Properties

Label 1600.3.h.n.1599.1
Level $1600$
Weight $3$
Character 1600.1599
Analytic conductor $43.597$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1600,3,Mod(1599,1600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1600.1599"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1600.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(43.5968422976\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1599.1
Root \(0.951057 - 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 1600.1599
Dual form 1600.3.h.n.1599.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.80423 q^{3} +8.50651 q^{7} +5.47214 q^{9} -1.79611i q^{11} +0.472136i q^{13} -23.8885i q^{17} -9.40456i q^{19} -32.3607 q^{21} -16.1150 q^{23} +13.4208 q^{27} +6.94427 q^{29} +47.4468i q^{31} +6.83282i q^{33} -26.3607i q^{37} -1.79611i q^{39} -41.4164 q^{41} +2.00811 q^{43} +35.3481 q^{47} +23.3607 q^{49} +90.8774i q^{51} -21.6393i q^{53} +35.7771i q^{57} +73.8644i q^{59} +26.1378 q^{61} +46.5488 q^{63} +88.8693 q^{67} +61.3050 q^{69} -39.4144i q^{71} -137.554i q^{73} -15.2786i q^{77} +113.703i q^{79} -100.305 q^{81} -21.2412 q^{83} -26.4176 q^{87} -67.4427 q^{89} +4.01623i q^{91} -180.498i q^{93} -39.1672i q^{97} -9.82857i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{9} - 80 q^{21} - 16 q^{29} - 224 q^{41} + 8 q^{49} - 256 q^{61} + 240 q^{69} - 552 q^{81} + 176 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1151\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.80423 −1.26808 −0.634038 0.773302i \(-0.718604\pi\)
−0.634038 + 0.773302i \(0.718604\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 8.50651 1.21522 0.607608 0.794237i \(-0.292129\pi\)
0.607608 + 0.794237i \(0.292129\pi\)
\(8\) 0 0
\(9\) 5.47214 0.608015
\(10\) 0 0
\(11\) − 1.79611i − 0.163283i −0.996662 0.0816415i \(-0.973984\pi\)
0.996662 0.0816415i \(-0.0260162\pi\)
\(12\) 0 0
\(13\) 0.472136i 0.0363182i 0.999835 + 0.0181591i \(0.00578053\pi\)
−0.999835 + 0.0181591i \(0.994219\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 23.8885i − 1.40521i −0.711581 0.702604i \(-0.752020\pi\)
0.711581 0.702604i \(-0.247980\pi\)
\(18\) 0 0
\(19\) − 9.40456i − 0.494977i −0.968891 0.247489i \(-0.920395\pi\)
0.968891 0.247489i \(-0.0796053\pi\)
\(20\) 0 0
\(21\) −32.3607 −1.54098
\(22\) 0 0
\(23\) −16.1150 −0.700650 −0.350325 0.936628i \(-0.613929\pi\)
−0.350325 + 0.936628i \(0.613929\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 13.4208 0.497066
\(28\) 0 0
\(29\) 6.94427 0.239458 0.119729 0.992807i \(-0.461797\pi\)
0.119729 + 0.992807i \(0.461797\pi\)
\(30\) 0 0
\(31\) 47.4468i 1.53054i 0.643708 + 0.765271i \(0.277395\pi\)
−0.643708 + 0.765271i \(0.722605\pi\)
\(32\) 0 0
\(33\) 6.83282i 0.207055i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 26.3607i − 0.712451i −0.934400 0.356225i \(-0.884064\pi\)
0.934400 0.356225i \(-0.115936\pi\)
\(38\) 0 0
\(39\) − 1.79611i − 0.0460542i
\(40\) 0 0
\(41\) −41.4164 −1.01016 −0.505078 0.863074i \(-0.668536\pi\)
−0.505078 + 0.863074i \(0.668536\pi\)
\(42\) 0 0
\(43\) 2.00811 0.0467003 0.0233502 0.999727i \(-0.492567\pi\)
0.0233502 + 0.999727i \(0.492567\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 35.3481 0.752087 0.376044 0.926602i \(-0.377284\pi\)
0.376044 + 0.926602i \(0.377284\pi\)
\(48\) 0 0
\(49\) 23.3607 0.476749
\(50\) 0 0
\(51\) 90.8774i 1.78191i
\(52\) 0 0
\(53\) − 21.6393i − 0.408289i −0.978941 0.204145i \(-0.934559\pi\)
0.978941 0.204145i \(-0.0654413\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 35.7771i 0.627668i
\(58\) 0 0
\(59\) 73.8644i 1.25194i 0.779848 + 0.625970i \(0.215297\pi\)
−0.779848 + 0.625970i \(0.784703\pi\)
\(60\) 0 0
\(61\) 26.1378 0.428488 0.214244 0.976780i \(-0.431271\pi\)
0.214244 + 0.976780i \(0.431271\pi\)
\(62\) 0 0
\(63\) 46.5488 0.738869
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 88.8693 1.32641 0.663204 0.748439i \(-0.269196\pi\)
0.663204 + 0.748439i \(0.269196\pi\)
\(68\) 0 0
\(69\) 61.3050 0.888478
\(70\) 0 0
\(71\) − 39.4144i − 0.555132i −0.960707 0.277566i \(-0.910472\pi\)
0.960707 0.277566i \(-0.0895277\pi\)
\(72\) 0 0
\(73\) − 137.554i − 1.88430i −0.335186 0.942152i \(-0.608799\pi\)
0.335186 0.942152i \(-0.391201\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 15.2786i − 0.198424i
\(78\) 0 0
\(79\) 113.703i 1.43928i 0.694350 + 0.719638i \(0.255692\pi\)
−0.694350 + 0.719638i \(0.744308\pi\)
\(80\) 0 0
\(81\) −100.305 −1.23833
\(82\) 0 0
\(83\) −21.2412 −0.255919 −0.127959 0.991779i \(-0.540843\pi\)
−0.127959 + 0.991779i \(0.540843\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −26.4176 −0.303650
\(88\) 0 0
\(89\) −67.4427 −0.757783 −0.378892 0.925441i \(-0.623695\pi\)
−0.378892 + 0.925441i \(0.623695\pi\)
\(90\) 0 0
\(91\) 4.01623i 0.0441344i
\(92\) 0 0
\(93\) − 180.498i − 1.94084i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 39.1672i − 0.403785i −0.979408 0.201893i \(-0.935291\pi\)
0.979408 0.201893i \(-0.0647092\pi\)
\(98\) 0 0
\(99\) − 9.82857i − 0.0992785i
\(100\) 0 0
\(101\) −99.8885 −0.988995 −0.494498 0.869179i \(-0.664648\pi\)
−0.494498 + 0.869179i \(0.664648\pi\)
\(102\) 0 0
\(103\) −35.7721 −0.347302 −0.173651 0.984807i \(-0.555556\pi\)
−0.173651 + 0.984807i \(0.555556\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −121.099 −1.13177 −0.565884 0.824485i \(-0.691465\pi\)
−0.565884 + 0.824485i \(0.691465\pi\)
\(108\) 0 0
\(109\) −197.469 −1.81164 −0.905821 0.423660i \(-0.860745\pi\)
−0.905821 + 0.423660i \(0.860745\pi\)
\(110\) 0 0
\(111\) 100.282i 0.903441i
\(112\) 0 0
\(113\) − 81.2786i − 0.719280i −0.933091 0.359640i \(-0.882900\pi\)
0.933091 0.359640i \(-0.117100\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.58359i 0.0220820i
\(118\) 0 0
\(119\) − 203.208i − 1.70763i
\(120\) 0 0
\(121\) 117.774 0.973339
\(122\) 0 0
\(123\) 157.557 1.28095
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1.84616 0.0145367 0.00726834 0.999974i \(-0.497686\pi\)
0.00726834 + 0.999974i \(0.497686\pi\)
\(128\) 0 0
\(129\) −7.63932 −0.0592195
\(130\) 0 0
\(131\) − 225.609i − 1.72221i −0.508428 0.861105i \(-0.669773\pi\)
0.508428 0.861105i \(-0.330227\pi\)
\(132\) 0 0
\(133\) − 80.0000i − 0.601504i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 52.8328i − 0.385641i −0.981234 0.192820i \(-0.938236\pi\)
0.981234 0.192820i \(-0.0617635\pi\)
\(138\) 0 0
\(139\) − 125.852i − 0.905407i −0.891661 0.452703i \(-0.850460\pi\)
0.891661 0.452703i \(-0.149540\pi\)
\(140\) 0 0
\(141\) −134.472 −0.953703
\(142\) 0 0
\(143\) 0.848009 0.00593013
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −88.8693 −0.604553
\(148\) 0 0
\(149\) 132.971 0.892420 0.446210 0.894928i \(-0.352773\pi\)
0.446210 + 0.894928i \(0.352773\pi\)
\(150\) 0 0
\(151\) − 151.221i − 1.00146i −0.865603 0.500732i \(-0.833064\pi\)
0.865603 0.500732i \(-0.166936\pi\)
\(152\) 0 0
\(153\) − 130.721i − 0.854388i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 36.7477i 0.234062i 0.993128 + 0.117031i \(0.0373376\pi\)
−0.993128 + 0.117031i \(0.962662\pi\)
\(158\) 0 0
\(159\) 82.3209i 0.517741i
\(160\) 0 0
\(161\) −137.082 −0.851441
\(162\) 0 0
\(163\) −302.854 −1.85800 −0.929000 0.370079i \(-0.879331\pi\)
−0.929000 + 0.370079i \(0.879331\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −99.3839 −0.595113 −0.297557 0.954704i \(-0.596172\pi\)
−0.297557 + 0.954704i \(0.596172\pi\)
\(168\) 0 0
\(169\) 168.777 0.998681
\(170\) 0 0
\(171\) − 51.4631i − 0.300954i
\(172\) 0 0
\(173\) − 181.639i − 1.04994i −0.851121 0.524969i \(-0.824077\pi\)
0.851121 0.524969i \(-0.175923\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 280.997i − 1.58755i
\(178\) 0 0
\(179\) − 260.907i − 1.45758i −0.684735 0.728792i \(-0.740082\pi\)
0.684735 0.728792i \(-0.259918\pi\)
\(180\) 0 0
\(181\) −157.777 −0.871697 −0.435848 0.900020i \(-0.643552\pi\)
−0.435848 + 0.900020i \(0.643552\pi\)
\(182\) 0 0
\(183\) −99.4340 −0.543355
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −42.9065 −0.229447
\(188\) 0 0
\(189\) 114.164 0.604043
\(190\) 0 0
\(191\) − 324.095i − 1.69683i −0.529328 0.848417i \(-0.677556\pi\)
0.529328 0.848417i \(-0.322444\pi\)
\(192\) 0 0
\(193\) − 181.777i − 0.941850i −0.882173 0.470925i \(-0.843920\pi\)
0.882173 0.470925i \(-0.156080\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 140.525i − 0.713324i −0.934234 0.356662i \(-0.883915\pi\)
0.934234 0.356662i \(-0.116085\pi\)
\(198\) 0 0
\(199\) − 168.234i − 0.845397i −0.906270 0.422698i \(-0.861083\pi\)
0.906270 0.422698i \(-0.138917\pi\)
\(200\) 0 0
\(201\) −338.079 −1.68198
\(202\) 0 0
\(203\) 59.0715 0.290993
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −88.1833 −0.426006
\(208\) 0 0
\(209\) −16.8916 −0.0808213
\(210\) 0 0
\(211\) − 93.9455i − 0.445240i −0.974905 0.222620i \(-0.928539\pi\)
0.974905 0.222620i \(-0.0714608\pi\)
\(212\) 0 0
\(213\) 149.941i 0.703949i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 403.607i 1.85994i
\(218\) 0 0
\(219\) 523.287i 2.38944i
\(220\) 0 0
\(221\) 11.2786 0.0510346
\(222\) 0 0
\(223\) 214.035 0.959797 0.479899 0.877324i \(-0.340673\pi\)
0.479899 + 0.877324i \(0.340673\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −41.4225 −0.182478 −0.0912389 0.995829i \(-0.529083\pi\)
−0.0912389 + 0.995829i \(0.529083\pi\)
\(228\) 0 0
\(229\) 73.2786 0.319994 0.159997 0.987117i \(-0.448852\pi\)
0.159997 + 0.987117i \(0.448852\pi\)
\(230\) 0 0
\(231\) 58.1234i 0.251616i
\(232\) 0 0
\(233\) 307.050i 1.31781i 0.752227 + 0.658905i \(0.228980\pi\)
−0.752227 + 0.658905i \(0.771020\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 432.551i − 1.82511i
\(238\) 0 0
\(239\) 42.9065i 0.179525i 0.995963 + 0.0897625i \(0.0286108\pi\)
−0.995963 + 0.0897625i \(0.971389\pi\)
\(240\) 0 0
\(241\) −135.082 −0.560506 −0.280253 0.959926i \(-0.590418\pi\)
−0.280253 + 0.959926i \(0.590418\pi\)
\(242\) 0 0
\(243\) 260.796 1.07323
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4.44023 0.0179767
\(248\) 0 0
\(249\) 80.8065 0.324524
\(250\) 0 0
\(251\) 221.169i 0.881152i 0.897715 + 0.440576i \(0.145226\pi\)
−0.897715 + 0.440576i \(0.854774\pi\)
\(252\) 0 0
\(253\) 28.9443i 0.114404i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 257.056i − 1.00022i −0.865963 0.500108i \(-0.833293\pi\)
0.865963 0.500108i \(-0.166707\pi\)
\(258\) 0 0
\(259\) − 224.237i − 0.865781i
\(260\) 0 0
\(261\) 38.0000 0.145594
\(262\) 0 0
\(263\) −164.168 −0.624212 −0.312106 0.950047i \(-0.601034\pi\)
−0.312106 + 0.950047i \(0.601034\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 256.567 0.960926
\(268\) 0 0
\(269\) −35.4752 −0.131878 −0.0659391 0.997824i \(-0.521004\pi\)
−0.0659391 + 0.997824i \(0.521004\pi\)
\(270\) 0 0
\(271\) 298.950i 1.10314i 0.834130 + 0.551568i \(0.185970\pi\)
−0.834130 + 0.551568i \(0.814030\pi\)
\(272\) 0 0
\(273\) − 15.2786i − 0.0559657i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 457.246i 1.65071i 0.564616 + 0.825354i \(0.309024\pi\)
−0.564616 + 0.825354i \(0.690976\pi\)
\(278\) 0 0
\(279\) 259.635i 0.930593i
\(280\) 0 0
\(281\) −5.63932 −0.0200688 −0.0100344 0.999950i \(-0.503194\pi\)
−0.0100344 + 0.999950i \(0.503194\pi\)
\(282\) 0 0
\(283\) 169.918 0.600418 0.300209 0.953874i \(-0.402944\pi\)
0.300209 + 0.953874i \(0.402944\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −352.309 −1.22756
\(288\) 0 0
\(289\) −281.663 −0.974611
\(290\) 0 0
\(291\) 149.001i 0.512030i
\(292\) 0 0
\(293\) − 26.8591i − 0.0916694i −0.998949 0.0458347i \(-0.985405\pi\)
0.998949 0.0458347i \(-0.0145947\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 24.1052i − 0.0811624i
\(298\) 0 0
\(299\) − 7.60845i − 0.0254463i
\(300\) 0 0
\(301\) 17.0820 0.0567510
\(302\) 0 0
\(303\) 379.999 1.25412
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −118.031 −0.384466 −0.192233 0.981349i \(-0.561573\pi\)
−0.192233 + 0.981349i \(0.561573\pi\)
\(308\) 0 0
\(309\) 136.085 0.440405
\(310\) 0 0
\(311\) 121.835i 0.391753i 0.980629 + 0.195877i \(0.0627552\pi\)
−0.980629 + 0.195877i \(0.937245\pi\)
\(312\) 0 0
\(313\) − 219.548i − 0.701431i −0.936482 0.350716i \(-0.885938\pi\)
0.936482 0.350716i \(-0.114062\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 366.859i − 1.15728i −0.815582 0.578642i \(-0.803583\pi\)
0.815582 0.578642i \(-0.196417\pi\)
\(318\) 0 0
\(319\) − 12.4727i − 0.0390993i
\(320\) 0 0
\(321\) 460.689 1.43517
\(322\) 0 0
\(323\) −224.661 −0.695546
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 751.217 2.29730
\(328\) 0 0
\(329\) 300.689 0.913948
\(330\) 0 0
\(331\) 162.846i 0.491981i 0.969272 + 0.245990i \(0.0791132\pi\)
−0.969272 + 0.245990i \(0.920887\pi\)
\(332\) 0 0
\(333\) − 144.249i − 0.433181i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 17.1084i 0.0507666i 0.999678 + 0.0253833i \(0.00808063\pi\)
−0.999678 + 0.0253833i \(0.991919\pi\)
\(338\) 0 0
\(339\) 309.202i 0.912101i
\(340\) 0 0
\(341\) 85.2198 0.249911
\(342\) 0 0
\(343\) −218.101 −0.635863
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 167.498 0.482703 0.241351 0.970438i \(-0.422409\pi\)
0.241351 + 0.970438i \(0.422409\pi\)
\(348\) 0 0
\(349\) −483.495 −1.38537 −0.692687 0.721239i \(-0.743573\pi\)
−0.692687 + 0.721239i \(0.743573\pi\)
\(350\) 0 0
\(351\) 6.33644i 0.0180525i
\(352\) 0 0
\(353\) − 307.994i − 0.872504i −0.899825 0.436252i \(-0.856306\pi\)
0.899825 0.436252i \(-0.143694\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 773.050i 2.16540i
\(358\) 0 0
\(359\) 23.2494i 0.0647615i 0.999476 + 0.0323807i \(0.0103089\pi\)
−0.999476 + 0.0323807i \(0.989691\pi\)
\(360\) 0 0
\(361\) 272.554 0.754998
\(362\) 0 0
\(363\) −448.039 −1.23427
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 517.325 1.40960 0.704802 0.709404i \(-0.251036\pi\)
0.704802 + 0.709404i \(0.251036\pi\)
\(368\) 0 0
\(369\) −226.636 −0.614190
\(370\) 0 0
\(371\) − 184.075i − 0.496159i
\(372\) 0 0
\(373\) − 88.3545i − 0.236875i −0.992961 0.118438i \(-0.962211\pi\)
0.992961 0.118438i \(-0.0377886\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.27864i 0.00869666i
\(378\) 0 0
\(379\) 19.3332i 0.0510112i 0.999675 + 0.0255056i \(0.00811956\pi\)
−0.999675 + 0.0255056i \(0.991880\pi\)
\(380\) 0 0
\(381\) −7.02321 −0.0184336
\(382\) 0 0
\(383\) −431.612 −1.12692 −0.563462 0.826142i \(-0.690531\pi\)
−0.563462 + 0.826142i \(0.690531\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 10.9887 0.0283945
\(388\) 0 0
\(389\) −296.354 −0.761837 −0.380918 0.924609i \(-0.624392\pi\)
−0.380918 + 0.924609i \(0.624392\pi\)
\(390\) 0 0
\(391\) 384.963i 0.984560i
\(392\) 0 0
\(393\) 858.269i 2.18389i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 86.1904i 0.217104i 0.994091 + 0.108552i \(0.0346214\pi\)
−0.994091 + 0.108552i \(0.965379\pi\)
\(398\) 0 0
\(399\) 304.338i 0.762752i
\(400\) 0 0
\(401\) 442.997 1.10473 0.552365 0.833602i \(-0.313725\pi\)
0.552365 + 0.833602i \(0.313725\pi\)
\(402\) 0 0
\(403\) −22.4014 −0.0555865
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −47.3467 −0.116331
\(408\) 0 0
\(409\) −63.4102 −0.155037 −0.0775186 0.996991i \(-0.524700\pi\)
−0.0775186 + 0.996991i \(0.524700\pi\)
\(410\) 0 0
\(411\) 200.988i 0.489022i
\(412\) 0 0
\(413\) 628.328i 1.52138i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 478.768i 1.14812i
\(418\) 0 0
\(419\) − 435.678i − 1.03980i −0.854226 0.519902i \(-0.825968\pi\)
0.854226 0.519902i \(-0.174032\pi\)
\(420\) 0 0
\(421\) 582.912 1.38459 0.692294 0.721615i \(-0.256600\pi\)
0.692294 + 0.721615i \(0.256600\pi\)
\(422\) 0 0
\(423\) 193.430 0.457280
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 222.341 0.520705
\(428\) 0 0
\(429\) −3.22602 −0.00751986
\(430\) 0 0
\(431\) 375.882i 0.872117i 0.899918 + 0.436058i \(0.143626\pi\)
−0.899918 + 0.436058i \(0.856374\pi\)
\(432\) 0 0
\(433\) 368.164i 0.850263i 0.905131 + 0.425132i \(0.139772\pi\)
−0.905131 + 0.425132i \(0.860228\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 151.554i 0.346806i
\(438\) 0 0
\(439\) − 483.549i − 1.10148i −0.834677 0.550739i \(-0.814346\pi\)
0.834677 0.550739i \(-0.185654\pi\)
\(440\) 0 0
\(441\) 127.833 0.289870
\(442\) 0 0
\(443\) 279.181 0.630205 0.315102 0.949058i \(-0.397961\pi\)
0.315102 + 0.949058i \(0.397961\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −505.850 −1.13166
\(448\) 0 0
\(449\) −756.079 −1.68392 −0.841959 0.539542i \(-0.818597\pi\)
−0.841959 + 0.539542i \(0.818597\pi\)
\(450\) 0 0
\(451\) 74.3885i 0.164941i
\(452\) 0 0
\(453\) 575.279i 1.26993i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 285.672i 0.625103i 0.949901 + 0.312551i \(0.101184\pi\)
−0.949901 + 0.312551i \(0.898816\pi\)
\(458\) 0 0
\(459\) − 320.603i − 0.698482i
\(460\) 0 0
\(461\) 99.1146 0.214999 0.107500 0.994205i \(-0.465716\pi\)
0.107500 + 0.994205i \(0.465716\pi\)
\(462\) 0 0
\(463\) −630.603 −1.36199 −0.680997 0.732286i \(-0.738453\pi\)
−0.680997 + 0.732286i \(0.738453\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 496.010 1.06212 0.531060 0.847334i \(-0.321794\pi\)
0.531060 + 0.847334i \(0.321794\pi\)
\(468\) 0 0
\(469\) 755.967 1.61187
\(470\) 0 0
\(471\) − 139.796i − 0.296808i
\(472\) 0 0
\(473\) − 3.60680i − 0.00762537i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 118.413i − 0.248246i
\(478\) 0 0
\(479\) − 579.090i − 1.20896i −0.796621 0.604478i \(-0.793382\pi\)
0.796621 0.604478i \(-0.206618\pi\)
\(480\) 0 0
\(481\) 12.4458 0.0258749
\(482\) 0 0
\(483\) 521.491 1.07969
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −626.363 −1.28617 −0.643084 0.765796i \(-0.722345\pi\)
−0.643084 + 0.765796i \(0.722345\pi\)
\(488\) 0 0
\(489\) 1152.13 2.35608
\(490\) 0 0
\(491\) − 22.3013i − 0.0454201i −0.999742 0.0227100i \(-0.992771\pi\)
0.999742 0.0227100i \(-0.00722945\pi\)
\(492\) 0 0
\(493\) − 165.889i − 0.336488i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 335.279i − 0.674605i
\(498\) 0 0
\(499\) 627.362i 1.25724i 0.777714 + 0.628619i \(0.216379\pi\)
−0.777714 + 0.628619i \(0.783621\pi\)
\(500\) 0 0
\(501\) 378.079 0.754649
\(502\) 0 0
\(503\) 780.853 1.55239 0.776196 0.630492i \(-0.217147\pi\)
0.776196 + 0.630492i \(0.217147\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −642.066 −1.26640
\(508\) 0 0
\(509\) −288.950 −0.567683 −0.283841 0.958871i \(-0.591609\pi\)
−0.283841 + 0.958871i \(0.591609\pi\)
\(510\) 0 0
\(511\) − 1170.11i − 2.28984i
\(512\) 0 0
\(513\) − 126.217i − 0.246036i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 63.4891i − 0.122803i
\(518\) 0 0
\(519\) 690.997i 1.33140i
\(520\) 0 0
\(521\) −602.984 −1.15736 −0.578680 0.815555i \(-0.696432\pi\)
−0.578680 + 0.815555i \(0.696432\pi\)
\(522\) 0 0
\(523\) −367.962 −0.703560 −0.351780 0.936083i \(-0.614423\pi\)
−0.351780 + 0.936083i \(0.614423\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1133.44 2.15073
\(528\) 0 0
\(529\) −269.308 −0.509089
\(530\) 0 0
\(531\) 404.196i 0.761198i
\(532\) 0 0
\(533\) − 19.5542i − 0.0366870i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 992.551i 1.84833i
\(538\) 0 0
\(539\) − 41.9584i − 0.0778449i
\(540\) 0 0
\(541\) 616.885 1.14027 0.570134 0.821551i \(-0.306891\pi\)
0.570134 + 0.821551i \(0.306891\pi\)
\(542\) 0 0
\(543\) 600.220 1.10538
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −97.8499 −0.178885 −0.0894423 0.995992i \(-0.528508\pi\)
−0.0894423 + 0.995992i \(0.528508\pi\)
\(548\) 0 0
\(549\) 143.029 0.260527
\(550\) 0 0
\(551\) − 65.3078i − 0.118526i
\(552\) 0 0
\(553\) 967.214i 1.74903i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 896.302i − 1.60916i −0.593845 0.804580i \(-0.702391\pi\)
0.593845 0.804580i \(-0.297609\pi\)
\(558\) 0 0
\(559\) 0.948103i 0.00169607i
\(560\) 0 0
\(561\) 163.226 0.290955
\(562\) 0 0
\(563\) −771.186 −1.36978 −0.684890 0.728647i \(-0.740150\pi\)
−0.684890 + 0.728647i \(0.740150\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −853.245 −1.50484
\(568\) 0 0
\(569\) −8.74767 −0.0153738 −0.00768688 0.999970i \(-0.502447\pi\)
−0.00768688 + 0.999970i \(0.502447\pi\)
\(570\) 0 0
\(571\) − 511.138i − 0.895164i −0.894243 0.447582i \(-0.852285\pi\)
0.894243 0.447582i \(-0.147715\pi\)
\(572\) 0 0
\(573\) 1232.93i 2.15171i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 713.712i − 1.23694i −0.785810 0.618468i \(-0.787754\pi\)
0.785810 0.618468i \(-0.212246\pi\)
\(578\) 0 0
\(579\) 691.521i 1.19434i
\(580\) 0 0
\(581\) −180.689 −0.310996
\(582\) 0 0
\(583\) −38.8666 −0.0666666
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −422.169 −0.719198 −0.359599 0.933107i \(-0.617086\pi\)
−0.359599 + 0.933107i \(0.617086\pi\)
\(588\) 0 0
\(589\) 446.217 0.757584
\(590\) 0 0
\(591\) 534.588i 0.904548i
\(592\) 0 0
\(593\) 308.663i 0.520510i 0.965540 + 0.260255i \(0.0838067\pi\)
−0.965540 + 0.260255i \(0.916193\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 640.000i 1.07203i
\(598\) 0 0
\(599\) 462.196i 0.771612i 0.922580 + 0.385806i \(0.126077\pi\)
−0.922580 + 0.385806i \(0.873923\pi\)
\(600\) 0 0
\(601\) 355.358 0.591277 0.295639 0.955300i \(-0.404468\pi\)
0.295639 + 0.955300i \(0.404468\pi\)
\(602\) 0 0
\(603\) 486.305 0.806476
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −630.403 −1.03856 −0.519278 0.854605i \(-0.673799\pi\)
−0.519278 + 0.854605i \(0.673799\pi\)
\(608\) 0 0
\(609\) −224.721 −0.369001
\(610\) 0 0
\(611\) 16.6891i 0.0273144i
\(612\) 0 0
\(613\) 812.525i 1.32549i 0.748846 + 0.662745i \(0.230608\pi\)
−0.748846 + 0.662745i \(0.769392\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 437.935i − 0.709781i −0.934908 0.354891i \(-0.884518\pi\)
0.934908 0.354891i \(-0.115482\pi\)
\(618\) 0 0
\(619\) − 770.250i − 1.24435i −0.782880 0.622173i \(-0.786250\pi\)
0.782880 0.622173i \(-0.213750\pi\)
\(620\) 0 0
\(621\) −216.276 −0.348270
\(622\) 0 0
\(623\) −573.702 −0.920870
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 64.2597 0.102487
\(628\) 0 0
\(629\) −629.718 −1.00114
\(630\) 0 0
\(631\) − 875.496i − 1.38747i −0.720228 0.693737i \(-0.755963\pi\)
0.720228 0.693737i \(-0.244037\pi\)
\(632\) 0 0
\(633\) 357.390i 0.564597i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 11.0294i 0.0173146i
\(638\) 0 0
\(639\) − 215.681i − 0.337529i
\(640\) 0 0
\(641\) 842.571 1.31446 0.657232 0.753689i \(-0.271727\pi\)
0.657232 + 0.753689i \(0.271727\pi\)
\(642\) 0 0
\(643\) 1153.20 1.79348 0.896738 0.442563i \(-0.145931\pi\)
0.896738 + 0.442563i \(0.145931\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 355.751 0.549847 0.274924 0.961466i \(-0.411347\pi\)
0.274924 + 0.961466i \(0.411347\pi\)
\(648\) 0 0
\(649\) 132.669 0.204420
\(650\) 0 0
\(651\) − 1535.41i − 2.35854i
\(652\) 0 0
\(653\) − 557.915i − 0.854387i −0.904160 0.427194i \(-0.859502\pi\)
0.904160 0.427194i \(-0.140498\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 752.715i − 1.14569i
\(658\) 0 0
\(659\) 284.157i 0.431194i 0.976482 + 0.215597i \(0.0691697\pi\)
−0.976482 + 0.215597i \(0.930830\pi\)
\(660\) 0 0
\(661\) −716.735 −1.08432 −0.542160 0.840275i \(-0.682393\pi\)
−0.542160 + 0.840275i \(0.682393\pi\)
\(662\) 0 0
\(663\) −42.9065 −0.0647157
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −111.907 −0.167776
\(668\) 0 0
\(669\) −814.237 −1.21710
\(670\) 0 0
\(671\) − 46.9464i − 0.0699648i
\(672\) 0 0
\(673\) 695.378i 1.03325i 0.856212 + 0.516625i \(0.172812\pi\)
−0.856212 + 0.516625i \(0.827188\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 820.237i 1.21158i 0.795626 + 0.605788i \(0.207142\pi\)
−0.795626 + 0.605788i \(0.792858\pi\)
\(678\) 0 0
\(679\) − 333.176i − 0.490686i
\(680\) 0 0
\(681\) 157.580 0.231396
\(682\) 0 0
\(683\) −335.508 −0.491227 −0.245613 0.969368i \(-0.578989\pi\)
−0.245613 + 0.969368i \(0.578989\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −278.769 −0.405777
\(688\) 0 0
\(689\) 10.2167 0.0148283
\(690\) 0 0
\(691\) − 336.568i − 0.487074i −0.969892 0.243537i \(-0.921692\pi\)
0.969892 0.243537i \(-0.0783077\pi\)
\(692\) 0 0
\(693\) − 83.6068i − 0.120645i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 989.378i 1.41948i
\(698\) 0 0
\(699\) − 1168.09i − 1.67108i
\(700\) 0 0
\(701\) 429.364 0.612502 0.306251 0.951951i \(-0.400925\pi\)
0.306251 + 0.951951i \(0.400925\pi\)
\(702\) 0 0
\(703\) −247.911 −0.352647
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −849.703 −1.20184
\(708\) 0 0
\(709\) 1224.60 1.72722 0.863609 0.504162i \(-0.168199\pi\)
0.863609 + 0.504162i \(0.168199\pi\)
\(710\) 0 0
\(711\) 622.197i 0.875101i
\(712\) 0 0
\(713\) − 764.604i − 1.07238i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 163.226i − 0.227651i
\(718\) 0 0
\(719\) − 496.022i − 0.689877i −0.938625 0.344939i \(-0.887900\pi\)
0.938625 0.344939i \(-0.112100\pi\)
\(720\) 0 0
\(721\) −304.296 −0.422047
\(722\) 0 0
\(723\) 513.883 0.710764
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 152.843 0.210238 0.105119 0.994460i \(-0.466478\pi\)
0.105119 + 0.994460i \(0.466478\pi\)
\(728\) 0 0
\(729\) −89.3808 −0.122607
\(730\) 0 0
\(731\) − 47.9709i − 0.0656237i
\(732\) 0 0
\(733\) − 761.286i − 1.03859i −0.854595 0.519295i \(-0.826195\pi\)
0.854595 0.519295i \(-0.173805\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 159.619i − 0.216580i
\(738\) 0 0
\(739\) − 183.975i − 0.248951i −0.992223 0.124476i \(-0.960275\pi\)
0.992223 0.124476i \(-0.0397249\pi\)
\(740\) 0 0
\(741\) −16.8916 −0.0227957
\(742\) 0 0
\(743\) 495.247 0.666551 0.333275 0.942830i \(-0.391846\pi\)
0.333275 + 0.942830i \(0.391846\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −116.235 −0.155602
\(748\) 0 0
\(749\) −1030.13 −1.37534
\(750\) 0 0
\(751\) 800.059i 1.06533i 0.846328 + 0.532663i \(0.178809\pi\)
−0.846328 + 0.532663i \(0.821191\pi\)
\(752\) 0 0
\(753\) − 841.378i − 1.11737i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 276.367i 0.365082i 0.983198 + 0.182541i \(0.0584322\pi\)
−0.983198 + 0.182541i \(0.941568\pi\)
\(758\) 0 0
\(759\) − 110.111i − 0.145073i
\(760\) 0 0
\(761\) 891.207 1.17110 0.585550 0.810636i \(-0.300879\pi\)
0.585550 + 0.810636i \(0.300879\pi\)
\(762\) 0 0
\(763\) −1679.77 −2.20154
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −34.8740 −0.0454681
\(768\) 0 0
\(769\) 835.430 1.08639 0.543193 0.839608i \(-0.317215\pi\)
0.543193 + 0.839608i \(0.317215\pi\)
\(770\) 0 0
\(771\) 977.898i 1.26835i
\(772\) 0 0
\(773\) 213.522i 0.276225i 0.990417 + 0.138112i \(0.0441035\pi\)
−0.990417 + 0.138112i \(0.955897\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 853.050i 1.09788i
\(778\) 0 0
\(779\) 389.503i 0.500004i
\(780\) 0 0
\(781\) −70.7926 −0.0906436
\(782\) 0 0
\(783\) 93.1976 0.119026
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −370.182 −0.470371 −0.235185 0.971951i \(-0.575570\pi\)
−0.235185 + 0.971951i \(0.575570\pi\)
\(788\) 0 0
\(789\) 624.531 0.791547
\(790\) 0 0
\(791\) − 691.397i − 0.874080i
\(792\) 0 0
\(793\) 12.3406i 0.0155619i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 274.426i − 0.344323i −0.985069 0.172162i \(-0.944925\pi\)
0.985069 0.172162i \(-0.0550752\pi\)
\(798\) 0 0
\(799\) − 844.414i − 1.05684i
\(800\) 0 0
\(801\) −369.056 −0.460744
\(802\) 0 0
\(803\) −247.063 −0.307675
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 134.956 0.167232
\(808\) 0 0
\(809\) −665.214 −0.822266 −0.411133 0.911575i \(-0.634867\pi\)
−0.411133 + 0.911575i \(0.634867\pi\)
\(810\) 0 0
\(811\) 360.665i 0.444717i 0.974965 + 0.222358i \(0.0713755\pi\)
−0.974965 + 0.222358i \(0.928624\pi\)
\(812\) 0 0
\(813\) − 1137.27i − 1.39886i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 18.8854i − 0.0231156i
\(818\) 0 0
\(819\) 21.9773i 0.0268344i
\(820\) 0 0
\(821\) 666.899 0.812301 0.406151 0.913806i \(-0.366871\pi\)
0.406151 + 0.913806i \(0.366871\pi\)
\(822\) 0 0
\(823\) −122.433 −0.148764 −0.0743822 0.997230i \(-0.523698\pi\)
−0.0743822 + 0.997230i \(0.523698\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1532.98 1.85366 0.926832 0.375477i \(-0.122521\pi\)
0.926832 + 0.375477i \(0.122521\pi\)
\(828\) 0 0
\(829\) −195.475 −0.235796 −0.117898 0.993026i \(-0.537616\pi\)
−0.117898 + 0.993026i \(0.537616\pi\)
\(830\) 0 0
\(831\) − 1739.47i − 2.09322i
\(832\) 0 0
\(833\) − 558.053i − 0.669931i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 636.774i 0.760781i
\(838\) 0 0
\(839\) 1325.97i 1.58041i 0.612840 + 0.790207i \(0.290027\pi\)
−0.612840 + 0.790207i \(0.709973\pi\)
\(840\) 0 0
\(841\) −792.777 −0.942660
\(842\) 0 0
\(843\) 21.4532 0.0254487
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1001.85 1.18282
\(848\) 0 0
\(849\) −646.407 −0.761375
\(850\) 0 0
\(851\) 424.801i 0.499179i
\(852\) 0 0
\(853\) 1055.28i 1.23714i 0.785730 + 0.618570i \(0.212288\pi\)
−0.785730 + 0.618570i \(0.787712\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 155.378i 0.181304i 0.995883 + 0.0906521i \(0.0288951\pi\)
−0.995883 + 0.0906521i \(0.971105\pi\)
\(858\) 0 0
\(859\) 226.033i 0.263136i 0.991307 + 0.131568i \(0.0420011\pi\)
−0.991307 + 0.131568i \(0.957999\pi\)
\(860\) 0 0
\(861\) 1340.26 1.55664
\(862\) 0 0
\(863\) −930.702 −1.07845 −0.539225 0.842162i \(-0.681283\pi\)
−0.539225 + 0.842162i \(0.681283\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1071.51 1.23588
\(868\) 0 0
\(869\) 204.223 0.235009
\(870\) 0 0
\(871\) 41.9584i 0.0481727i
\(872\) 0 0
\(873\) − 214.328i − 0.245508i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 33.5217i 0.0382231i 0.999817 + 0.0191115i \(0.00608376\pi\)
−0.999817 + 0.0191115i \(0.993916\pi\)
\(878\) 0 0
\(879\) 102.178i 0.116244i
\(880\) 0 0
\(881\) −933.850 −1.05999 −0.529994 0.848001i \(-0.677806\pi\)
−0.529994 + 0.848001i \(0.677806\pi\)
\(882\) 0 0
\(883\) 542.308 0.614166 0.307083 0.951683i \(-0.400647\pi\)
0.307083 + 0.951683i \(0.400647\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −714.720 −0.805773 −0.402886 0.915250i \(-0.631993\pi\)
−0.402886 + 0.915250i \(0.631993\pi\)
\(888\) 0 0
\(889\) 15.7044 0.0176652
\(890\) 0 0
\(891\) 180.159i 0.202199i
\(892\) 0 0
\(893\) − 332.433i − 0.372266i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 28.9443i 0.0322679i
\(898\) 0 0
\(899\) 329.484i 0.366500i
\(900\) 0 0
\(901\) −516.932 −0.573731
\(902\) 0 0
\(903\) −64.9839 −0.0719645
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 347.233 0.382837 0.191418 0.981509i \(-0.438691\pi\)
0.191418 + 0.981509i \(0.438691\pi\)
\(908\) 0 0
\(909\) −546.604 −0.601324
\(910\) 0 0
\(911\) 1427.54i 1.56701i 0.621386 + 0.783504i \(0.286570\pi\)
−0.621386 + 0.783504i \(0.713430\pi\)
\(912\) 0 0
\(913\) 38.1517i 0.0417871i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 1919.15i − 2.09286i
\(918\) 0 0
\(919\) 569.162i 0.619327i 0.950846 + 0.309664i \(0.100216\pi\)
−0.950846 + 0.309664i \(0.899784\pi\)
\(920\) 0 0
\(921\) 449.017 0.487532
\(922\) 0 0
\(923\) 18.6089 0.0201614
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −195.750 −0.211165
\(928\) 0 0
\(929\) −1535.96 −1.65335 −0.826675 0.562680i \(-0.809770\pi\)
−0.826675 + 0.562680i \(0.809770\pi\)
\(930\) 0 0
\(931\) − 219.697i − 0.235980i
\(932\) 0 0
\(933\) − 463.489i − 0.496773i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 338.721i 0.361496i 0.983529 + 0.180748i \(0.0578518\pi\)
−0.983529 + 0.180748i \(0.942148\pi\)
\(938\) 0 0
\(939\) 835.210i 0.889468i
\(940\) 0 0
\(941\) −1439.77 −1.53004 −0.765022 0.644004i \(-0.777272\pi\)
−0.765022 + 0.644004i \(0.777272\pi\)
\(942\) 0 0
\(943\) 667.424 0.707766
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 656.135 0.692856 0.346428 0.938077i \(-0.387394\pi\)
0.346428 + 0.938077i \(0.387394\pi\)
\(948\) 0 0
\(949\) 64.9443 0.0684344
\(950\) 0 0
\(951\) 1395.62i 1.46752i
\(952\) 0 0
\(953\) − 436.675i − 0.458211i −0.973402 0.229105i \(-0.926420\pi\)
0.973402 0.229105i \(-0.0735801\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 47.4489i 0.0495809i
\(958\) 0 0
\(959\) − 449.423i − 0.468637i
\(960\) 0 0
\(961\) −1290.20 −1.34256
\(962\) 0 0
\(963\) −662.671 −0.688132
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 903.436 0.934267 0.467133 0.884187i \(-0.345287\pi\)
0.467133 + 0.884187i \(0.345287\pi\)
\(968\) 0 0
\(969\) 854.663 0.882005
\(970\) 0 0
\(971\) 1866.89i 1.92265i 0.275420 + 0.961324i \(0.411183\pi\)
−0.275420 + 0.961324i \(0.588817\pi\)
\(972\) 0 0
\(973\) − 1070.56i − 1.10026i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 1073.95i − 1.09923i −0.835418 0.549615i \(-0.814774\pi\)
0.835418 0.549615i \(-0.185226\pi\)
\(978\) 0 0
\(979\) 121.135i 0.123733i
\(980\) 0 0
\(981\) −1080.58 −1.10151
\(982\) 0 0
\(983\) 534.114 0.543351 0.271675 0.962389i \(-0.412422\pi\)
0.271675 + 0.962389i \(0.412422\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −1143.89 −1.15895
\(988\) 0 0
\(989\) −32.3607 −0.0327206
\(990\) 0 0
\(991\) 520.419i 0.525146i 0.964912 + 0.262573i \(0.0845710\pi\)
−0.964912 + 0.262573i \(0.915429\pi\)
\(992\) 0 0
\(993\) − 619.502i − 0.623869i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 457.680i − 0.459057i −0.973302 0.229528i \(-0.926282\pi\)
0.973302 0.229528i \(-0.0737184\pi\)
\(998\) 0 0
\(999\) − 353.781i − 0.354135i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1600.3.h.n.1599.1 8
4.3 odd 2 inner 1600.3.h.n.1599.8 8
5.2 odd 4 1600.3.b.s.1151.4 4
5.3 odd 4 320.3.b.c.191.1 4
5.4 even 2 inner 1600.3.h.n.1599.7 8
8.3 odd 2 100.3.d.b.99.5 8
8.5 even 2 100.3.d.b.99.3 8
15.8 even 4 2880.3.e.e.2431.3 4
20.3 even 4 320.3.b.c.191.4 4
20.7 even 4 1600.3.b.s.1151.1 4
20.19 odd 2 inner 1600.3.h.n.1599.2 8
24.5 odd 2 900.3.f.e.199.6 8
24.11 even 2 900.3.f.e.199.4 8
40.3 even 4 20.3.b.a.11.1 4
40.13 odd 4 20.3.b.a.11.2 yes 4
40.19 odd 2 100.3.d.b.99.4 8
40.27 even 4 100.3.b.f.51.4 4
40.29 even 2 100.3.d.b.99.6 8
40.37 odd 4 100.3.b.f.51.3 4
60.23 odd 4 2880.3.e.e.2431.4 4
80.3 even 4 1280.3.g.e.1151.2 8
80.13 odd 4 1280.3.g.e.1151.8 8
80.43 even 4 1280.3.g.e.1151.7 8
80.53 odd 4 1280.3.g.e.1151.1 8
120.29 odd 2 900.3.f.e.199.3 8
120.53 even 4 180.3.c.a.91.3 4
120.59 even 2 900.3.f.e.199.5 8
120.77 even 4 900.3.c.k.451.2 4
120.83 odd 4 180.3.c.a.91.4 4
120.107 odd 4 900.3.c.k.451.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.3.b.a.11.1 4 40.3 even 4
20.3.b.a.11.2 yes 4 40.13 odd 4
100.3.b.f.51.3 4 40.37 odd 4
100.3.b.f.51.4 4 40.27 even 4
100.3.d.b.99.3 8 8.5 even 2
100.3.d.b.99.4 8 40.19 odd 2
100.3.d.b.99.5 8 8.3 odd 2
100.3.d.b.99.6 8 40.29 even 2
180.3.c.a.91.3 4 120.53 even 4
180.3.c.a.91.4 4 120.83 odd 4
320.3.b.c.191.1 4 5.3 odd 4
320.3.b.c.191.4 4 20.3 even 4
900.3.c.k.451.1 4 120.107 odd 4
900.3.c.k.451.2 4 120.77 even 4
900.3.f.e.199.3 8 120.29 odd 2
900.3.f.e.199.4 8 24.11 even 2
900.3.f.e.199.5 8 120.59 even 2
900.3.f.e.199.6 8 24.5 odd 2
1280.3.g.e.1151.1 8 80.53 odd 4
1280.3.g.e.1151.2 8 80.3 even 4
1280.3.g.e.1151.7 8 80.43 even 4
1280.3.g.e.1151.8 8 80.13 odd 4
1600.3.b.s.1151.1 4 20.7 even 4
1600.3.b.s.1151.4 4 5.2 odd 4
1600.3.h.n.1599.1 8 1.1 even 1 trivial
1600.3.h.n.1599.2 8 20.19 odd 2 inner
1600.3.h.n.1599.7 8 5.4 even 2 inner
1600.3.h.n.1599.8 8 4.3 odd 2 inner
2880.3.e.e.2431.3 4 15.8 even 4
2880.3.e.e.2431.4 4 60.23 odd 4