Properties

Label 161.2.m.a.100.11
Level $161$
Weight $2$
Character 161.100
Analytic conductor $1.286$
Analytic rank $0$
Dimension $280$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [161,2,Mod(2,161)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(66))
 
chi = DirichletCharacter(H, H._module([22, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("161.2");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 161.m (of order \(33\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.28559147254\)
Analytic rank: \(0\)
Dimension: \(280\)
Relative dimension: \(14\) over \(\Q(\zeta_{33})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{33}]$

Embedding invariants

Embedding label 100.11
Character \(\chi\) \(=\) 161.100
Dual form 161.2.m.a.95.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.10428 + 0.868418i) q^{2} +(-0.310664 + 0.436266i) q^{3} +(-0.00622628 - 0.0256651i) q^{4} +(3.76678 - 0.725987i) q^{5} +(-0.721922 + 0.211976i) q^{6} +(-2.57048 - 0.626615i) q^{7} +(1.18260 - 2.58953i) q^{8} +(0.887388 + 2.56394i) q^{9} +O(q^{10})\) \(q+(1.10428 + 0.868418i) q^{2} +(-0.310664 + 0.436266i) q^{3} +(-0.00622628 - 0.0256651i) q^{4} +(3.76678 - 0.725987i) q^{5} +(-0.721922 + 0.211976i) q^{6} +(-2.57048 - 0.626615i) q^{7} +(1.18260 - 2.58953i) q^{8} +(0.887388 + 2.56394i) q^{9} +(4.79005 + 2.46944i) q^{10} +(-1.38924 + 1.09251i) q^{11} +(0.0131311 + 0.00525690i) q^{12} +(-4.88923 + 3.14212i) q^{13} +(-2.29437 - 2.92421i) q^{14} +(-0.853478 + 1.86886i) q^{15} +(3.50777 - 1.80838i) q^{16} +(-1.89689 - 1.80868i) q^{17} +(-1.24664 + 3.60194i) q^{18} +(-0.993358 + 0.947165i) q^{19} +(-0.0420855 - 0.0921545i) q^{20} +(1.07193 - 0.926746i) q^{21} -2.48288 q^{22} +(2.40489 - 4.14928i) q^{23} +(0.762335 + 1.32040i) q^{24} +(9.01972 - 3.61095i) q^{25} +(-8.12776 - 0.776107i) q^{26} +(-2.93588 - 0.862052i) q^{27} +(-7.75999e-5 + 0.0698730i) q^{28} +(2.91571 - 0.856131i) q^{29} +(-2.56543 + 1.32257i) q^{30} +(-7.51259 + 0.717366i) q^{31} +(-0.146685 - 0.0282713i) q^{32} +(-0.0450390 - 0.945485i) q^{33} +(-0.524012 - 3.64458i) q^{34} +(-10.1373 - 0.494185i) q^{35} +(0.0602786 - 0.0387387i) q^{36} +(-0.296923 - 0.857903i) q^{37} +(-1.91948 + 0.183288i) q^{38} +(0.148107 - 3.10915i) q^{39} +(2.57463 - 10.6128i) q^{40} +(3.22423 + 3.72097i) q^{41} +(1.98851 - 0.0925112i) q^{42} +(-0.291383 - 0.638041i) q^{43} +(0.0366893 + 0.0288528i) q^{44} +(5.20398 + 9.01356i) q^{45} +(6.25898 - 2.49353i) q^{46} +(-0.390874 + 0.677013i) q^{47} +(-0.300802 + 2.09212i) q^{48} +(6.21471 + 3.22140i) q^{49} +(13.0961 + 3.84538i) q^{50} +(1.37836 - 0.265657i) q^{51} +(0.111084 + 0.105919i) q^{52} +(-0.0886437 + 1.86086i) q^{53} +(-2.49342 - 3.50152i) q^{54} +(-4.43982 + 5.12383i) q^{55} +(-4.66249 + 5.91530i) q^{56} +(-0.104616 - 0.727619i) q^{57} +(3.96325 + 1.58665i) q^{58} +(1.87886 + 0.968617i) q^{59} +(0.0532784 + 0.0102686i) q^{60} +(-5.02981 - 7.06338i) q^{61} +(-8.91900 - 5.73189i) q^{62} +(-0.674409 - 7.14659i) q^{63} +(-5.30623 - 6.12371i) q^{64} +(-16.1355 + 15.3852i) q^{65} +(0.771340 - 1.08320i) q^{66} +(11.8398 - 4.73992i) q^{67} +(-0.0346093 + 0.0599451i) q^{68} +(1.06308 + 2.33820i) q^{69} +(-10.7653 - 9.34916i) q^{70} +(-1.96678 + 13.6792i) q^{71} +(7.68883 + 0.734194i) q^{72} +(0.119907 + 0.494262i) q^{73} +(0.417131 - 1.20522i) q^{74} +(-1.22677 + 5.05680i) q^{75} +(0.0304940 + 0.0195973i) q^{76} +(4.25560 - 1.93776i) q^{77} +(2.86359 - 3.30476i) q^{78} +(-0.0770734 - 1.61797i) q^{79} +(11.9001 - 9.35838i) q^{80} +(-5.10991 + 4.01847i) q^{81} +(0.329115 + 6.90898i) q^{82} +(0.916077 - 1.05721i) q^{83} +(-0.0304591 - 0.0217409i) q^{84} +(-8.45823 - 5.43578i) q^{85} +(0.232316 - 0.957620i) q^{86} +(-0.532306 + 1.53800i) q^{87} +(1.18618 + 4.88950i) q^{88} +(18.5244 + 1.76886i) q^{89} +(-2.08087 + 14.4727i) q^{90} +(14.5365 - 5.01308i) q^{91} +(-0.121465 - 0.0358871i) q^{92} +(2.02093 - 3.50035i) q^{93} +(-1.01957 + 0.408173i) q^{94} +(-3.05413 + 4.28893i) q^{95} +(0.0579037 - 0.0552111i) q^{96} +(-2.28621 - 2.63843i) q^{97} +(4.06528 + 8.95430i) q^{98} +(-4.03393 - 2.59245i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 280 q - 11 q^{2} - 9 q^{3} + q^{4} - 11 q^{5} - 52 q^{6} - 20 q^{7} - 32 q^{8} + 5 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 280 q - 11 q^{2} - 9 q^{3} + q^{4} - 11 q^{5} - 52 q^{6} - 20 q^{7} - 32 q^{8} + 5 q^{9} - 21 q^{10} - 7 q^{11} - 17 q^{12} - 36 q^{13} - 18 q^{14} - 32 q^{15} + 11 q^{16} - 21 q^{17} + 23 q^{18} - 13 q^{19} + 36 q^{20} - 90 q^{21} - 48 q^{22} + 11 q^{23} - 2 q^{24} + 9 q^{25} + 17 q^{26} + 6 q^{27} - 80 q^{28} - 40 q^{29} + 41 q^{30} - 7 q^{31} + 9 q^{32} - 33 q^{33} - 76 q^{34} - 6 q^{35} - 234 q^{36} + 27 q^{37} + 89 q^{38} + q^{39} - 35 q^{40} - 72 q^{41} + 62 q^{42} - 128 q^{43} + 30 q^{44} + 108 q^{45} - 11 q^{46} - 6 q^{47} + 68 q^{48} + 80 q^{49} - 226 q^{50} + 21 q^{51} + 189 q^{52} - 21 q^{53} + 55 q^{54} - 48 q^{55} + 83 q^{56} - 76 q^{57} + 10 q^{58} + 47 q^{59} - 15 q^{60} + 65 q^{61} + 4 q^{62} + 25 q^{63} + 24 q^{64} - 66 q^{65} - 44 q^{66} - 21 q^{67} + 202 q^{68} - 60 q^{69} - 6 q^{70} - 28 q^{71} - 129 q^{72} + 15 q^{73} - 34 q^{74} + 139 q^{75} - 44 q^{76} + 61 q^{77} + 244 q^{78} - 69 q^{79} - 102 q^{80} + 151 q^{81} + 137 q^{82} + 24 q^{83} + 32 q^{84} + 124 q^{85} - 55 q^{86} - 129 q^{87} + 64 q^{88} - 21 q^{89} - 28 q^{90} - 62 q^{91} + 154 q^{92} + 4 q^{93} - 98 q^{94} + 38 q^{95} + 165 q^{96} - 12 q^{97} + 12 q^{98} + 202 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/161\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(120\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.10428 + 0.868418i 0.780846 + 0.614064i 0.926941 0.375206i \(-0.122428\pi\)
−0.146095 + 0.989271i \(0.546671\pi\)
\(3\) −0.310664 + 0.436266i −0.179362 + 0.251878i −0.894462 0.447143i \(-0.852441\pi\)
0.715101 + 0.699022i \(0.246381\pi\)
\(4\) −0.00622628 0.0256651i −0.00311314 0.0128325i
\(5\) 3.76678 0.725987i 1.68455 0.324671i 0.744998 0.667066i \(-0.232450\pi\)
0.939556 + 0.342395i \(0.111238\pi\)
\(6\) −0.721922 + 0.211976i −0.294724 + 0.0865386i
\(7\) −2.57048 0.626615i −0.971549 0.236838i
\(8\) 1.18260 2.58953i 0.418112 0.915538i
\(9\) 0.887388 + 2.56394i 0.295796 + 0.854646i
\(10\) 4.79005 + 2.46944i 1.51475 + 0.780906i
\(11\) −1.38924 + 1.09251i −0.418873 + 0.329405i −0.805250 0.592936i \(-0.797969\pi\)
0.386377 + 0.922341i \(0.373726\pi\)
\(12\) 0.0131311 + 0.00525690i 0.00379062 + 0.00151754i
\(13\) −4.88923 + 3.14212i −1.35603 + 0.871466i −0.998060 0.0622672i \(-0.980167\pi\)
−0.357969 + 0.933734i \(0.616531\pi\)
\(14\) −2.29437 2.92421i −0.613197 0.781528i
\(15\) −0.853478 + 1.86886i −0.220367 + 0.482537i
\(16\) 3.50777 1.80838i 0.876944 0.452096i
\(17\) −1.89689 1.80868i −0.460063 0.438669i 0.424263 0.905539i \(-0.360533\pi\)
−0.884326 + 0.466870i \(0.845382\pi\)
\(18\) −1.24664 + 3.60194i −0.293836 + 0.848985i
\(19\) −0.993358 + 0.947165i −0.227892 + 0.217295i −0.795419 0.606061i \(-0.792749\pi\)
0.567527 + 0.823355i \(0.307900\pi\)
\(20\) −0.0420855 0.0921545i −0.00941061 0.0206064i
\(21\) 1.07193 0.926746i 0.233913 0.202233i
\(22\) −2.48288 −0.529351
\(23\) 2.40489 4.14928i 0.501454 0.865184i
\(24\) 0.762335 + 1.32040i 0.155611 + 0.269526i
\(25\) 9.01972 3.61095i 1.80394 0.722191i
\(26\) −8.12776 0.776107i −1.59399 0.152207i
\(27\) −2.93588 0.862052i −0.565010 0.165902i
\(28\) −7.75999e−5 0.0698730i −1.46650e−5 0.0132048i
\(29\) 2.91571 0.856131i 0.541435 0.158980i 0.000431156 1.00000i \(-0.499863\pi\)
0.541003 + 0.841020i \(0.318045\pi\)
\(30\) −2.56543 + 1.32257i −0.468381 + 0.241467i
\(31\) −7.51259 + 0.717366i −1.34930 + 0.128843i −0.744547 0.667570i \(-0.767335\pi\)
−0.604754 + 0.796412i \(0.706729\pi\)
\(32\) −0.146685 0.0282713i −0.0259306 0.00499771i
\(33\) −0.0450390 0.945485i −0.00784028 0.164588i
\(34\) −0.524012 3.64458i −0.0898673 0.625041i
\(35\) −10.1373 0.494185i −1.71352 0.0835326i
\(36\) 0.0602786 0.0387387i 0.0100464 0.00645645i
\(37\) −0.296923 0.857903i −0.0488139 0.141038i 0.917959 0.396675i \(-0.129836\pi\)
−0.966773 + 0.255637i \(0.917715\pi\)
\(38\) −1.91948 + 0.183288i −0.311381 + 0.0297333i
\(39\) 0.148107 3.10915i 0.0237161 0.497862i
\(40\) 2.57463 10.6128i 0.407084 1.67802i
\(41\) 3.22423 + 3.72097i 0.503541 + 0.581117i 0.949433 0.313970i \(-0.101659\pi\)
−0.445892 + 0.895087i \(0.647114\pi\)
\(42\) 1.98851 0.0925112i 0.306834 0.0142748i
\(43\) −0.291383 0.638041i −0.0444356 0.0973003i 0.886112 0.463471i \(-0.153396\pi\)
−0.930548 + 0.366170i \(0.880669\pi\)
\(44\) 0.0366893 + 0.0288528i 0.00553112 + 0.00434972i
\(45\) 5.20398 + 9.01356i 0.775763 + 1.34366i
\(46\) 6.25898 2.49353i 0.922837 0.367651i
\(47\) −0.390874 + 0.677013i −0.0570148 + 0.0987525i −0.893124 0.449810i \(-0.851492\pi\)
0.836109 + 0.548563i \(0.184825\pi\)
\(48\) −0.300802 + 2.09212i −0.0434170 + 0.301972i
\(49\) 6.21471 + 3.22140i 0.887815 + 0.460200i
\(50\) 13.0961 + 3.84538i 1.85207 + 0.543818i
\(51\) 1.37836 0.265657i 0.193009 0.0371994i
\(52\) 0.111084 + 0.105919i 0.0154046 + 0.0146883i
\(53\) −0.0886437 + 1.86086i −0.0121762 + 0.255609i 0.984569 + 0.174995i \(0.0559910\pi\)
−0.996745 + 0.0806136i \(0.974312\pi\)
\(54\) −2.49342 3.50152i −0.339312 0.476496i
\(55\) −4.43982 + 5.12383i −0.598666 + 0.690897i
\(56\) −4.66249 + 5.91530i −0.623051 + 0.790465i
\(57\) −0.104616 0.727619i −0.0138567 0.0963754i
\(58\) 3.96325 + 1.58665i 0.520401 + 0.208337i
\(59\) 1.87886 + 0.968617i 0.244606 + 0.126103i 0.576171 0.817329i \(-0.304546\pi\)
−0.331565 + 0.943432i \(0.607577\pi\)
\(60\) 0.0532784 + 0.0102686i 0.00687821 + 0.00132567i
\(61\) −5.02981 7.06338i −0.644001 0.904373i 0.355540 0.934661i \(-0.384297\pi\)
−0.999541 + 0.0302880i \(0.990358\pi\)
\(62\) −8.91900 5.73189i −1.13271 0.727951i
\(63\) −0.674409 7.14659i −0.0849675 0.900386i
\(64\) −5.30623 6.12371i −0.663278 0.765464i
\(65\) −16.1355 + 15.3852i −2.00136 + 1.90830i
\(66\) 0.771340 1.08320i 0.0949454 0.133332i
\(67\) 11.8398 4.73992i 1.44646 0.579074i 0.490202 0.871609i \(-0.336923\pi\)
0.956255 + 0.292535i \(0.0944988\pi\)
\(68\) −0.0346093 + 0.0599451i −0.00419700 + 0.00726941i
\(69\) 1.06308 + 2.33820i 0.127980 + 0.281487i
\(70\) −10.7653 9.34916i −1.28670 1.11744i
\(71\) −1.96678 + 13.6792i −0.233414 + 1.62343i 0.449744 + 0.893157i \(0.351515\pi\)
−0.683158 + 0.730271i \(0.739394\pi\)
\(72\) 7.68883 + 0.734194i 0.906137 + 0.0865256i
\(73\) 0.119907 + 0.494262i 0.0140340 + 0.0578490i 0.978398 0.206730i \(-0.0662822\pi\)
−0.964364 + 0.264579i \(0.914767\pi\)
\(74\) 0.417131 1.20522i 0.0484905 0.140104i
\(75\) −1.22677 + 5.05680i −0.141655 + 0.583908i
\(76\) 0.0304940 + 0.0195973i 0.00349790 + 0.00224796i
\(77\) 4.25560 1.93776i 0.484971 0.220828i
\(78\) 2.86359 3.30476i 0.324238 0.374190i
\(79\) −0.0770734 1.61797i −0.00867143 0.182036i −0.999048 0.0436339i \(-0.986106\pi\)
0.990376 0.138402i \(-0.0441966\pi\)
\(80\) 11.9001 9.35838i 1.33048 1.04630i
\(81\) −5.10991 + 4.01847i −0.567767 + 0.446497i
\(82\) 0.329115 + 6.90898i 0.0363447 + 0.762969i
\(83\) 0.916077 1.05721i 0.100552 0.116044i −0.703243 0.710950i \(-0.748265\pi\)
0.803795 + 0.594906i \(0.202811\pi\)
\(84\) −0.0304591 0.0217409i −0.00332336 0.00237212i
\(85\) −8.45823 5.43578i −0.917424 0.589593i
\(86\) 0.232316 0.957620i 0.0250513 0.103263i
\(87\) −0.532306 + 1.53800i −0.0570692 + 0.164891i
\(88\) 1.18618 + 4.88950i 0.126447 + 0.521222i
\(89\) 18.5244 + 1.76886i 1.96358 + 0.187499i 0.997495 0.0707326i \(-0.0225337\pi\)
0.966083 + 0.258232i \(0.0831398\pi\)
\(90\) −2.08087 + 14.4727i −0.219343 + 1.52556i
\(91\) 14.5365 5.01308i 1.52384 0.525513i
\(92\) −0.121465 0.0358871i −0.0126636 0.00374148i
\(93\) 2.02093 3.50035i 0.209561 0.362969i
\(94\) −1.01957 + 0.408173i −0.105160 + 0.0420998i
\(95\) −3.05413 + 4.28893i −0.313347 + 0.440034i
\(96\) 0.0579037 0.0552111i 0.00590977 0.00563495i
\(97\) −2.28621 2.63843i −0.232130 0.267892i 0.627720 0.778439i \(-0.283988\pi\)
−0.859850 + 0.510547i \(0.829443\pi\)
\(98\) 4.06528 + 8.95430i 0.410655 + 0.904521i
\(99\) −4.03393 2.59245i −0.405426 0.260551i
\(100\) −0.148835 0.209009i −0.0148835 0.0209009i
\(101\) −13.0784 2.52065i −1.30135 0.250814i −0.508937 0.860804i \(-0.669961\pi\)
−0.792409 + 0.609990i \(0.791173\pi\)
\(102\) 1.75280 + 0.903632i 0.173553 + 0.0894729i
\(103\) 13.9092 + 5.56842i 1.37052 + 0.548673i 0.936003 0.351991i \(-0.114495\pi\)
0.434515 + 0.900664i \(0.356920\pi\)
\(104\) 2.35461 + 16.3767i 0.230889 + 1.60587i
\(105\) 3.36490 4.26905i 0.328381 0.416617i
\(106\) −1.71389 + 1.97794i −0.166468 + 0.192114i
\(107\) 0.292447 + 0.410684i 0.0282719 + 0.0397023i 0.828470 0.560033i \(-0.189212\pi\)
−0.800198 + 0.599736i \(0.795272\pi\)
\(108\) −0.00384502 + 0.0807170i −0.000369988 + 0.00776699i
\(109\) 12.1339 + 11.5697i 1.16222 + 1.10818i 0.992445 + 0.122693i \(0.0391530\pi\)
0.169776 + 0.985483i \(0.445695\pi\)
\(110\) −9.35245 + 1.80254i −0.891721 + 0.171865i
\(111\) 0.466517 + 0.136982i 0.0442799 + 0.0130017i
\(112\) −10.1498 + 2.45039i −0.959067 + 0.231540i
\(113\) 2.30601 16.0387i 0.216931 1.50879i −0.532342 0.846529i \(-0.678688\pi\)
0.749273 0.662261i \(-0.230403\pi\)
\(114\) 0.516351 0.894347i 0.0483607 0.0837633i
\(115\) 6.04636 17.3753i 0.563826 1.62026i
\(116\) −0.0401267 0.0695015i −0.00372567 0.00645306i
\(117\) −12.3948 9.74740i −1.14590 0.901148i
\(118\) 1.23362 + 2.70126i 0.113564 + 0.248671i
\(119\) 3.74256 + 5.83778i 0.343080 + 0.535149i
\(120\) 3.83014 + 4.42022i 0.349643 + 0.403509i
\(121\) −1.85694 + 7.65439i −0.168812 + 0.695854i
\(122\) 0.579631 12.1679i 0.0524773 1.10163i
\(123\) −2.62499 + 0.250656i −0.236687 + 0.0226009i
\(124\) 0.0651868 + 0.188345i 0.00585394 + 0.0169139i
\(125\) 15.2181 9.78010i 1.36115 0.874759i
\(126\) 5.46149 8.47753i 0.486548 0.755239i
\(127\) −1.41746 9.85865i −0.125779 0.874813i −0.950821 0.309741i \(-0.899758\pi\)
0.825042 0.565072i \(-0.191152\pi\)
\(128\) −0.527420 11.0719i −0.0466177 0.978627i
\(129\) 0.368878 + 0.0710954i 0.0324779 + 0.00625960i
\(130\) −31.1789 + 2.97723i −2.73457 + 0.261120i
\(131\) −9.33980 + 4.81500i −0.816022 + 0.420689i −0.815107 0.579311i \(-0.803322\pi\)
−0.000915544 1.00000i \(0.500291\pi\)
\(132\) −0.0239855 + 0.00704278i −0.00208767 + 0.000612996i
\(133\) 3.14691 1.81221i 0.272872 0.157139i
\(134\) 17.1907 + 5.04764i 1.48505 + 0.436050i
\(135\) −11.6846 1.11575i −1.00565 0.0960284i
\(136\) −6.92689 + 2.77311i −0.593976 + 0.237792i
\(137\) −6.07163 10.5164i −0.518734 0.898474i −0.999763 0.0217692i \(-0.993070\pi\)
0.481029 0.876705i \(-0.340263\pi\)
\(138\) −0.856597 + 3.50523i −0.0729183 + 0.298385i
\(139\) 14.1108 1.19686 0.598432 0.801174i \(-0.295791\pi\)
0.598432 + 0.801174i \(0.295791\pi\)
\(140\) 0.0504346 + 0.263252i 0.00426250 + 0.0222489i
\(141\) −0.173928 0.380849i −0.0146474 0.0320732i
\(142\) −14.0512 + 13.3978i −1.17915 + 1.12432i
\(143\) 3.35953 9.70671i 0.280938 0.811716i
\(144\) 7.74934 + 7.38898i 0.645778 + 0.615748i
\(145\) 10.3613 5.34163i 0.860460 0.443598i
\(146\) −0.296815 + 0.649935i −0.0245646 + 0.0537890i
\(147\) −3.33607 + 1.71050i −0.275155 + 0.141079i
\(148\) −0.0201694 + 0.0129621i −0.00165792 + 0.00106548i
\(149\) 11.0841 + 4.43741i 0.908046 + 0.363527i 0.778207 0.628008i \(-0.216130\pi\)
0.129839 + 0.991535i \(0.458554\pi\)
\(150\) −5.74611 + 4.51879i −0.469168 + 0.368958i
\(151\) −12.0910 6.23335i −0.983953 0.507263i −0.110345 0.993893i \(-0.535196\pi\)
−0.873608 + 0.486630i \(0.838226\pi\)
\(152\) 1.27797 + 3.69245i 0.103657 + 0.299497i
\(153\) 2.95407 6.46850i 0.238822 0.522947i
\(154\) 6.38218 + 1.55581i 0.514291 + 0.125370i
\(155\) −27.7775 + 8.15620i −2.23114 + 0.655122i
\(156\) −0.0807187 + 0.0155573i −0.00646267 + 0.00124558i
\(157\) 1.67143 + 6.88973i 0.133395 + 0.549860i 0.998808 + 0.0488025i \(0.0155405\pi\)
−0.865414 + 0.501058i \(0.832944\pi\)
\(158\) 1.31996 1.85363i 0.105011 0.147467i
\(159\) −0.784293 0.616774i −0.0621984 0.0489134i
\(160\) −0.573056 −0.0453041
\(161\) −8.78171 + 9.15869i −0.692096 + 0.721806i
\(162\) −9.13250 −0.717517
\(163\) −2.77683 2.18372i −0.217498 0.171042i 0.503465 0.864015i \(-0.332058\pi\)
−0.720964 + 0.692973i \(0.756301\pi\)
\(164\) 0.0754239 0.105918i 0.00588962 0.00827081i
\(165\) −0.856062 3.52873i −0.0666443 0.274712i
\(166\) 1.92971 0.371920i 0.149774 0.0288666i
\(167\) 8.17202 2.39952i 0.632370 0.185681i 0.0501891 0.998740i \(-0.484018\pi\)
0.582181 + 0.813059i \(0.302199\pi\)
\(168\) −1.13218 3.87176i −0.0873497 0.298712i
\(169\) 8.63127 18.8998i 0.663944 1.45383i
\(170\) −4.61976 13.3479i −0.354319 1.02374i
\(171\) −3.30997 1.70641i −0.253119 0.130492i
\(172\) −0.0145611 + 0.0114510i −0.00111028 + 0.000873131i
\(173\) −7.41566 2.96878i −0.563802 0.225712i 0.0722126 0.997389i \(-0.476994\pi\)
−0.636015 + 0.771677i \(0.719418\pi\)
\(174\) −1.92344 + 1.23612i −0.145816 + 0.0937100i
\(175\) −25.4477 + 3.62998i −1.92366 + 0.274401i
\(176\) −2.89747 + 6.34458i −0.218405 + 0.478240i
\(177\) −1.00627 + 0.518767i −0.0756357 + 0.0389929i
\(178\) 18.9200 + 18.0402i 1.41812 + 1.35217i
\(179\) −4.08633 + 11.8067i −0.305427 + 0.882473i 0.682952 + 0.730463i \(0.260696\pi\)
−0.988379 + 0.152010i \(0.951426\pi\)
\(180\) 0.198932 0.189681i 0.0148275 0.0141380i
\(181\) −8.43436 18.4687i −0.626921 1.37277i −0.910377 0.413781i \(-0.864208\pi\)
0.283455 0.958985i \(-0.408519\pi\)
\(182\) 20.4059 + 7.08794i 1.51259 + 0.525393i
\(183\) 4.64409 0.343301
\(184\) −7.90067 11.1345i −0.582445 0.820844i
\(185\) −1.74127 3.01597i −0.128021 0.221738i
\(186\) 5.27144 2.11037i 0.386521 0.154740i
\(187\) 4.61124 + 0.440320i 0.337208 + 0.0321994i
\(188\) 0.0198093 + 0.00581653i 0.00144474 + 0.000424214i
\(189\) 7.00644 + 4.05555i 0.509643 + 0.294998i
\(190\) −7.09720 + 2.08393i −0.514885 + 0.151184i
\(191\) 1.14306 0.589290i 0.0827091 0.0426395i −0.416376 0.909193i \(-0.636700\pi\)
0.499085 + 0.866553i \(0.333670\pi\)
\(192\) 4.32002 0.412512i 0.311771 0.0297705i
\(193\) −7.30317 1.40757i −0.525693 0.101319i −0.0805018 0.996754i \(-0.525652\pi\)
−0.445192 + 0.895435i \(0.646864\pi\)
\(194\) −0.233366 4.89897i −0.0167547 0.351725i
\(195\) −1.69932 11.8190i −0.121690 0.846376i
\(196\) 0.0439829 0.179558i 0.00314164 0.0128256i
\(197\) −20.3162 + 13.0564i −1.44747 + 0.930233i −0.448129 + 0.893969i \(0.647909\pi\)
−0.999342 + 0.0362641i \(0.988454\pi\)
\(198\) −2.20327 6.36594i −0.156580 0.452408i
\(199\) −21.8537 + 2.08678i −1.54917 + 0.147928i −0.834293 0.551322i \(-0.814124\pi\)
−0.714878 + 0.699250i \(0.753518\pi\)
\(200\) 1.31605 27.6272i 0.0930585 1.95354i
\(201\) −1.61032 + 6.63781i −0.113583 + 0.468195i
\(202\) −12.2532 14.1410i −0.862135 0.994957i
\(203\) −8.03124 + 0.373636i −0.563683 + 0.0262241i
\(204\) −0.0154002 0.0337217i −0.00107823 0.00236099i
\(205\) 14.8464 + 11.6753i 1.03691 + 0.815438i
\(206\) 10.5240 + 18.2282i 0.733244 + 1.27002i
\(207\) 12.7726 + 2.48396i 0.887754 + 0.172647i
\(208\) −11.4682 + 19.8634i −0.795174 + 1.37728i
\(209\) 0.345226 2.40110i 0.0238798 0.166088i
\(210\) 7.42312 1.79210i 0.512244 0.123667i
\(211\) 22.3951 + 6.57579i 1.54174 + 0.452696i 0.938620 0.344953i \(-0.112105\pi\)
0.603121 + 0.797649i \(0.293923\pi\)
\(212\) 0.0483111 0.00931119i 0.00331802 0.000639495i
\(213\) −5.35679 5.10769i −0.367041 0.349973i
\(214\) −0.0337013 + 0.707478i −0.00230377 + 0.0483622i
\(215\) −1.56079 2.19182i −0.106445 0.149481i
\(216\) −5.70428 + 6.58310i −0.388127 + 0.447923i
\(217\) 19.7605 + 2.86353i 1.34143 + 0.194389i
\(218\) 3.35198 + 23.3135i 0.227025 + 1.57899i
\(219\) −0.252881 0.101238i −0.0170881 0.00684104i
\(220\) 0.159147 + 0.0820460i 0.0107297 + 0.00553154i
\(221\) 14.9574 + 2.88280i 1.00614 + 0.193918i
\(222\) 0.396210 + 0.556399i 0.0265919 + 0.0373430i
\(223\) 7.97064 + 5.12242i 0.533754 + 0.343023i 0.779592 0.626288i \(-0.215427\pi\)
−0.245838 + 0.969311i \(0.579063\pi\)
\(224\) 0.359336 + 0.164586i 0.0240092 + 0.0109969i
\(225\) 17.2623 + 19.9217i 1.15082 + 1.32811i
\(226\) 16.4747 15.7086i 1.09588 1.04492i
\(227\) −1.93452 + 2.71665i −0.128399 + 0.180311i −0.873771 0.486338i \(-0.838332\pi\)
0.745372 + 0.666649i \(0.232272\pi\)
\(228\) −0.0180230 + 0.00721533i −0.00119360 + 0.000477847i
\(229\) −4.54416 + 7.87071i −0.300286 + 0.520111i −0.976201 0.216869i \(-0.930416\pi\)
0.675914 + 0.736980i \(0.263749\pi\)
\(230\) 21.7659 13.9365i 1.43520 0.918947i
\(231\) −0.476683 + 2.45857i −0.0313634 + 0.161762i
\(232\) 1.23114 8.56280i 0.0808286 0.562175i
\(233\) 9.15665 + 0.874354i 0.599872 + 0.0572809i 0.390575 0.920571i \(-0.372276\pi\)
0.209297 + 0.977852i \(0.432882\pi\)
\(234\) −5.22258 21.5278i −0.341411 1.40732i
\(235\) −0.980832 + 2.83393i −0.0639824 + 0.184865i
\(236\) 0.0131614 0.0542519i 0.000856732 0.00353150i
\(237\) 0.729810 + 0.469020i 0.0474062 + 0.0304661i
\(238\) −0.936788 + 9.69667i −0.0607230 + 0.628542i
\(239\) 2.48114 2.86339i 0.160492 0.185217i −0.669808 0.742534i \(-0.733624\pi\)
0.830300 + 0.557317i \(0.188169\pi\)
\(240\) 0.385800 + 8.09894i 0.0249033 + 0.522785i
\(241\) 3.62142 2.84792i 0.233276 0.183451i −0.494678 0.869077i \(-0.664714\pi\)
0.727954 + 0.685626i \(0.240471\pi\)
\(242\) −8.69779 + 6.84002i −0.559115 + 0.439693i
\(243\) −0.602439 12.6468i −0.0386465 0.811289i
\(244\) −0.149965 + 0.173069i −0.00960054 + 0.0110796i
\(245\) 25.7481 + 7.62249i 1.64499 + 0.486983i
\(246\) −3.11640 2.00279i −0.198694 0.127693i
\(247\) 1.88065 7.75215i 0.119663 0.493258i
\(248\) −7.02675 + 20.3025i −0.446199 + 1.28921i
\(249\) 0.176633 + 0.728090i 0.0111936 + 0.0461408i
\(250\) 25.2983 + 2.41570i 1.60001 + 0.152782i
\(251\) 0.867632 6.03451i 0.0547644 0.380895i −0.943945 0.330103i \(-0.892916\pi\)
0.998709 0.0507918i \(-0.0161745\pi\)
\(252\) −0.179219 + 0.0618055i −0.0112897 + 0.00389338i
\(253\) 1.19217 + 8.39173i 0.0749509 + 0.527584i
\(254\) 6.99615 12.1177i 0.438977 0.760331i
\(255\) 4.99911 2.00134i 0.313057 0.125329i
\(256\) −0.367592 + 0.516211i −0.0229745 + 0.0322632i
\(257\) −9.30907 + 8.87618i −0.580684 + 0.553681i −0.922456 0.386102i \(-0.873821\pi\)
0.341772 + 0.939783i \(0.388973\pi\)
\(258\) 0.345605 + 0.398850i 0.0215164 + 0.0248313i
\(259\) 0.225660 + 2.39128i 0.0140218 + 0.148587i
\(260\) 0.495326 + 0.318327i 0.0307188 + 0.0197418i
\(261\) 4.78244 + 6.71599i 0.296025 + 0.415709i
\(262\) −14.4952 2.79372i −0.895518 0.172597i
\(263\) −6.30721 3.25159i −0.388919 0.200502i 0.252666 0.967554i \(-0.418693\pi\)
−0.641585 + 0.767052i \(0.721723\pi\)
\(264\) −2.50163 1.00150i −0.153965 0.0616381i
\(265\) 1.01706 + 7.07381i 0.0624775 + 0.434540i
\(266\) 5.04884 + 0.731637i 0.309564 + 0.0448596i
\(267\) −6.52654 + 7.53203i −0.399418 + 0.460953i
\(268\) −0.195368 0.274356i −0.0119340 0.0167590i
\(269\) 0.705148 14.8029i 0.0429936 0.902547i −0.869619 0.493723i \(-0.835636\pi\)
0.912613 0.408825i \(-0.134061\pi\)
\(270\) −11.9342 11.3793i −0.726294 0.692520i
\(271\) 15.5086 2.98904i 0.942082 0.181571i 0.304987 0.952357i \(-0.401348\pi\)
0.637095 + 0.770785i \(0.280136\pi\)
\(272\) −9.92464 2.91414i −0.601769 0.176695i
\(273\) −2.32894 + 7.89919i −0.140954 + 0.478081i
\(274\) 2.42781 16.8858i 0.146669 1.02011i
\(275\) −8.58558 + 14.8707i −0.517730 + 0.896735i
\(276\) 0.0533911 0.0418423i 0.00321377 0.00251861i
\(277\) −4.72329 8.18098i −0.283795 0.491547i 0.688521 0.725216i \(-0.258260\pi\)
−0.972316 + 0.233669i \(0.924927\pi\)
\(278\) 15.5823 + 12.2541i 0.934566 + 0.734951i
\(279\) −8.50586 18.6252i −0.509233 1.11506i
\(280\) −13.2681 + 25.6665i −0.792922 + 1.53387i
\(281\) −11.9131 13.7484i −0.710673 0.820160i 0.279480 0.960152i \(-0.409838\pi\)
−0.990153 + 0.139991i \(0.955293\pi\)
\(282\) 0.138670 0.571607i 0.00825770 0.0340387i
\(283\) −0.371757 + 7.80414i −0.0220987 + 0.463908i 0.960513 + 0.278235i \(0.0897494\pi\)
−0.982612 + 0.185673i \(0.940554\pi\)
\(284\) 0.363325 0.0346933i 0.0215594 0.00205867i
\(285\) −0.922306 2.66483i −0.0546327 0.157851i
\(286\) 12.1394 7.80149i 0.717815 0.461312i
\(287\) −5.95621 11.5850i −0.351584 0.683842i
\(288\) −0.0576810 0.401180i −0.00339888 0.0236398i
\(289\) −0.482029 10.1190i −0.0283546 0.595237i
\(290\) 16.0806 + 3.09928i 0.944285 + 0.181996i
\(291\) 1.86130 0.177733i 0.109112 0.0104189i
\(292\) 0.0119387 0.00615483i 0.000698660 0.000360184i
\(293\) −3.84023 + 1.12759i −0.224349 + 0.0658747i −0.391975 0.919976i \(-0.628208\pi\)
0.167626 + 0.985851i \(0.446390\pi\)
\(294\) −5.16939 1.00823i −0.301485 0.0588013i
\(295\) 7.78044 + 2.28454i 0.452995 + 0.133011i
\(296\) −2.57271 0.245664i −0.149536 0.0142789i
\(297\) 5.02046 2.00989i 0.291316 0.116626i
\(298\) 8.38647 + 14.5258i 0.485815 + 0.841457i
\(299\) 1.27947 + 27.8432i 0.0739937 + 1.61021i
\(300\) 0.137421 0.00793402
\(301\) 0.349189 + 1.82265i 0.0201269 + 0.105056i
\(302\) −7.93875 17.3834i −0.456824 1.00030i
\(303\) 5.16265 4.92257i 0.296586 0.282795i
\(304\) −1.77164 + 5.11881i −0.101610 + 0.293584i
\(305\) −24.0741 22.9546i −1.37848 1.31438i
\(306\) 8.87948 4.57769i 0.507606 0.261689i
\(307\) −12.3985 + 27.1490i −0.707623 + 1.54948i 0.122855 + 0.992425i \(0.460795\pi\)
−0.830477 + 0.557053i \(0.811932\pi\)
\(308\) −0.0762294 0.0971554i −0.00434357 0.00553594i
\(309\) −6.75042 + 4.33823i −0.384018 + 0.246793i
\(310\) −37.7572 15.1157i −2.14446 0.858514i
\(311\) 0.136827 0.107602i 0.00775876 0.00610156i −0.614272 0.789094i \(-0.710550\pi\)
0.622031 + 0.782993i \(0.286308\pi\)
\(312\) −7.87609 4.06041i −0.445896 0.229875i
\(313\) −1.41029 4.07477i −0.0797145 0.230320i 0.898101 0.439790i \(-0.144947\pi\)
−0.977815 + 0.209470i \(0.932826\pi\)
\(314\) −4.13743 + 9.05971i −0.233489 + 0.511269i
\(315\) −7.72868 26.4300i −0.435462 1.48916i
\(316\) −0.0410454 + 0.0120520i −0.00230899 + 0.000677980i
\(317\) 5.87357 1.13204i 0.329893 0.0635816i −0.0216157 0.999766i \(-0.506881\pi\)
0.351508 + 0.936185i \(0.385669\pi\)
\(318\) −0.330463 1.36219i −0.0185314 0.0763877i
\(319\) −3.11530 + 4.37483i −0.174424 + 0.244944i
\(320\) −24.4331 19.2144i −1.36585 1.07412i
\(321\) −0.270020 −0.0150711
\(322\) −17.6511 + 2.48759i −0.983655 + 0.138628i
\(323\) 3.59740 0.200165
\(324\) 0.134950 + 0.106126i 0.00749723 + 0.00589589i
\(325\) −32.7535 + 45.9958i −1.81684 + 2.55139i
\(326\) −1.17002 4.82290i −0.0648015 0.267116i
\(327\) −8.81705 + 1.69935i −0.487584 + 0.0939741i
\(328\) 13.4485 3.94885i 0.742572 0.218039i
\(329\) 1.42896 1.49532i 0.0787810 0.0824397i
\(330\) 2.11908 4.64014i 0.116652 0.255431i
\(331\) 8.55362 + 24.7141i 0.470149 + 1.35841i 0.892120 + 0.451798i \(0.149217\pi\)
−0.421971 + 0.906609i \(0.638662\pi\)
\(332\) −0.0328371 0.0169287i −0.00180217 0.000929083i
\(333\) 1.93612 1.52258i 0.106099 0.0834371i
\(334\) 11.1080 + 4.44698i 0.607804 + 0.243328i
\(335\) 41.1566 26.4498i 2.24863 1.44510i
\(336\) 2.08416 5.18927i 0.113700 0.283098i
\(337\) −6.10533 + 13.3688i −0.332578 + 0.728245i −0.999863 0.0165577i \(-0.994729\pi\)
0.667284 + 0.744803i \(0.267457\pi\)
\(338\) 25.9443 13.3752i 1.41118 0.727516i
\(339\) 6.28073 + 5.98867i 0.341123 + 0.325260i
\(340\) −0.0868463 + 0.250926i −0.00470990 + 0.0136084i
\(341\) 9.65309 9.20420i 0.522744 0.498436i
\(342\) −2.17327 4.75879i −0.117517 0.257326i
\(343\) −13.9562 12.1748i −0.753564 0.657375i
\(344\) −1.99682 −0.107661
\(345\) 5.70189 + 8.03571i 0.306979 + 0.432628i
\(346\) −5.61084 9.71826i −0.301641 0.522457i
\(347\) −30.3813 + 12.1629i −1.63096 + 0.652936i −0.993105 0.117225i \(-0.962600\pi\)
−0.637850 + 0.770161i \(0.720176\pi\)
\(348\) 0.0427871 + 0.00408567i 0.00229363 + 0.000219015i
\(349\) 10.8980 + 3.19994i 0.583356 + 0.171289i 0.560077 0.828440i \(-0.310771\pi\)
0.0232785 + 0.999729i \(0.492590\pi\)
\(350\) −31.2538 18.0907i −1.67058 0.966988i
\(351\) 17.0629 5.01011i 0.910748 0.267420i
\(352\) 0.234669 0.120980i 0.0125079 0.00644826i
\(353\) −7.48599 + 0.714825i −0.398439 + 0.0380463i −0.292353 0.956311i \(-0.594438\pi\)
−0.106086 + 0.994357i \(0.533832\pi\)
\(354\) −1.56171 0.300995i −0.0830040 0.0159977i
\(355\) 2.52254 + 52.9546i 0.133882 + 2.81054i
\(356\) −0.0699399 0.486443i −0.00370681 0.0257814i
\(357\) −3.70951 0.180835i −0.196328 0.00957080i
\(358\) −14.7656 + 9.48927i −0.780386 + 0.501524i
\(359\) −7.79548 22.5236i −0.411430 1.18875i −0.940389 0.340101i \(-0.889539\pi\)
0.528959 0.848647i \(-0.322582\pi\)
\(360\) 29.4951 2.81644i 1.55453 0.148440i
\(361\) −0.814418 + 17.0967i −0.0428641 + 0.899828i
\(362\) 6.72461 27.7192i 0.353437 1.45689i
\(363\) −2.76247 3.18806i −0.144992 0.167330i
\(364\) −0.219170 0.341869i −0.0114876 0.0179188i
\(365\) 0.810490 + 1.77473i 0.0424230 + 0.0928934i
\(366\) 5.12840 + 4.03301i 0.268066 + 0.210809i
\(367\) 2.67205 + 4.62812i 0.139480 + 0.241586i 0.927300 0.374320i \(-0.122124\pi\)
−0.787820 + 0.615905i \(0.788790\pi\)
\(368\) 0.932317 18.9037i 0.0486004 0.985423i
\(369\) −6.67918 + 11.5687i −0.347704 + 0.602241i
\(370\) 0.696265 4.84263i 0.0361971 0.251756i
\(371\) 1.39390 4.72776i 0.0723676 0.245453i
\(372\) −0.102420 0.0300731i −0.00531021 0.00155922i
\(373\) −5.08110 + 0.979301i −0.263089 + 0.0507063i −0.319090 0.947724i \(-0.603377\pi\)
0.0560007 + 0.998431i \(0.482165\pi\)
\(374\) 4.70974 + 4.49072i 0.243535 + 0.232210i
\(375\) −0.460995 + 9.67748i −0.0238057 + 0.499743i
\(376\) 1.29090 + 1.81282i 0.0665731 + 0.0934889i
\(377\) −11.5655 + 13.3473i −0.595655 + 0.687423i
\(378\) 4.21518 + 10.5630i 0.216805 + 0.543302i
\(379\) −0.154810 1.07673i −0.00795206 0.0553078i 0.985459 0.169913i \(-0.0543487\pi\)
−0.993411 + 0.114605i \(0.963440\pi\)
\(380\) 0.129091 + 0.0516804i 0.00662225 + 0.00265115i
\(381\) 4.74135 + 2.44434i 0.242907 + 0.125227i
\(382\) 1.77401 + 0.341913i 0.0907665 + 0.0174938i
\(383\) −5.79427 8.13692i −0.296074 0.415777i 0.639565 0.768737i \(-0.279115\pi\)
−0.935638 + 0.352960i \(0.885175\pi\)
\(384\) 4.99415 + 3.20954i 0.254856 + 0.163786i
\(385\) 14.6231 10.3886i 0.745264 0.529454i
\(386\) −6.84240 7.89655i −0.348269 0.401924i
\(387\) 1.37733 1.31328i 0.0700135 0.0667577i
\(388\) −0.0534810 + 0.0751035i −0.00271508 + 0.00381280i
\(389\) −28.0307 + 11.2218i −1.42121 + 0.568968i −0.949776 0.312931i \(-0.898689\pi\)
−0.471438 + 0.881899i \(0.656265\pi\)
\(390\) 8.38730 14.5272i 0.424708 0.735615i
\(391\) −12.0665 + 3.52105i −0.610230 + 0.178067i
\(392\) 15.6914 12.2836i 0.792537 0.620414i
\(393\) 0.800915 5.57049i 0.0404008 0.280994i
\(394\) −33.7733 3.22496i −1.70147 0.162471i
\(395\) −1.46494 6.03858i −0.0737093 0.303834i
\(396\) −0.0414191 + 0.119673i −0.00208139 + 0.00601377i
\(397\) 8.11241 33.4398i 0.407150 1.67830i −0.286576 0.958058i \(-0.592517\pi\)
0.693726 0.720239i \(-0.255968\pi\)
\(398\) −25.9449 16.6738i −1.30050 0.835781i
\(399\) −0.187024 + 1.93588i −0.00936291 + 0.0969153i
\(400\) 25.1092 28.9775i 1.25546 1.44888i
\(401\) −1.16698 24.4980i −0.0582763 1.22337i −0.818807 0.574069i \(-0.805364\pi\)
0.760531 0.649302i \(-0.224939\pi\)
\(402\) −7.54264 + 5.93160i −0.376193 + 0.295841i
\(403\) 34.4767 27.1128i 1.71741 1.35059i
\(404\) 0.0167369 + 0.351351i 0.000832694 + 0.0174804i
\(405\) −16.3305 + 18.8464i −0.811470 + 0.936487i
\(406\) −9.19324 6.56187i −0.456253 0.325660i
\(407\) 1.34977 + 0.867444i 0.0669056 + 0.0429976i
\(408\) 0.942121 3.88347i 0.0466419 0.192261i
\(409\) 9.30524 26.8857i 0.460115 1.32941i −0.441650 0.897187i \(-0.645607\pi\)
0.901765 0.432227i \(-0.142272\pi\)
\(410\) 6.25554 + 25.7857i 0.308939 + 1.27346i
\(411\) 6.47417 + 0.618209i 0.319347 + 0.0304940i
\(412\) 0.0563111 0.391653i 0.00277425 0.0192953i
\(413\) −4.22261 3.66713i −0.207781 0.180448i
\(414\) 11.9474 + 13.8349i 0.587183 + 0.679949i
\(415\) 2.68314 4.64733i 0.131710 0.228129i
\(416\) 0.806010 0.322678i 0.0395179 0.0158206i
\(417\) −4.38372 + 6.15607i −0.214672 + 0.301464i
\(418\) 2.46638 2.35169i 0.120635 0.115025i
\(419\) 17.5896 + 20.2995i 0.859309 + 0.991696i 0.999999 + 0.00164193i \(0.000522642\pi\)
−0.140689 + 0.990054i \(0.544932\pi\)
\(420\) −0.130516 0.0597801i −0.00636855 0.00291697i
\(421\) −4.59165 2.95088i −0.223784 0.143817i 0.423946 0.905688i \(-0.360645\pi\)
−0.647729 + 0.761871i \(0.724281\pi\)
\(422\) 19.0200 + 26.7098i 0.925878 + 1.30021i
\(423\) −2.08268 0.401403i −0.101263 0.0195169i
\(424\) 4.71393 + 2.43020i 0.228929 + 0.118021i
\(425\) −23.6405 9.46421i −1.14673 0.459082i
\(426\) −1.47980 10.2923i −0.0716967 0.498662i
\(427\) 8.50300 + 21.3080i 0.411489 + 1.03117i
\(428\) 0.00871939 0.0100627i 0.000421467 0.000486399i
\(429\) 3.19103 + 4.48117i 0.154064 + 0.216353i
\(430\) 0.179864 3.77580i 0.00867379 0.182085i
\(431\) 2.84403 + 2.71178i 0.136992 + 0.130622i 0.755478 0.655175i \(-0.227405\pi\)
−0.618485 + 0.785796i \(0.712253\pi\)
\(432\) −11.8573 + 2.28531i −0.570486 + 0.109952i
\(433\) −12.1778 3.57574i −0.585230 0.171839i −0.0243033 0.999705i \(-0.507737\pi\)
−0.560926 + 0.827866i \(0.689555\pi\)
\(434\) 19.3344 + 20.3225i 0.928081 + 0.975510i
\(435\) −0.888513 + 6.17974i −0.0426009 + 0.296296i
\(436\) 0.221388 0.383455i 0.0106026 0.0183642i
\(437\) 1.54114 + 6.39954i 0.0737226 + 0.306132i
\(438\) −0.191335 0.331402i −0.00914233 0.0158350i
\(439\) 3.33557 + 2.62312i 0.159198 + 0.125195i 0.694580 0.719415i \(-0.255590\pi\)
−0.535382 + 0.844610i \(0.679833\pi\)
\(440\) 8.01779 + 17.5565i 0.382233 + 0.836974i
\(441\) −2.74461 + 18.7928i −0.130696 + 0.894893i
\(442\) 14.0137 + 16.1727i 0.666565 + 0.769257i
\(443\) −1.57365 + 6.48669i −0.0747666 + 0.308192i −0.996900 0.0786803i \(-0.974929\pi\)
0.922133 + 0.386872i \(0.126445\pi\)
\(444\) 0.000610982 0.0128261i 2.89959e−5 0.000608700i
\(445\) 71.0613 6.78554i 3.36863 0.321665i
\(446\) 4.35344 + 12.5784i 0.206142 + 0.595607i
\(447\) −5.37933 + 3.45708i −0.254433 + 0.163514i
\(448\) 9.80233 + 19.0658i 0.463116 + 0.900775i
\(449\) 4.22928 + 29.4153i 0.199592 + 1.38819i 0.805470 + 0.592636i \(0.201913\pi\)
−0.605878 + 0.795557i \(0.707178\pi\)
\(450\) 1.76205 + 36.9900i 0.0830640 + 1.74373i
\(451\) −8.54445 1.64681i −0.402343 0.0775452i
\(452\) −0.425991 + 0.0406772i −0.0200369 + 0.00191330i
\(453\) 6.47565 3.33843i 0.304252 0.156853i
\(454\) −4.49545 + 1.31998i −0.210982 + 0.0619498i
\(455\) 51.1165 29.4365i 2.39638 1.38000i
\(456\) −2.00791 0.589576i −0.0940290 0.0276094i
\(457\) −25.9821 2.48099i −1.21539 0.116056i −0.532407 0.846488i \(-0.678713\pi\)
−0.682985 + 0.730432i \(0.739319\pi\)
\(458\) −11.8531 + 4.74527i −0.553859 + 0.221732i
\(459\) 4.00986 + 6.94528i 0.187164 + 0.324178i
\(460\) −0.483586 0.0469965i −0.0225473 0.00219122i
\(461\) −9.88782 −0.460522 −0.230261 0.973129i \(-0.573958\pi\)
−0.230261 + 0.973129i \(0.573958\pi\)
\(462\) −2.66146 + 2.30100i −0.123822 + 0.107052i
\(463\) −4.14055 9.06654i −0.192428 0.421358i 0.788684 0.614798i \(-0.210763\pi\)
−0.981112 + 0.193441i \(0.938035\pi\)
\(464\) 8.67946 8.27584i 0.402934 0.384196i
\(465\) 5.07118 14.6522i 0.235170 0.679480i
\(466\) 9.35223 + 8.91733i 0.433234 + 0.413088i
\(467\) −6.60175 + 3.40344i −0.305493 + 0.157492i −0.604156 0.796866i \(-0.706490\pi\)
0.298663 + 0.954359i \(0.403459\pi\)
\(468\) −0.172994 + 0.378805i −0.00799666 + 0.0175102i
\(469\) −33.4039 + 4.76490i −1.54245 + 0.220023i
\(470\) −3.54415 + 2.27769i −0.163479 + 0.105062i
\(471\) −3.52501 1.41120i −0.162424 0.0650247i
\(472\) 4.73020 3.71987i 0.217725 0.171221i
\(473\) 1.10187 + 0.568054i 0.0506641 + 0.0261191i
\(474\) 0.398611 + 1.15171i 0.0183088 + 0.0528998i
\(475\) −5.53965 + 12.1301i −0.254176 + 0.556569i
\(476\) 0.126525 0.132401i 0.00579926 0.00606858i
\(477\) −4.84979 + 1.42403i −0.222057 + 0.0652018i
\(478\) 5.22650 1.00733i 0.239055 0.0460740i
\(479\) −7.06843 29.1365i −0.322965 1.33128i −0.869537 0.493868i \(-0.835583\pi\)
0.546572 0.837412i \(-0.315932\pi\)
\(480\) 0.178028 0.250005i 0.00812582 0.0114111i
\(481\) 4.14736 + 3.26152i 0.189103 + 0.148712i
\(482\) 6.47226 0.294803
\(483\) −1.26747 6.67644i −0.0576718 0.303788i
\(484\) 0.208012 0.00945511
\(485\) −10.5271 8.27863i −0.478012 0.375913i
\(486\) 10.3174 14.4888i 0.468007 0.657224i
\(487\) −5.11089 21.0674i −0.231596 0.954654i −0.962307 0.271966i \(-0.912326\pi\)
0.730710 0.682688i \(-0.239189\pi\)
\(488\) −24.2391 + 4.67171i −1.09725 + 0.211478i
\(489\) 1.81535 0.533034i 0.0820928 0.0241046i
\(490\) 21.8137 + 30.7775i 0.985443 + 1.39039i
\(491\) 8.44885 18.5004i 0.381291 0.834912i −0.617538 0.786541i \(-0.711870\pi\)
0.998829 0.0483707i \(-0.0154029\pi\)
\(492\) 0.0227770 + 0.0658098i 0.00102687 + 0.00296694i
\(493\) −7.07925 3.64961i −0.318833 0.164370i
\(494\) 8.80888 6.92738i 0.396330 0.311678i
\(495\) −17.0770 6.83661i −0.767555 0.307283i
\(496\) −25.0552 + 16.1020i −1.12501 + 0.723001i
\(497\) 13.6272 33.9298i 0.611262 1.52196i
\(498\) −0.437234 + 0.957408i −0.0195929 + 0.0429025i
\(499\) −2.63238 + 1.35709i −0.117842 + 0.0607516i −0.516139 0.856505i \(-0.672631\pi\)
0.398298 + 0.917256i \(0.369601\pi\)
\(500\) −0.345759 0.329681i −0.0154628 0.0147438i
\(501\) −1.49192 + 4.31062i −0.0666541 + 0.192584i
\(502\) 6.19859 5.91034i 0.276657 0.263792i
\(503\) −11.7962 25.8300i −0.525965 1.15170i −0.967131 0.254277i \(-0.918162\pi\)
0.441166 0.897425i \(-0.354565\pi\)
\(504\) −19.3039 6.70516i −0.859864 0.298672i
\(505\) −51.0933 −2.27362
\(506\) −5.97104 + 10.3021i −0.265445 + 0.457986i
\(507\) 5.56394 + 9.63703i 0.247103 + 0.427995i
\(508\) −0.244197 + 0.0977619i −0.0108345 + 0.00433748i
\(509\) 3.66014 + 0.349501i 0.162233 + 0.0154914i 0.175856 0.984416i \(-0.443731\pi\)
−0.0136235 + 0.999907i \(0.504337\pi\)
\(510\) 7.25844 + 2.13127i 0.321409 + 0.0943742i
\(511\) 0.00149443 1.34563i 6.61097e−5 0.0595270i
\(512\) −22.1251 + 6.49652i −0.977801 + 0.287108i
\(513\) 3.73289 1.92444i 0.164811 0.0849659i
\(514\) −17.9881 + 1.71765i −0.793420 + 0.0757624i
\(515\) 56.4357 + 10.8771i 2.48685 + 0.479301i
\(516\) −0.000472069 0.00990995i −2.07817e−5 0.000436261i
\(517\) −0.196627 1.36757i −0.00864765 0.0601457i
\(518\) −1.82743 + 2.83661i −0.0802929 + 0.124634i
\(519\) 3.59896 2.31291i 0.157977 0.101525i
\(520\) 20.7586 + 59.9779i 0.910323 + 2.63021i
\(521\) 12.8136 1.22355i 0.561373 0.0536046i 0.189487 0.981883i \(-0.439317\pi\)
0.371886 + 0.928279i \(0.378711\pi\)
\(522\) −0.551124 + 11.5695i −0.0241220 + 0.506384i
\(523\) −5.36603 + 22.1191i −0.234640 + 0.967200i 0.725620 + 0.688095i \(0.241553\pi\)
−0.960261 + 0.279105i \(0.909962\pi\)
\(524\) 0.181730 + 0.209727i 0.00793890 + 0.00916198i
\(525\) 6.32203 12.2297i 0.275916 0.533746i
\(526\) −4.14120 9.06797i −0.180565 0.395382i
\(527\) 15.5480 + 12.2271i 0.677283 + 0.532621i
\(528\) −1.86779 3.23510i −0.0812849 0.140790i
\(529\) −11.4330 19.9571i −0.497088 0.867700i
\(530\) −5.01990 + 8.69472i −0.218050 + 0.377674i
\(531\) −0.816202 + 5.67681i −0.0354201 + 0.246353i
\(532\) −0.0661042 0.0694824i −0.00286598 0.00301244i
\(533\) −27.4557 8.06173i −1.18924 0.349192i
\(534\) −13.7481 + 2.64973i −0.594939 + 0.114665i
\(535\) 1.39973 + 1.33464i 0.0605158 + 0.0577017i
\(536\) 1.72751 36.2649i 0.0746170 1.56640i
\(537\) −3.88138 5.45064i −0.167494 0.235212i
\(538\) 13.6338 15.7342i 0.587793 0.678350i
\(539\) −12.1532 + 2.31435i −0.523474 + 0.0996859i
\(540\) 0.0441161 + 0.306834i 0.00189846 + 0.0132041i
\(541\) −18.6537 7.46781i −0.801984 0.321066i −0.0657875 0.997834i \(-0.520956\pi\)
−0.736197 + 0.676768i \(0.763380\pi\)
\(542\) 19.7217 + 10.1672i 0.847118 + 0.436719i
\(543\) 10.6775 + 2.05792i 0.458216 + 0.0883139i
\(544\) 0.227112 + 0.318934i 0.00973735 + 0.0136742i
\(545\) 54.1053 + 34.7714i 2.31762 + 1.48944i
\(546\) −9.43161 + 6.70044i −0.403636 + 0.286753i
\(547\) 21.3744 + 24.6673i 0.913901 + 1.05470i 0.998301 + 0.0582663i \(0.0185572\pi\)
−0.0843998 + 0.996432i \(0.526897\pi\)
\(548\) −0.232100 + 0.221307i −0.00991481 + 0.00945375i
\(549\) 13.6467 19.1641i 0.582426 0.817903i
\(550\) −22.3949 + 8.96555i −0.954920 + 0.382292i
\(551\) −2.08545 + 3.61211i −0.0888432 + 0.153881i
\(552\) 7.31205 + 0.0122804i 0.311222 + 0.000522687i
\(553\) −0.815728 + 4.20725i −0.0346883 + 0.178910i
\(554\) 1.88866 13.1359i 0.0802414 0.558091i
\(555\) 1.85672 + 0.177295i 0.0788132 + 0.00752575i
\(556\) −0.0878579 0.362155i −0.00372601 0.0153588i
\(557\) −8.08240 + 23.3526i −0.342462 + 0.989480i 0.633914 + 0.773403i \(0.281447\pi\)
−0.976376 + 0.216076i \(0.930674\pi\)
\(558\) 6.78161 27.9542i 0.287088 1.18339i
\(559\) 3.42944 + 2.20397i 0.145050 + 0.0932179i
\(560\) −36.4532 + 16.5987i −1.54043 + 0.701423i
\(561\) −1.62464 + 1.87494i −0.0685925 + 0.0791600i
\(562\) −1.21603 25.5276i −0.0512951 1.07682i
\(563\) −6.05689 + 4.76319i −0.255267 + 0.200744i −0.737589 0.675250i \(-0.764036\pi\)
0.482322 + 0.875994i \(0.339794\pi\)
\(564\) −0.00869159 + 0.00683514i −0.000365982 + 0.000287811i
\(565\) −2.95763 62.0882i −0.124428 2.61207i
\(566\) −7.18778 + 8.29514i −0.302125 + 0.348671i
\(567\) 15.6529 7.12746i 0.657361 0.299325i
\(568\) 33.0970 + 21.2701i 1.38872 + 0.892474i
\(569\) −10.6890 + 44.0605i −0.448104 + 1.84711i 0.0783775 + 0.996924i \(0.475026\pi\)
−0.526482 + 0.850186i \(0.676489\pi\)
\(570\) 1.29570 3.74367i 0.0542708 0.156805i
\(571\) 3.51929 + 14.5067i 0.147278 + 0.607086i 0.996829 + 0.0795797i \(0.0253578\pi\)
−0.849551 + 0.527507i \(0.823127\pi\)
\(572\) −0.270041 0.0257858i −0.0112910 0.00107816i
\(573\) −0.0980210 + 0.681751i −0.00409489 + 0.0284806i
\(574\) 3.48329 17.9656i 0.145390 0.749870i
\(575\) 6.70857 46.1093i 0.279767 1.92289i
\(576\) 10.9921 19.0389i 0.458006 0.793289i
\(577\) 7.92585 3.17303i 0.329957 0.132095i −0.200768 0.979639i \(-0.564344\pi\)
0.530725 + 0.847544i \(0.321920\pi\)
\(578\) 8.25525 11.5929i 0.343373 0.482200i
\(579\) 2.88290 2.74884i 0.119809 0.114238i
\(580\) −0.201606 0.232665i −0.00837122 0.00966091i
\(581\) −3.01722 + 2.14350i −0.125175 + 0.0889275i
\(582\) 2.20975 + 1.42012i 0.0915972 + 0.0588659i
\(583\) −1.90987 2.68203i −0.0790986 0.111078i
\(584\) 1.42171 + 0.274012i 0.0588308 + 0.0113387i
\(585\) −53.7651 27.7178i −2.22291 1.14599i
\(586\) −5.21992 2.08974i −0.215633 0.0863264i
\(587\) 3.87781 + 26.9708i 0.160054 + 1.11320i 0.898527 + 0.438919i \(0.144639\pi\)
−0.738472 + 0.674284i \(0.764452\pi\)
\(588\) 0.0646714 + 0.0749705i 0.00266700 + 0.00309173i
\(589\) 6.78323 7.82826i 0.279498 0.322558i
\(590\) 6.60787 + 9.27945i 0.272042 + 0.382029i
\(591\) 0.615429 12.9194i 0.0253154 0.531435i
\(592\) −2.59296 2.47238i −0.106570 0.101614i
\(593\) −1.95733 + 0.377244i −0.0803777 + 0.0154915i −0.229282 0.973360i \(-0.573638\pi\)
0.148904 + 0.988852i \(0.452426\pi\)
\(594\) 7.28943 + 2.14037i 0.299089 + 0.0878204i
\(595\) 18.3356 + 19.2726i 0.751685 + 0.790099i
\(596\) 0.0448737 0.312103i 0.00183810 0.0127842i
\(597\) 5.87878 10.1823i 0.240602 0.416735i
\(598\) −22.7666 + 31.8579i −0.930997 + 1.30277i
\(599\) 16.2674 + 28.1760i 0.664669 + 1.15124i 0.979375 + 0.202051i \(0.0647606\pi\)
−0.314706 + 0.949189i \(0.601906\pi\)
\(600\) 11.6440 + 9.15692i 0.475363 + 0.373830i
\(601\) −1.19239 2.61097i −0.0486387 0.106504i 0.883753 0.467954i \(-0.155009\pi\)
−0.932391 + 0.361451i \(0.882282\pi\)
\(602\) −1.19722 + 2.31597i −0.0487951 + 0.0943918i
\(603\) 22.6593 + 26.1503i 0.922759 + 1.06492i
\(604\) −0.0846974 + 0.349128i −0.00344629 + 0.0142058i
\(605\) −1.43768 + 30.1805i −0.0584498 + 1.22701i
\(606\) 9.97588 0.952581i 0.405242 0.0386959i
\(607\) −9.83664 28.4211i −0.399257 1.15358i −0.948188 0.317709i \(-0.897086\pi\)
0.548931 0.835867i \(-0.315035\pi\)
\(608\) 0.172489 0.110852i 0.00699534 0.00449563i
\(609\) 2.33201 3.61984i 0.0944979 0.146683i
\(610\) −6.65043 46.2548i −0.269268 1.87280i
\(611\) −0.216183 4.53824i −0.00874584 0.183598i
\(612\) −0.184407 0.0355416i −0.00745423 0.00143668i
\(613\) 14.3581 1.37103i 0.579918 0.0553754i 0.199025 0.979994i \(-0.436223\pi\)
0.380893 + 0.924619i \(0.375617\pi\)
\(614\) −37.2682 + 19.2131i −1.50402 + 0.775378i
\(615\) −9.70577 + 2.84987i −0.391374 + 0.114918i
\(616\) 0.0147837 13.3116i 0.000595652 0.536341i
\(617\) 23.8673 + 7.00807i 0.960861 + 0.282134i 0.724302 0.689483i \(-0.242162\pi\)
0.236559 + 0.971617i \(0.423980\pi\)
\(618\) −11.2218 1.07155i −0.451406 0.0431040i
\(619\) 32.8798 13.1631i 1.32155 0.529069i 0.399711 0.916641i \(-0.369111\pi\)
0.921839 + 0.387573i \(0.126686\pi\)
\(620\) 0.382280 + 0.662128i 0.0153527 + 0.0265917i
\(621\) −10.6374 + 10.1086i −0.426862 + 0.405646i
\(622\) 0.244540 0.00980515
\(623\) −46.5081 16.1545i −1.86331 0.647215i
\(624\) −5.10301 11.1740i −0.204284 0.447319i
\(625\) 15.0653 14.3647i 0.602611 0.574588i
\(626\) 1.98124 5.72443i 0.0791864 0.228794i
\(627\) 0.940270 + 0.896545i 0.0375508 + 0.0358046i
\(628\) 0.166419 0.0857948i 0.00664083 0.00342359i
\(629\) −0.988441 + 2.16438i −0.0394117 + 0.0862996i
\(630\) 14.4177 35.8980i 0.574413 1.43021i
\(631\) 24.4843 15.7351i 0.974703 0.626403i 0.0466733 0.998910i \(-0.485138\pi\)
0.928029 + 0.372507i \(0.121502\pi\)
\(632\) −4.28093 1.71383i −0.170286 0.0681724i
\(633\) −9.82614 + 7.72736i −0.390554 + 0.307135i
\(634\) 7.46917 + 3.85062i 0.296639 + 0.152928i
\(635\) −12.4965 36.1063i −0.495909 1.43283i
\(636\) −0.0109463 + 0.0239691i −0.000434051 + 0.000950438i
\(637\) −40.5071 + 3.77719i −1.60495 + 0.149658i
\(638\) −7.23936 + 2.12567i −0.286609 + 0.0841560i
\(639\) −36.8180 + 7.09610i −1.45650 + 0.280717i
\(640\) −10.0247 41.3225i −0.396262 1.63341i
\(641\) −5.37157 + 7.54332i −0.212164 + 0.297943i −0.906920 0.421303i \(-0.861573\pi\)
0.694756 + 0.719246i \(0.255512\pi\)
\(642\) −0.298179 0.234490i −0.0117682 0.00925460i
\(643\) −35.0069 −1.38054 −0.690268 0.723553i \(-0.742508\pi\)
−0.690268 + 0.723553i \(0.742508\pi\)
\(644\) 0.289736 + 0.168359i 0.0114172 + 0.00663426i
\(645\) 1.44110 0.0567431
\(646\) 3.97255 + 3.12405i 0.156298 + 0.122914i
\(647\) 23.6490 33.2103i 0.929737 1.30563i −0.0223330 0.999751i \(-0.507109\pi\)
0.952070 0.305882i \(-0.0989512\pi\)
\(648\) 4.36300 + 17.9845i 0.171395 + 0.706499i
\(649\) −3.66842 + 0.707029i −0.143998 + 0.0277533i
\(650\) −76.1127 + 22.3487i −2.98538 + 0.876588i
\(651\) −7.38812 + 7.73123i −0.289563 + 0.303011i
\(652\) −0.0387561 + 0.0848641i −0.00151781 + 0.00332353i
\(653\) −3.09881 8.95343i −0.121266 0.350375i 0.867987 0.496586i \(-0.165413\pi\)
−0.989253 + 0.146211i \(0.953292\pi\)
\(654\) −11.2123 5.78032i −0.438434 0.226028i
\(655\) −31.6853 + 24.9176i −1.23805 + 0.973612i
\(656\) 18.0388 + 7.22165i 0.704298 + 0.281958i
\(657\) −1.16085 + 0.746036i −0.0452892 + 0.0291056i
\(658\) 2.87654 0.410324i 0.112139 0.0159961i
\(659\) 10.9147 23.8999i 0.425178 0.931009i −0.568907 0.822402i \(-0.692634\pi\)
0.994085 0.108608i \(-0.0346392\pi\)
\(660\) −0.0852352 + 0.0439418i −0.00331777 + 0.00171043i
\(661\) 9.83523 + 9.37787i 0.382546 + 0.364757i 0.856816 0.515623i \(-0.172439\pi\)
−0.474270 + 0.880380i \(0.657288\pi\)
\(662\) −12.0165 + 34.7194i −0.467035 + 1.34941i
\(663\) −5.90439 + 5.62983i −0.229308 + 0.218644i
\(664\) −1.65432 3.62247i −0.0642002 0.140579i
\(665\) 10.5381 9.11082i 0.408649 0.353303i
\(666\) 3.46027 0.134083
\(667\) 3.45964 14.1570i 0.133958 0.548162i
\(668\) −0.112465 0.194796i −0.00435141 0.00753687i
\(669\) −4.71093 + 1.88597i −0.182135 + 0.0729159i
\(670\) 68.4180 + 6.53313i 2.64322 + 0.252397i
\(671\) 14.7045 + 4.31762i 0.567660 + 0.166680i
\(672\) −0.183436 + 0.105635i −0.00707620 + 0.00407498i
\(673\) 11.3390 3.32944i 0.437088 0.128341i −0.0557832 0.998443i \(-0.517766\pi\)
0.492871 + 0.870102i \(0.335947\pi\)
\(674\) −18.3517 + 9.46097i −0.706882 + 0.364423i
\(675\) −29.5937 + 2.82585i −1.13906 + 0.108767i
\(676\) −0.538807 0.103846i −0.0207233 0.00399409i
\(677\) 0.457501 + 9.60412i 0.0175832 + 0.369116i 0.990461 + 0.137796i \(0.0440017\pi\)
−0.972878 + 0.231321i \(0.925695\pi\)
\(678\) 1.73504 + 12.0675i 0.0666339 + 0.463449i
\(679\) 4.22338 + 8.21461i 0.162079 + 0.315248i
\(680\) −24.0788 + 15.4745i −0.923381 + 0.593421i
\(681\) −0.584199 1.68793i −0.0223865 0.0646817i
\(682\) 18.6528 1.78113i 0.714254 0.0682030i
\(683\) −1.54955 + 32.5291i −0.0592920 + 1.24469i 0.751649 + 0.659564i \(0.229259\pi\)
−0.810941 + 0.585128i \(0.801044\pi\)
\(684\) −0.0231863 + 0.0955751i −0.000886549 + 0.00365441i
\(685\) −30.5052 35.2049i −1.16554 1.34511i
\(686\) −4.83881 25.5642i −0.184747 0.976045i
\(687\) −2.02202 4.42761i −0.0771449 0.168924i
\(688\) −2.17593 1.71117i −0.0829566 0.0652378i
\(689\) −5.41364 9.37670i −0.206243 0.357224i
\(690\) −0.681855 + 13.8253i −0.0259578 + 0.526321i
\(691\) −0.564011 + 0.976895i −0.0214560 + 0.0371628i −0.876554 0.481303i \(-0.840164\pi\)
0.855098 + 0.518466i \(0.173497\pi\)
\(692\) −0.0300220 + 0.208808i −0.00114127 + 0.00793769i
\(693\) 8.74467 + 9.19156i 0.332182 + 0.349159i
\(694\) −44.1120 12.9525i −1.67447 0.491669i
\(695\) 53.1523 10.2443i 2.01618 0.388587i
\(696\) 3.35319 + 3.19726i 0.127102 + 0.121192i
\(697\) 0.614019 12.8899i 0.0232576 0.488238i
\(698\) 9.25558 + 12.9976i 0.350329 + 0.491968i
\(699\) −3.22609 + 3.72311i −0.122022 + 0.140821i
\(700\) 0.251608 + 0.630515i 0.00950990 + 0.0238312i
\(701\) 2.70604 + 18.8209i 0.102206 + 0.710857i 0.974909 + 0.222605i \(0.0714561\pi\)
−0.872703 + 0.488252i \(0.837635\pi\)
\(702\) 23.1931 + 9.28511i 0.875367 + 0.350444i
\(703\) 1.10753 + 0.570970i 0.0417712 + 0.0215345i
\(704\) 14.0619 + 2.71020i 0.529977 + 0.102145i
\(705\) −0.931639 1.30830i −0.0350875 0.0492736i
\(706\) −8.88742 5.71160i −0.334482 0.214959i
\(707\) 32.0382 + 14.6744i 1.20492 + 0.551886i
\(708\) 0.0195795 + 0.0225960i 0.000735843 + 0.000849208i
\(709\) −8.51298 + 8.11711i −0.319712 + 0.304844i −0.832891 0.553437i \(-0.813316\pi\)
0.513180 + 0.858281i \(0.328468\pi\)
\(710\) −43.2011 + 60.6674i −1.62131 + 2.27681i
\(711\) 4.07998 1.63338i 0.153011 0.0612564i
\(712\) 26.4874 45.8776i 0.992659 1.71934i
\(713\) −15.0904 + 32.8970i −0.565140 + 1.23200i
\(714\) −3.93931 3.42110i −0.147425 0.128031i
\(715\) 5.60764 39.0020i 0.209714 1.45859i
\(716\) 0.328462 + 0.0313643i 0.0122752 + 0.00117214i
\(717\) 0.478400 + 1.97199i 0.0178662 + 0.0736453i
\(718\) 10.9514 31.6421i 0.408704 1.18087i
\(719\) −6.56320 + 27.0539i −0.244766 + 1.00894i 0.708236 + 0.705976i \(0.249491\pi\)
−0.953002 + 0.302964i \(0.902024\pi\)
\(720\) 34.5543 + 22.2067i 1.28776 + 0.827596i
\(721\) −32.2641 23.0292i −1.20158 0.857654i
\(722\) −15.7465 + 18.1724i −0.586022 + 0.676306i
\(723\) 0.117406 + 2.46465i 0.00436637 + 0.0916613i
\(724\) −0.421485 + 0.331460i −0.0156644 + 0.0123186i
\(725\) 23.2075 18.2506i 0.861905 0.677809i
\(726\) −0.281981 5.91950i −0.0104653 0.219693i
\(727\) 13.8598 15.9951i 0.514031 0.593224i −0.438095 0.898929i \(-0.644347\pi\)
0.952126 + 0.305705i \(0.0988921\pi\)
\(728\) 4.20939 43.5713i 0.156011 1.61486i
\(729\) −10.7017 6.87759i −0.396361 0.254726i
\(730\) −0.646193 + 2.66364i −0.0239167 + 0.0985859i
\(731\) −0.601289 + 1.73731i −0.0222395 + 0.0642568i
\(732\) −0.0289154 0.119191i −0.00106875 0.00440543i
\(733\) 37.2473 + 3.55668i 1.37576 + 0.131369i 0.756591 0.653889i \(-0.226864\pi\)
0.619169 + 0.785258i \(0.287470\pi\)
\(734\) −1.06845 + 7.43120i −0.0394371 + 0.274291i
\(735\) −11.3244 + 8.86501i −0.417709 + 0.326991i
\(736\) −0.470068 + 0.540649i −0.0173269 + 0.0199286i
\(737\) −11.2699 + 19.5200i −0.415131 + 0.719029i
\(738\) −17.4221 + 6.97478i −0.641318 + 0.256745i
\(739\) 8.32975 11.6975i 0.306415 0.430299i −0.632442 0.774608i \(-0.717947\pi\)
0.938857 + 0.344309i \(0.111887\pi\)
\(740\) −0.0665634 + 0.0634681i −0.00244692 + 0.00233313i
\(741\) 2.79775 + 3.22878i 0.102778 + 0.118612i
\(742\) 5.64493 4.01029i 0.207232 0.147222i
\(743\) 17.0724 + 10.9717i 0.626324 + 0.402514i 0.814947 0.579536i \(-0.196766\pi\)
−0.188623 + 0.982050i \(0.560402\pi\)
\(744\) −6.67432 9.37278i −0.244693 0.343623i
\(745\) 44.9729 + 8.66782i 1.64768 + 0.317564i
\(746\) −6.46141 3.33109i −0.236569 0.121960i
\(747\) 3.52353 + 1.41061i 0.128919 + 0.0516115i
\(748\) −0.0174100 0.121090i −0.000636574 0.00442747i
\(749\) −0.494387 1.23891i −0.0180645 0.0452686i
\(750\) −8.91317 + 10.2863i −0.325463 + 0.375604i
\(751\) 3.68327 + 5.17243i 0.134404 + 0.188745i 0.876293 0.481779i \(-0.160009\pi\)
−0.741889 + 0.670523i \(0.766070\pi\)
\(752\) −0.146798 + 3.08166i −0.00535316 + 0.112377i
\(753\) 2.36311 + 2.25322i 0.0861166 + 0.0821120i
\(754\) −24.3627 + 4.69552i −0.887237 + 0.171001i
\(755\) −50.0695 14.7017i −1.82222 0.535051i
\(756\) 0.0604620 0.205072i 0.00219898 0.00745839i
\(757\) −6.79659 + 47.2713i −0.247026 + 1.71811i 0.368193 + 0.929749i \(0.379977\pi\)
−0.615219 + 0.788356i \(0.710933\pi\)
\(758\) 0.764096 1.32345i 0.0277532 0.0480700i
\(759\) −4.03139 2.08691i −0.146330 0.0757499i
\(760\) 7.49450 + 12.9809i 0.271854 + 0.470865i
\(761\) 35.2786 + 27.7434i 1.27885 + 1.00570i 0.998957 + 0.0456640i \(0.0145404\pi\)
0.279890 + 0.960032i \(0.409702\pi\)
\(762\) 3.11309 + 6.81671i 0.112775 + 0.246943i
\(763\) −23.9403 37.3429i −0.866697 1.35191i
\(764\) −0.0222412 0.0256677i −0.000804658 0.000928625i
\(765\) 6.43126 26.5100i 0.232523 0.958472i
\(766\) 0.667727 14.0173i 0.0241260 0.506466i
\(767\) −12.2297 + 1.16779i −0.441588 + 0.0421665i
\(768\) −0.111008 0.320736i −0.00400565 0.0115736i
\(769\) 17.2385 11.0785i 0.621636 0.399501i −0.191569 0.981479i \(-0.561357\pi\)
0.813204 + 0.581978i \(0.197721\pi\)
\(770\) 25.1697 + 1.22700i 0.907055 + 0.0442180i
\(771\) −0.980387 6.81874i −0.0353078 0.245571i
\(772\) 0.00934617 + 0.196200i 0.000336376 + 0.00706140i
\(773\) 22.3593 + 4.30941i 0.804209 + 0.154999i 0.574760 0.818322i \(-0.305095\pi\)
0.229449 + 0.973321i \(0.426308\pi\)
\(774\) 2.66143 0.254136i 0.0956633 0.00913473i
\(775\) −65.1711 + 33.5981i −2.34102 + 1.20688i
\(776\) −9.53599 + 2.80002i −0.342322 + 0.100515i
\(777\) −1.11334 0.644436i −0.0399408 0.0231190i
\(778\) −40.6991 11.9503i −1.45913 0.428440i
\(779\) −6.72719 0.642368i −0.241026 0.0230152i
\(780\) −0.292755 + 0.117201i −0.0104823 + 0.00419649i
\(781\) −12.2124 21.1525i −0.436995 0.756897i
\(782\) −16.3826 6.59054i −0.585840 0.235677i
\(783\) −9.29822 −0.332291
\(784\) 27.6253 + 0.0613606i 0.986618 + 0.00219145i
\(785\) 11.2978 + 24.7387i 0.403235 + 0.882960i
\(786\) 5.72195 5.45587i 0.204095 0.194604i
\(787\) 2.10663 6.08669i 0.0750931 0.216967i −0.901207 0.433389i \(-0.857318\pi\)
0.976300 + 0.216422i \(0.0694387\pi\)
\(788\) 0.461589 + 0.440124i 0.0164434 + 0.0156788i
\(789\) 3.37798 1.74147i 0.120259 0.0619980i
\(790\) 3.62630 7.94048i 0.129018 0.282510i
\(791\) −15.9776 + 39.7820i −0.568098 + 1.41449i
\(792\) −11.4838 + 7.38017i −0.408058 + 0.262243i
\(793\) 46.7859 + 18.7302i 1.66141 + 0.665130i
\(794\) 37.9981 29.8821i 1.34850 1.06047i
\(795\) −3.40203 1.75387i −0.120657 0.0622032i
\(796\) 0.189625 + 0.547885i 0.00672108 + 0.0194193i
\(797\) 6.70765 14.6877i 0.237597 0.520265i −0.752844 0.658198i \(-0.771319\pi\)
0.990441 + 0.137934i \(0.0440461\pi\)
\(798\) −1.88768 + 1.97535i −0.0668232 + 0.0699265i
\(799\) 1.96594 0.577253i 0.0695501 0.0204217i
\(800\) −1.42515 + 0.274675i −0.0503866 + 0.00971122i
\(801\) 11.9030 + 49.0650i 0.420573 + 1.73363i
\(802\) 19.9858 28.0661i 0.705723 0.991049i
\(803\) −0.706568 0.555651i −0.0249342 0.0196085i
\(804\) 0.180386 0.00636173
\(805\) −26.4297 + 40.8742i −0.931523 + 1.44063i
\(806\) 61.6173 2.17038
\(807\) 6.23893 + 4.90635i 0.219621 + 0.172712i
\(808\) −21.9938 + 30.8859i −0.773738 + 1.08656i
\(809\) −6.00997 24.7734i −0.211299 0.870987i −0.974421 0.224732i \(-0.927849\pi\)
0.763121 0.646255i \(-0.223666\pi\)
\(810\) −34.4001 + 6.63008i −1.20870 + 0.232957i
\(811\) 49.7315 14.6025i 1.74631 0.512763i 0.756356 0.654160i \(-0.226978\pi\)
0.989953 + 0.141397i \(0.0451595\pi\)
\(812\) 0.0595942 + 0.203796i 0.00209135 + 0.00715184i
\(813\) −3.51395 + 7.69448i −0.123240 + 0.269857i
\(814\) 0.737223 + 2.13007i 0.0258397 + 0.0746588i
\(815\) −12.0451 6.20966i −0.421920 0.217515i
\(816\) 4.35457 3.42447i 0.152440 0.119880i
\(817\) 0.893778 + 0.357815i 0.0312693 + 0.0125184i
\(818\) 33.6237 21.6086i 1.17562 0.755528i
\(819\) 25.7528 + 32.8223i 0.899875 + 1.14690i
\(820\) 0.207210 0.453727i 0.00723609 0.0158448i
\(821\) −29.5371 + 15.2274i −1.03085 + 0.531441i −0.888741 0.458410i \(-0.848419\pi\)
−0.142111 + 0.989851i \(0.545389\pi\)
\(822\) 6.61246 + 6.30496i 0.230636 + 0.219911i
\(823\) 5.96318 17.2295i 0.207863 0.600582i −0.792088 0.610406i \(-0.791006\pi\)
0.999952 + 0.00982471i \(0.00312735\pi\)
\(824\) 30.8687 29.4332i 1.07536 1.02536i
\(825\) −3.82034 8.36538i −0.133007 0.291245i
\(826\) −1.47835 7.71653i −0.0514385 0.268493i
\(827\) 48.6187 1.69064 0.845319 0.534263i \(-0.179411\pi\)
0.845319 + 0.534263i \(0.179411\pi\)
\(828\) −0.0157744 0.343275i −0.000548199 0.0119296i
\(829\) −2.62291 4.54301i −0.0910974 0.157785i 0.816876 0.576814i \(-0.195704\pi\)
−0.907973 + 0.419028i \(0.862371\pi\)
\(830\) 6.99877 2.80188i 0.242931 0.0972548i
\(831\) 5.03644 + 0.480922i 0.174712 + 0.0166830i
\(832\) 45.1848 + 13.2674i 1.56650 + 0.459966i
\(833\) −5.96213 17.3510i −0.206576 0.601178i
\(834\) −10.1869 + 2.99115i −0.352744 + 0.103575i
\(835\) 29.0402 14.9713i 1.00498 0.518102i
\(836\) −0.0637739 + 0.00608967i −0.00220567 + 0.000210616i
\(837\) 22.6745 + 4.37015i 0.783745 + 0.151054i
\(838\) 1.79547 + 37.6915i 0.0620235 + 1.30203i
\(839\) 0.984604 + 6.84807i 0.0339923 + 0.236422i 0.999733 0.0230855i \(-0.00734898\pi\)
−0.965741 + 0.259507i \(0.916440\pi\)
\(840\) −7.07552 13.7621i −0.244129 0.474838i
\(841\) −16.6279 + 10.6861i −0.573377 + 0.368487i
\(842\) −2.50789 7.24608i −0.0864277 0.249716i
\(843\) 9.69892 0.926134i 0.334048 0.0318978i
\(844\) 0.0293301 0.615714i 0.00100958 0.0211938i
\(845\) 18.7910 77.4577i 0.646431 2.66463i
\(846\) −1.95128 2.25190i −0.0670864 0.0774218i
\(847\) 9.56956 18.5119i 0.328814 0.636075i
\(848\) 3.05421 + 6.68778i 0.104882 + 0.229659i
\(849\) −3.28919 2.58665i −0.112885 0.0887735i
\(850\) −17.8869 30.9810i −0.613514 1.06264i
\(851\) −4.27375 0.831144i −0.146502 0.0284912i
\(852\) −0.0977363 + 0.169284i −0.00334839 + 0.00579958i
\(853\) 1.05324 7.32548i 0.0360624 0.250820i −0.963813 0.266578i \(-0.914107\pi\)
0.999876 + 0.0157582i \(0.00501618\pi\)
\(854\) −9.11454 + 30.9142i −0.311893 + 1.05786i
\(855\) −13.7067 4.02466i −0.468761 0.137641i
\(856\) 1.40933 0.271626i 0.0481698 0.00928398i
\(857\) 20.0831 + 19.1492i 0.686025 + 0.654123i 0.950663 0.310224i \(-0.100404\pi\)
−0.264638 + 0.964348i \(0.585253\pi\)
\(858\) −0.367731 + 7.71963i −0.0125541 + 0.263544i
\(859\) 21.2180 + 29.7965i 0.723949 + 1.01664i 0.998483 + 0.0550661i \(0.0175370\pi\)
−0.274534 + 0.961577i \(0.588524\pi\)
\(860\) −0.0465353 + 0.0537046i −0.00158684 + 0.00183131i
\(861\) 6.90453 + 1.00055i 0.235306 + 0.0340986i
\(862\) 0.785659 + 5.46438i 0.0267597 + 0.186117i
\(863\) 32.1999 + 12.8909i 1.09610 + 0.438811i 0.848038 0.529935i \(-0.177784\pi\)
0.248057 + 0.968745i \(0.420208\pi\)
\(864\) 0.406280 + 0.209452i 0.0138219 + 0.00712569i
\(865\) −30.0884 5.79907i −1.02304 0.197174i
\(866\) −10.3425 14.5241i −0.351454 0.493548i
\(867\) 4.56434 + 2.93332i 0.155013 + 0.0996209i
\(868\) −0.0495415 0.524983i −0.00168155 0.0178191i
\(869\) 1.87473 + 2.16355i 0.0635958 + 0.0733934i
\(870\) −6.34777 + 6.05258i −0.215209 + 0.205202i
\(871\) −42.9939 + 60.3765i −1.45679 + 2.04578i
\(872\) 44.3097 17.7389i 1.50052 0.600716i
\(873\) 4.73602 8.20302i 0.160290 0.277630i
\(874\) −3.85563 + 8.40526i −0.130419 + 0.284312i
\(875\) −45.2462 + 15.6036i −1.52960 + 0.527499i
\(876\) −0.00102378 + 0.00712054i −3.45903e−5 + 0.000240581i
\(877\) −10.4215 0.995134i −0.351910 0.0336033i −0.0823955 0.996600i \(-0.526257\pi\)
−0.269514 + 0.962996i \(0.586863\pi\)
\(878\) 1.40545 + 5.79333i 0.0474315 + 0.195515i
\(879\) 0.701090 2.02567i 0.0236472 0.0683240i
\(880\) −6.30805 + 26.0021i −0.212644 + 0.876532i
\(881\) −3.66892 2.35787i −0.123609 0.0794387i 0.477375 0.878699i \(-0.341588\pi\)
−0.600984 + 0.799261i \(0.705225\pi\)
\(882\) −19.3508 + 18.3691i −0.651575 + 0.618518i
\(883\) 13.9611 16.1120i 0.469828 0.542211i −0.470536 0.882381i \(-0.655939\pi\)
0.940364 + 0.340170i \(0.110485\pi\)
\(884\) −0.0191416 0.401832i −0.000643802 0.0135151i
\(885\) −3.41377 + 2.68462i −0.114753 + 0.0902425i
\(886\) −7.37092 + 5.79655i −0.247631 + 0.194739i
\(887\) −0.584731 12.2750i −0.0196334 0.412155i −0.987195 0.159519i \(-0.949006\pi\)
0.967561 0.252636i \(-0.0812974\pi\)
\(888\) 0.906423 1.04607i 0.0304176 0.0351037i
\(889\) −2.53402 + 26.2296i −0.0849885 + 0.879713i
\(890\) 84.3645 + 54.2178i 2.82790 + 1.81738i
\(891\) 2.70867 11.1653i 0.0907438 0.374051i
\(892\) 0.0818399 0.236461i 0.00274020 0.00791729i
\(893\) −0.252966 1.04274i −0.00846517 0.0348939i
\(894\) −8.94249 0.853904i −0.299082 0.0285588i
\(895\) −6.82081 + 47.4398i −0.227995 + 1.58574i
\(896\) −5.58209 + 28.7906i −0.186485 + 0.961825i
\(897\) −12.5445 8.09169i −0.418850 0.270174i
\(898\) −20.8744 + 36.1556i −0.696589 + 1.20653i
\(899\) −21.2904 + 8.52340i −0.710075 + 0.284271i
\(900\) 0.403812 0.567075i 0.0134604 0.0189025i
\(901\) 3.53385 3.36952i 0.117729 0.112255i
\(902\) −8.00538 9.23870i −0.266550 0.307615i
\(903\) −0.903643 0.413894i −0.0300714 0.0137735i
\(904\) −38.8056 24.9388i −1.29065 0.829453i
\(905\) −45.1784 63.4442i −1.50178 2.10896i
\(906\) 10.0501 + 1.93700i 0.333892 + 0.0643524i
\(907\) −40.0196 20.6315i −1.32883 0.685059i −0.360038 0.932938i \(-0.617236\pi\)
−0.968791 + 0.247879i \(0.920267\pi\)
\(908\) 0.0817680 + 0.0327350i 0.00271356 + 0.00108635i
\(909\) −5.14279 35.7689i −0.170576 1.18638i
\(910\) 82.0103 + 11.8843i 2.71862 + 0.393960i
\(911\) −3.69015 + 4.25865i −0.122260 + 0.141096i −0.813580 0.581454i \(-0.802484\pi\)
0.691320 + 0.722549i \(0.257030\pi\)
\(912\) −1.68278 2.36314i −0.0557225 0.0782513i
\(913\) −0.117639 + 2.46955i −0.00389328 + 0.0817301i
\(914\) −26.5371 25.3031i −0.877769 0.836951i
\(915\) 17.4933 3.37155i 0.578310 0.111460i
\(916\) 0.230296 + 0.0676209i 0.00760918 + 0.00223426i
\(917\) 27.0249 6.52440i 0.892441 0.215455i
\(918\) −1.60338 + 11.1518i −0.0529196 + 0.368064i
\(919\) 5.44889 9.43776i 0.179742 0.311323i −0.762050 0.647518i \(-0.775807\pi\)
0.941792 + 0.336195i \(0.109140\pi\)
\(920\) −37.8436 36.2053i −1.24767 1.19365i
\(921\) −7.99243 13.8433i −0.263360 0.456152i
\(922\) −10.9189 8.58676i −0.359596 0.282790i
\(923\) −33.3658 73.0608i −1.09825 2.40483i
\(924\) 0.0660673 0.00307364i 0.00217346 0.000101115i
\(925\) −5.77601 6.66587i −0.189914 0.219173i
\(926\) 3.30120 13.6077i 0.108484 0.447178i
\(927\) −1.93420 + 40.6038i −0.0635274 + 1.33360i
\(928\) −0.451897 + 0.0431509i −0.0148342 + 0.00141650i
\(929\) 0.788038 + 2.27689i 0.0258547 + 0.0747022i 0.957190 0.289461i \(-0.0934761\pi\)
−0.931335 + 0.364164i \(0.881355\pi\)
\(930\) 18.3243 11.7763i 0.600876 0.386160i
\(931\) −9.22462 + 2.68635i −0.302325 + 0.0880416i
\(932\) −0.0345715 0.240450i −0.00113243 0.00787621i
\(933\) 0.00443591 + 0.0931213i 0.000145225 + 0.00304865i
\(934\) −10.2458 1.97472i −0.335253 0.0646147i
\(935\) 17.6892 1.68911i 0.578499 0.0552399i
\(936\) −39.8994 + 20.5695i −1.30415 + 0.672337i
\(937\) −22.0385 + 6.47110i −0.719968 + 0.211402i −0.621136 0.783703i \(-0.713329\pi\)
−0.0988315 + 0.995104i \(0.531510\pi\)
\(938\) −41.0253 23.7468i −1.33952 0.775360i
\(939\) 2.21581 + 0.650622i 0.0723104 + 0.0212322i
\(940\) 0.0788400 + 0.00752830i 0.00257148 + 0.000245546i
\(941\) 3.59723 1.44011i 0.117266 0.0469464i −0.312287 0.949988i \(-0.601095\pi\)
0.429554 + 0.903041i \(0.358671\pi\)
\(942\) −2.66710 4.61955i −0.0868987 0.150513i
\(943\) 23.1932 4.42975i 0.755276 0.144252i
\(944\) 8.34223 0.271517
\(945\) 29.3360 + 10.1898i 0.954300 + 0.331474i
\(946\) 0.723469 + 1.58418i 0.0235220 + 0.0515060i
\(947\) 2.34646 2.23735i 0.0762498 0.0727040i −0.650996 0.759081i \(-0.725649\pi\)
0.727246 + 0.686377i \(0.240800\pi\)
\(948\) 0.00749344 0.0216509i 0.000243376 0.000703188i
\(949\) −2.13928 2.03980i −0.0694440 0.0662147i
\(950\) −16.6514 + 8.58437i −0.540242 + 0.278514i
\(951\) −1.33084 + 2.91412i −0.0431553 + 0.0944970i
\(952\) 19.5431 2.78772i 0.633395 0.0903506i
\(953\) −6.95891 + 4.47222i −0.225421 + 0.144869i −0.648477 0.761234i \(-0.724594\pi\)
0.423056 + 0.906104i \(0.360957\pi\)
\(954\) −6.59220 2.63912i −0.213430 0.0854446i
\(955\) 3.87785 3.04957i 0.125484 0.0986819i
\(956\) −0.0889374 0.0458504i −0.00287644 0.00148291i
\(957\) −0.940780 2.71820i −0.0304111 0.0878671i
\(958\) 17.4971 38.3133i 0.565305 1.23785i
\(959\) 9.01727 + 30.8367i 0.291183 + 0.995768i
\(960\) 15.9731 4.69012i 0.515529 0.151373i
\(961\) 25.4846 4.91176i 0.822085 0.158444i
\(962\) 1.74750 + 7.20328i 0.0563415 + 0.232243i
\(963\) −0.793455 + 1.11425i −0.0255687 + 0.0359063i
\(964\) −0.0956401 0.0752122i −0.00308036 0.00242242i
\(965\) −28.5313 −0.918455
\(966\) 4.39829 8.47337i 0.141513 0.272626i
\(967\) 32.2460 1.03696 0.518481 0.855089i \(-0.326498\pi\)
0.518481 + 0.855089i \(0.326498\pi\)
\(968\) 17.6253 + 13.8607i 0.566498 + 0.445499i
\(969\) −1.11758 + 1.56943i −0.0359020 + 0.0504172i
\(970\) −4.43563 18.2839i −0.142419 0.587061i
\(971\) −36.5977 + 7.05363i −1.17448 + 0.226362i −0.738916 0.673797i \(-0.764662\pi\)
−0.435561 + 0.900159i \(0.643450\pi\)
\(972\) −0.320829 + 0.0942039i −0.0102906 + 0.00302159i
\(973\) −36.2715 8.84204i −1.16281 0.283463i
\(974\) 12.6514 27.7027i 0.405377 0.887652i
\(975\) −9.89110 28.5785i −0.316769 0.915243i
\(976\) −30.4167 15.6809i −0.973616 0.501934i
\(977\) −22.7496 + 17.8904i −0.727823 + 0.572366i −0.911835 0.410558i \(-0.865334\pi\)
0.184012 + 0.982924i \(0.441092\pi\)
\(978\) 2.46755 + 0.987859i 0.0789036 + 0.0315882i
\(979\) −27.6674 + 17.7807i −0.884253 + 0.568275i
\(980\) 0.0353169 0.708288i 0.00112816 0.0226254i
\(981\) −18.8965 + 41.3775i −0.603318 + 1.32108i
\(982\) 25.3960 13.0926i 0.810419 0.417800i
\(983\) −28.6361 27.3045i −0.913351 0.870878i 0.0786767 0.996900i \(-0.474931\pi\)
−0.992027 + 0.126022i \(0.959779\pi\)
\(984\) −2.45523 + 7.09391i −0.0782698 + 0.226146i
\(985\) −67.0479 + 63.9301i −2.13632 + 2.03698i
\(986\) −4.64811 10.1779i −0.148026 0.324132i
\(987\) 0.208432 + 1.08795i 0.00663446 + 0.0346298i
\(988\) −0.210669 −0.00670228
\(989\) −3.34815 0.325385i −0.106465 0.0103466i
\(990\) −12.9208 22.3795i −0.410651 0.711269i
\(991\) 7.34222 2.93938i 0.233233 0.0933725i −0.252102 0.967701i \(-0.581122\pi\)
0.485335 + 0.874328i \(0.338698\pi\)
\(992\) 1.12227 + 0.107164i 0.0356321 + 0.00340245i
\(993\) −13.4392 3.94611i −0.426481 0.125226i
\(994\) 44.5135 25.6340i 1.41188 0.813061i
\(995\) −80.8032 + 23.7260i −2.56163 + 0.752164i
\(996\) 0.0175867 0.00906659i 0.000557257 0.000287286i
\(997\) 37.1297 3.54545i 1.17591 0.112286i 0.511249 0.859433i \(-0.329183\pi\)
0.664659 + 0.747147i \(0.268577\pi\)
\(998\) −4.08542 0.787399i −0.129322 0.0249247i
\(999\) 0.132173 + 2.77466i 0.00418178 + 0.0877865i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.2.m.a.100.11 yes 280
7.4 even 3 inner 161.2.m.a.123.4 yes 280
23.3 even 11 inner 161.2.m.a.72.4 280
161.95 even 33 inner 161.2.m.a.95.11 yes 280
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.2.m.a.72.4 280 23.3 even 11 inner
161.2.m.a.95.11 yes 280 161.95 even 33 inner
161.2.m.a.100.11 yes 280 1.1 even 1 trivial
161.2.m.a.123.4 yes 280 7.4 even 3 inner