0.0247507i
\(847\) 1.50777 + 24.0583i 0.0518075 + 0.826654i
\(848\) −17.8355 39.0542i −0.612473 1.34113i
\(849\) 13.8638 + 10.9026i 0.475804 + 0.374177i
\(850\) −0.292802 0.507149i −0.0100430 0.0173951i
\(851\) −0.465658 2.02877i −0.0159626 0.0695453i
\(852\) −6.19405 + 10.7284i −0.212205 + 0.367549i
\(853\) −2.92140 + 20.3188i −0.100027 + 0.695702i 0.876672 + 0.481088i \(0.159758\pi\)
−0.976699 + 0.214614i \(0.931151\pi\)
\(854\) 0.656112 + 2.53787i 0.0224517 + 0.0868443i
\(855\) 3.19249 + 0.937399i 0.109181 + 0.0320584i
\(856\) 0.819817 0.158007i 0.0280208 0.00540056i
\(857\) 35.7548 + 34.0921i 1.22136 + 1.16456i 0.981026 + 0.193874i \(0.0621052\pi\)
0.240333 + 0.970690i \(0.422743\pi\)
\(858\) 0.0588764 1.23597i 0.00201001 0.0421952i
\(859\) 18.4301 + 25.8814i 0.628825 + 0.883062i 0.998945 0.0459225i \(-0.0146227\pi\)
−0.370120 + 0.928984i \(0.620683\pi\)
\(860\) −6.51058 + 7.51361i −0.222009 + 0.256212i
\(861\) 11.8982 4.97152i 0.405490 0.169429i
\(862\) 0.250142 + 1.73977i 0.00851985 + 0.0592569i
\(863\) −19.7288 7.89823i −0.671577 0.268859i 0.0107106 0.999943i \(-0.496591\pi\)
−0.682288 + 0.731084i \(0.739015\pi\)
\(864\) 8.19969 + 4.22723i 0.278959 + 0.143813i
\(865\) 25.7985 + 4.97225i 0.877175 + 0.169062i
\(866\) 0.468700 + 0.658197i 0.0159271 + 0.0223665i
\(867\) 14.5525 + 9.35233i 0.494229 + 0.317622i
\(868\) 11.2372 + 15.2901i 0.381415 + 0.518980i
\(869\) 11.1691 + 12.8898i 0.378886 + 0.437258i
\(870\) 0.301860 0.287823i 0.0102340 0.00975810i
\(871\) −36.6707 + 51.4967i −1.24254 + 1.74490i
\(872\) 0.604461 0.241990i 0.0204696 0.00819481i
\(873\) 0.829797 1.43725i 0.0280844 0.0486436i
\(874\) −1.32825 0.0164445i −0.0449286 0.000556245i
\(875\) −20.6778 + 24.5990i −0.699038 + 0.831599i
\(876\) 6.40283 44.5327i 0.216332 1.50462i
\(877\) −14.1809 1.35411i −0.478854 0.0457250i −0.147161 0.989113i \(-0.547014\pi\)
−0.331693 + 0.943388i \(0.607620\pi\)
\(878\) 0.560774 + 2.31154i 0.0189252 + 0.0780108i
\(879\) −0.478937 + 1.38380i −0.0161541 + 0.0466743i
\(880\) 2.21270 9.12087i 0.0745901 0.307464i
\(881\) 4.12603 + 2.65164i 0.139009 + 0.0893359i 0.608297 0.793709i \(-0.291853\pi\)
−0.469288 + 0.883045i \(0.655489\pi\)
\(882\) 0.240213 + 0.874827i 0.00808839 + 0.0294570i
\(883\) −10.5038 + 12.1221i −0.353482 + 0.407940i −0.904445 0.426589i \(-0.859715\pi\)
0.550963 + 0.834529i \(0.314260\pi\)
\(884\) −0.955174 20.0516i −0.0321260 0.674407i
\(885\) −19.6200 + 15.4293i −0.659518 + 0.518651i
\(886\) −0.536294 + 0.421747i −0.0180172 + 0.0141689i
\(887\) −2.27863 47.8344i −0.0765091 1.60612i −0.632248 0.774766i \(-0.717868\pi\)
0.555739 0.831357i \(-0.312435\pi\)
\(888\) −0.223525 + 0.257962i −0.00750101 + 0.00865663i
\(889\) −7.37650 15.5319i −0.247400 0.520922i
\(890\) 1.79185 + 1.15155i 0.0600630 + 0.0386001i
\(891\) −1.71408 + 7.06553i −0.0574238 + 0.236704i
\(892\) 11.0852 32.0286i 0.371160 1.07240i
\(893\) 3.48605 + 14.3697i 0.116656 + 0.480864i
\(894\) 3.17878 + 0.303537i 0.106314 + 0.0101518i
\(895\) 3.55563 24.7299i 0.118852 0.826631i
\(896\) 3.88344 + 10.6989i 0.129737 + 0.357424i
\(897\) 4.84699 30.9836i 0.161836 1.03451i
\(898\) 1.19411 2.06826i 0.0398480 0.0690188i
\(899\) 4.03887 1.61692i 0.134704 0.0539273i
\(900\) −2.06927 + 2.90589i −0.0689758 + 0.0968630i
\(901\) −17.7759 + 16.9493i −0.592200 + 0.564662i
\(902\) 0.420932 + 0.485781i 0.0140155 + 0.0161747i
\(903\) 10.7773 1.19237i 0.358645 0.0396796i
\(904\) −7.54350 4.84791i −0.250893 0.161239i
\(905\) 5.26671 + 7.39606i 0.175071 + 0.245853i
\(906\) −0.979601 0.188803i −0.0325450 0.00627254i
\(907\) 44.3355 + 22.8565i 1.47214 + 0.758938i 0.992923 0.118761i \(-0.0378922\pi\)
0.479212 + 0.877699i \(0.340922\pi\)
\(908\) 4.66649 + 1.86818i 0.154863 + 0.0619977i
\(909\) 1.82304 + 12.6795i 0.0604663 + 0.420552i
\(910\) 2.69133 1.12454i 0.0892168 0.0372782i
\(911\) −16.6589 + 19.2254i −0.551934 + 0.636966i −0.961333 0.275390i \(-0.911193\pi\)
0.409399 + 0.912356i \(0.365739\pi\)
\(912\) −6.50753 9.13855i −0.215486 0.302608i
\(913\) 0.288268 6.05149i 0.00954028 0.200275i
\(914\) −3.14451 2.99829i −0.104011 0.0991745i
\(915\) −17.8133 + 3.43323i −0.588889 + 0.113499i
\(916\) 15.2387 + 4.47449i 0.503501 + 0.147841i
\(917\) −17.8511 + 17.5393i −0.589495 + 0.579198i
\(918\) 0.246364 1.71350i 0.00813123 0.0565539i
\(919\) −14.7617 + 25.5681i −0.486945 + 0.843413i −0.999887 0.0150099i \(-0.995222\pi\)
0.512943 + 0.858423i \(0.328555\pi\)
\(920\) −1.56447 + 4.34543i −0.0515790 + 0.143264i
\(921\) 5.05027 + 8.74733i 0.166412 + 0.288234i
\(922\) 1.54376 + 1.21403i 0.0508411 + 0.0399819i
\(923\) 8.25130 + 18.0678i 0.271595 + 0.594710i
\(924\) −8.61040 + 5.71773i −0.283262 + 0.188100i
\(925\) −0.543726 0.627493i −0.0178776 0.0206319i
\(926\) −0.709345 + 2.92396i −0.0233105 + 0.0960873i
\(927\) 0.430364 9.03446i 0.0141350 0.296730i
\(928\) 1.95148 0.186344i 0.0640604 0.00611703i
\(929\) −4.15108 11.9937i −0.136192 0.393502i 0.856196 0.516652i \(-0.172822\pi\)
−0.992388 + 0.123149i \(0.960701\pi\)
\(930\) 1.05707 0.679337i 0.0346627 0.0222764i
\(931\) 2.90835 13.7788i 0.0953172 0.451583i
\(932\) −3.02518 21.0406i −0.0990930 0.689207i
\(933\) 0.969196 + 20.3459i 0.0317300 + 0.666095i
\(934\) 5.09368 + 0.981726i 0.166670 + 0.0321231i
\(935\) −5.34482 + 0.510368i −0.174794 + 0.0166908i
\(936\) 2.09002 1.07748i 0.0683145 0.0352186i
\(937\) −29.6027 + 8.69213i −0.967077 + 0.283959i −0.726880 0.686765i \(-0.759030\pi\)
−0.240197 + 0.970724i \(0.577212\pi\)
\(938\) −5.05235 + 0.0757384i −0.164965 + 0.00247295i
\(939\) −12.5720 3.69146i −0.410270 0.120466i
\(940\) 25.4671 + 2.43181i 0.830644 + 0.0793168i
\(941\) 5.16712 2.06860i 0.168443 0.0674345i −0.285908 0.958257i \(-0.592295\pi\)
0.454351 + 0.890823i \(0.349871\pi\)
\(942\) 1.09013 + 1.88816i 0.0355183 + 0.0615195i
\(943\) 9.28465 + 13.3862i 0.302350 + 0.435913i
\(944\) −38.4819 −1.25248
\(945\) −25.7353 + 5.36134i −0.837168 + 0.174405i
\(946\) 0.224528 + 0.491649i 0.00730005 + 0.0159849i
\(947\) 16.3702 15.6090i 0.531961 0.507224i −0.375806 0.926698i \(-0.622634\pi\)
0.907767 + 0.419474i \(0.137786\pi\)
\(948\) 11.5367 33.3332i 0.374696 1.08261i
\(949\) −52.2079 49.7802i −1.69474 1.61593i
\(950\) −0.470958 + 0.242796i −0.0152799 + 0.00787734i
\(951\) 0.790058 1.72999i 0.0256194 0.0560986i
\(952\) 2.50432 2.03090i 0.0811655 0.0658220i
\(953\) −32.0121 + 20.5729i −1.03697 + 0.666422i −0.944236 0.329269i \(-0.893198\pi\)
−0.0927362 + 0.995691i \(0.529561\pi\)
\(954\) −1.32910 0.532092i −0.0430313 0.0172271i
\(955\) −21.0323 + 16.5400i −0.680589 + 0.535221i
\(956\) −46.0649 23.7481i −1.48985 0.768069i
\(957\) 0.775067 + 2.23941i 0.0250543 + 0.0723898i
\(958\) −0.346705 + 0.759179i −0.0112015 + 0.0245279i
\(959\) −42.3567 39.1919i −1.36777 1.26557i
\(960\) −18.2589 + 5.36129i −0.589302 + 0.173035i
\(961\) −17.5700 + 3.38634i −0.566775 + 0.109237i
\(962\) 0.0642064 + 0.264662i 0.00207010 + 0.00853306i
\(963\) −0.831728 + 1.16800i −0.0268021 + 0.0376382i
\(964\) −17.5698 13.8171i −0.565886 0.445018i
\(965\) 31.1535 1.00287
\(966\) 2.22490 1.15438i 0.0715850 0.0371414i
\(967\) 47.5775 1.52999 0.764995 0.644036i \(-0.222741\pi\)
0.764995 + 0.644036i \(0.222741\pi\)
\(968\) 3.92541 + 3.08698i 0.126167 + 0.0992192i
\(969\) −3.72277 + 5.22790i −0.119593 + 0.167944i
\(970\) −0.100547 0.414459i −0.00322836 0.0133075i
\(971\) −48.9070 + 9.42606i −1.56950 + 0.302497i −0.898505 0.438964i \(-0.855346\pi\)
−0.670997 + 0.741460i \(0.734134\pi\)
\(972\) −17.8202 + 5.23248i −0.571582 + 0.167832i
\(973\) 5.61704 1.74118i 0.180074 0.0558197i
\(974\) 0.153894 0.336981i 0.00493109 0.0107976i
\(975\) −4.09137 11.8212i −0.131029 0.378583i
\(976\) −24.8597 12.8161i −0.795739 0.410232i
\(977\) 40.5989 31.9274i 1.29888 1.02145i 0.301182 0.953567i \(-0.402619\pi\)
0.997693 0.0678801i \(-0.0216235\pi\)
\(978\) −2.45569 0.983108i −0.0785242 0.0314363i
\(979\) −10.1807 + 6.54273i −0.325376 + 0.209107i
\(980\) −20.8825 12.5522i −0.667068 0.400967i
\(981\) −0.464520 + 1.01716i −0.0148310 + 0.0324753i
\(982\) −1.90198 + 0.980540i −0.0606947 + 0.0312903i
\(983\) −22.2447 21.2103i −0.709496 0.676503i 0.246746 0.969080i \(-0.420639\pi\)
−0.956242 + 0.292577i \(0.905487\pi\)
\(984\) 0.873734 2.52449i 0.0278536 0.0804777i
\(985\) −33.7058 + 32.1384i −1.07396 + 1.02402i
\(986\) −0.152816 0.334620i −0.00486664 0.0106565i
\(987\) −18.5857 20.8104i −0.591589 0.662402i
\(988\) −18.1634 −0.577855
\(989\) 4.31973 + 12.9995i 0.137359 + 0.413361i
\(990\) −0.156480 0.271032i −0.00497327 0.00861396i
\(991\) 2.63135 1.05343i 0.0835876 0.0334634i −0.329492 0.944158i \(-0.606877\pi\)
0.413079 + 0.910695i \(0.364453\pi\)
\(992\) 5.87915 + 0.561390i 0.186663 + 0.0178242i
\(993\) 12.3787 + 3.63471i 0.392826 + 0.115344i
\(994\) −0.773090 + 1.38662i −0.0245209 + 0.0439810i
\(995\) 39.9331 11.7254i 1.26596 0.371720i
\(996\) −11.1366 + 5.74130i −0.352876 + 0.181920i
\(997\) −8.88262 + 0.848187i −0.281315 + 0.0268624i −0.234760 0.972053i \(-0.575430\pi\)
−0.0465553 + 0.998916i \(0.514824\pi\)
\(998\) 5.70676 + 1.09989i 0.180644 + 0.0348164i
\(999\) −0.116787 2.45167i −0.00369499 0.0775673i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.2.m.a.100.8 yes 280
7.4 even 3 inner 161.2.m.a.123.7 yes 280
23.3 even 11 inner 161.2.m.a.72.7 280
161.95 even 33 inner 161.2.m.a.95.8 yes 280
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.2.m.a.72.7 280 23.3 even 11 inner
161.2.m.a.95.8 yes 280 161.95 even 33 inner
161.2.m.a.100.8 yes 280 1.1 even 1 trivial
161.2.m.a.123.7 yes 280 7.4 even 3 inner