Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1600,2,Mod(207,1600)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1600, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 1, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1600.207");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1600 = 2^{6} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1600.s (of order \(4\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(12.7760643234\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(i)\) |
Twist minimal: | no (minimal twist has level 400) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
207.1 | 0 | −3.25766 | 0 | 0 | 0 | 2.54012 | + | 2.54012i | 0 | 7.61238 | 0 | ||||||||||||||||
207.2 | 0 | −2.70780 | 0 | 0 | 0 | −1.60911 | − | 1.60911i | 0 | 4.33218 | 0 | ||||||||||||||||
207.3 | 0 | −2.35800 | 0 | 0 | 0 | −2.66357 | − | 2.66357i | 0 | 2.56018 | 0 | ||||||||||||||||
207.4 | 0 | −1.86755 | 0 | 0 | 0 | 0.719989 | + | 0.719989i | 0 | 0.487737 | 0 | ||||||||||||||||
207.5 | 0 | −0.790153 | 0 | 0 | 0 | −0.139907 | − | 0.139907i | 0 | −2.37566 | 0 | ||||||||||||||||
207.6 | 0 | −0.619018 | 0 | 0 | 0 | 1.82373 | + | 1.82373i | 0 | −2.61682 | 0 | ||||||||||||||||
207.7 | 0 | 0.619018 | 0 | 0 | 0 | −1.82373 | − | 1.82373i | 0 | −2.61682 | 0 | ||||||||||||||||
207.8 | 0 | 0.790153 | 0 | 0 | 0 | 0.139907 | + | 0.139907i | 0 | −2.37566 | 0 | ||||||||||||||||
207.9 | 0 | 1.86755 | 0 | 0 | 0 | −0.719989 | − | 0.719989i | 0 | 0.487737 | 0 | ||||||||||||||||
207.10 | 0 | 2.35800 | 0 | 0 | 0 | 2.66357 | + | 2.66357i | 0 | 2.56018 | 0 | ||||||||||||||||
207.11 | 0 | 2.70780 | 0 | 0 | 0 | 1.60911 | + | 1.60911i | 0 | 4.33218 | 0 | ||||||||||||||||
207.12 | 0 | 3.25766 | 0 | 0 | 0 | −2.54012 | − | 2.54012i | 0 | 7.61238 | 0 | ||||||||||||||||
943.1 | 0 | −3.25766 | 0 | 0 | 0 | 2.54012 | − | 2.54012i | 0 | 7.61238 | 0 | ||||||||||||||||
943.2 | 0 | −2.70780 | 0 | 0 | 0 | −1.60911 | + | 1.60911i | 0 | 4.33218 | 0 | ||||||||||||||||
943.3 | 0 | −2.35800 | 0 | 0 | 0 | −2.66357 | + | 2.66357i | 0 | 2.56018 | 0 | ||||||||||||||||
943.4 | 0 | −1.86755 | 0 | 0 | 0 | 0.719989 | − | 0.719989i | 0 | 0.487737 | 0 | ||||||||||||||||
943.5 | 0 | −0.790153 | 0 | 0 | 0 | −0.139907 | + | 0.139907i | 0 | −2.37566 | 0 | ||||||||||||||||
943.6 | 0 | −0.619018 | 0 | 0 | 0 | 1.82373 | − | 1.82373i | 0 | −2.61682 | 0 | ||||||||||||||||
943.7 | 0 | 0.619018 | 0 | 0 | 0 | −1.82373 | + | 1.82373i | 0 | −2.61682 | 0 | ||||||||||||||||
943.8 | 0 | 0.790153 | 0 | 0 | 0 | 0.139907 | − | 0.139907i | 0 | −2.37566 | 0 | ||||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
80.j | even | 4 | 1 | inner |
80.s | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1600.2.s.e | 24 | |
4.b | odd | 2 | 1 | 400.2.s.e | yes | 24 | |
5.b | even | 2 | 1 | inner | 1600.2.s.e | 24 | |
5.c | odd | 4 | 2 | 1600.2.j.e | 24 | ||
16.e | even | 4 | 1 | 400.2.j.e | ✓ | 24 | |
16.f | odd | 4 | 1 | 1600.2.j.e | 24 | ||
20.d | odd | 2 | 1 | 400.2.s.e | yes | 24 | |
20.e | even | 4 | 2 | 400.2.j.e | ✓ | 24 | |
80.i | odd | 4 | 1 | 400.2.s.e | yes | 24 | |
80.j | even | 4 | 1 | inner | 1600.2.s.e | 24 | |
80.k | odd | 4 | 1 | 1600.2.j.e | 24 | ||
80.q | even | 4 | 1 | 400.2.j.e | ✓ | 24 | |
80.s | even | 4 | 1 | inner | 1600.2.s.e | 24 | |
80.t | odd | 4 | 1 | 400.2.s.e | yes | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
400.2.j.e | ✓ | 24 | 16.e | even | 4 | 1 | |
400.2.j.e | ✓ | 24 | 20.e | even | 4 | 2 | |
400.2.j.e | ✓ | 24 | 80.q | even | 4 | 1 | |
400.2.s.e | yes | 24 | 4.b | odd | 2 | 1 | |
400.2.s.e | yes | 24 | 20.d | odd | 2 | 1 | |
400.2.s.e | yes | 24 | 80.i | odd | 4 | 1 | |
400.2.s.e | yes | 24 | 80.t | odd | 4 | 1 | |
1600.2.j.e | 24 | 5.c | odd | 4 | 2 | ||
1600.2.j.e | 24 | 16.f | odd | 4 | 1 | ||
1600.2.j.e | 24 | 80.k | odd | 4 | 1 | ||
1600.2.s.e | 24 | 1.a | even | 1 | 1 | trivial | |
1600.2.s.e | 24 | 5.b | even | 2 | 1 | inner | |
1600.2.s.e | 24 | 80.j | even | 4 | 1 | inner | |
1600.2.s.e | 24 | 80.s | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{12} - 28T_{3}^{10} + 287T_{3}^{8} - 1320T_{3}^{6} + 2631T_{3}^{4} - 1772T_{3}^{2} + 361 \) acting on \(S_{2}^{\mathrm{new}}(1600, [\chi])\).