Properties

Label 160.5.p.f.33.2
Level $160$
Weight $5$
Character 160.33
Analytic conductor $16.539$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [160,5,Mod(33,160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("160.33"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(160, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 160.p (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,24,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.5391940934\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 10 x^{10} + 68 x^{9} - 52 x^{8} - 784 x^{7} + 960 x^{6} + 3824 x^{5} - 13583 x^{4} + \cdots + 348466 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{24}\cdot 5^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 33.2
Root \(2.66185 - 2.69040i\) of defining polynomial
Character \(\chi\) \(=\) 160.33
Dual form 160.5.p.f.97.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.86997 - 5.86997i) q^{3} +(-23.6674 - 8.05314i) q^{5} +(9.78913 - 9.78913i) q^{7} -12.0869i q^{9} -49.7874 q^{11} +(-136.672 - 136.672i) q^{13} +(91.6554 + 186.199i) q^{15} +(19.1608 - 19.1608i) q^{17} +491.764i q^{19} -114.924 q^{21} +(454.416 + 454.416i) q^{23} +(495.294 + 381.194i) q^{25} +(-546.417 + 546.417i) q^{27} +342.763i q^{29} +160.245 q^{31} +(292.251 + 292.251i) q^{33} +(-310.517 + 152.850i) q^{35} +(741.212 - 741.212i) q^{37} +1604.53i q^{39} -291.713 q^{41} +(1589.69 + 1589.69i) q^{43} +(-97.3375 + 286.066i) q^{45} +(-1207.70 + 1207.70i) q^{47} +2209.35i q^{49} -224.947 q^{51} +(-3161.17 - 3161.17i) q^{53} +(1178.34 + 400.945i) q^{55} +(2886.64 - 2886.64i) q^{57} +3690.87i q^{59} -6470.44 q^{61} +(-118.320 - 118.320i) q^{63} +(2134.04 + 4335.33i) q^{65} +(4986.29 - 4986.29i) q^{67} -5334.82i q^{69} -6846.84 q^{71} +(2339.13 + 2339.13i) q^{73} +(-669.761 - 5144.96i) q^{75} +(-487.376 + 487.376i) q^{77} -8853.82i q^{79} +5435.87 q^{81} +(-4024.59 - 4024.59i) q^{83} +(-607.792 + 299.183i) q^{85} +(2012.01 - 2012.01i) q^{87} +9329.05i q^{89} -2675.81 q^{91} +(-940.632 - 940.632i) q^{93} +(3960.24 - 11638.8i) q^{95} +(2598.26 - 2598.26i) q^{97} +601.776i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 24 q^{5} + 48 q^{7} + 320 q^{11} + 260 q^{13} - 592 q^{15} - 60 q^{17} - 400 q^{21} - 176 q^{23} + 836 q^{25} + 2208 q^{27} - 480 q^{31} - 3120 q^{33} + 2208 q^{35} - 500 q^{37} + 2160 q^{41} + 3744 q^{43}+ \cdots + 36460 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.86997 5.86997i −0.652219 0.652219i 0.301308 0.953527i \(-0.402577\pi\)
−0.953527 + 0.301308i \(0.902577\pi\)
\(4\) 0 0
\(5\) −23.6674 8.05314i −0.946697 0.322126i
\(6\) 0 0
\(7\) 9.78913 9.78913i 0.199778 0.199778i −0.600127 0.799905i \(-0.704883\pi\)
0.799905 + 0.600127i \(0.204883\pi\)
\(8\) 0 0
\(9\) 12.0869i 0.149221i
\(10\) 0 0
\(11\) −49.7874 −0.411466 −0.205733 0.978608i \(-0.565958\pi\)
−0.205733 + 0.978608i \(0.565958\pi\)
\(12\) 0 0
\(13\) −136.672 136.672i −0.808713 0.808713i 0.175726 0.984439i \(-0.443773\pi\)
−0.984439 + 0.175726i \(0.943773\pi\)
\(14\) 0 0
\(15\) 91.6554 + 186.199i 0.407357 + 0.827550i
\(16\) 0 0
\(17\) 19.1608 19.1608i 0.0663005 0.0663005i −0.673179 0.739480i \(-0.735072\pi\)
0.739480 + 0.673179i \(0.235072\pi\)
\(18\) 0 0
\(19\) 491.764i 1.36223i 0.732178 + 0.681113i \(0.238504\pi\)
−0.732178 + 0.681113i \(0.761496\pi\)
\(20\) 0 0
\(21\) −114.924 −0.260598
\(22\) 0 0
\(23\) 454.416 + 454.416i 0.859010 + 0.859010i 0.991222 0.132211i \(-0.0422078\pi\)
−0.132211 + 0.991222i \(0.542208\pi\)
\(24\) 0 0
\(25\) 495.294 + 381.194i 0.792470 + 0.609911i
\(26\) 0 0
\(27\) −546.417 + 546.417i −0.749544 + 0.749544i
\(28\) 0 0
\(29\) 342.763i 0.407566i 0.979016 + 0.203783i \(0.0653238\pi\)
−0.979016 + 0.203783i \(0.934676\pi\)
\(30\) 0 0
\(31\) 160.245 0.166748 0.0833740 0.996518i \(-0.473430\pi\)
0.0833740 + 0.996518i \(0.473430\pi\)
\(32\) 0 0
\(33\) 292.251 + 292.251i 0.268366 + 0.268366i
\(34\) 0 0
\(35\) −310.517 + 152.850i −0.253483 + 0.124776i
\(36\) 0 0
\(37\) 741.212 741.212i 0.541426 0.541426i −0.382521 0.923947i \(-0.624944\pi\)
0.923947 + 0.382521i \(0.124944\pi\)
\(38\) 0 0
\(39\) 1604.53i 1.05492i
\(40\) 0 0
\(41\) −291.713 −0.173536 −0.0867678 0.996229i \(-0.527654\pi\)
−0.0867678 + 0.996229i \(0.527654\pi\)
\(42\) 0 0
\(43\) 1589.69 + 1589.69i 0.859759 + 0.859759i 0.991309 0.131551i \(-0.0419956\pi\)
−0.131551 + 0.991309i \(0.541996\pi\)
\(44\) 0 0
\(45\) −97.3375 + 286.066i −0.0480679 + 0.141267i
\(46\) 0 0
\(47\) −1207.70 + 1207.70i −0.546718 + 0.546718i −0.925490 0.378772i \(-0.876346\pi\)
0.378772 + 0.925490i \(0.376346\pi\)
\(48\) 0 0
\(49\) 2209.35i 0.920177i
\(50\) 0 0
\(51\) −224.947 −0.0864848
\(52\) 0 0
\(53\) −3161.17 3161.17i −1.12537 1.12537i −0.990920 0.134450i \(-0.957073\pi\)
−0.134450 0.990920i \(-0.542927\pi\)
\(54\) 0 0
\(55\) 1178.34 + 400.945i 0.389534 + 0.132544i
\(56\) 0 0
\(57\) 2886.64 2886.64i 0.888470 0.888470i
\(58\) 0 0
\(59\) 3690.87i 1.06029i 0.847907 + 0.530146i \(0.177863\pi\)
−0.847907 + 0.530146i \(0.822137\pi\)
\(60\) 0 0
\(61\) −6470.44 −1.73890 −0.869449 0.494022i \(-0.835526\pi\)
−0.869449 + 0.494022i \(0.835526\pi\)
\(62\) 0 0
\(63\) −118.320 118.320i −0.0298111 0.0298111i
\(64\) 0 0
\(65\) 2134.04 + 4335.33i 0.505099 + 1.02611i
\(66\) 0 0
\(67\) 4986.29 4986.29i 1.11078 1.11078i 0.117735 0.993045i \(-0.462437\pi\)
0.993045 0.117735i \(-0.0375632\pi\)
\(68\) 0 0
\(69\) 5334.82i 1.12053i
\(70\) 0 0
\(71\) −6846.84 −1.35823 −0.679115 0.734032i \(-0.737636\pi\)
−0.679115 + 0.734032i \(0.737636\pi\)
\(72\) 0 0
\(73\) 2339.13 + 2339.13i 0.438943 + 0.438943i 0.891656 0.452713i \(-0.149544\pi\)
−0.452713 + 0.891656i \(0.649544\pi\)
\(74\) 0 0
\(75\) −669.761 5144.96i −0.119069 0.914659i
\(76\) 0 0
\(77\) −487.376 + 487.376i −0.0822020 + 0.0822020i
\(78\) 0 0
\(79\) 8853.82i 1.41865i −0.704879 0.709327i \(-0.748999\pi\)
0.704879 0.709327i \(-0.251001\pi\)
\(80\) 0 0
\(81\) 5435.87 0.828512
\(82\) 0 0
\(83\) −4024.59 4024.59i −0.584206 0.584206i 0.351851 0.936056i \(-0.385553\pi\)
−0.936056 + 0.351851i \(0.885553\pi\)
\(84\) 0 0
\(85\) −607.792 + 299.183i −0.0841235 + 0.0414094i
\(86\) 0 0
\(87\) 2012.01 2012.01i 0.265822 0.265822i
\(88\) 0 0
\(89\) 9329.05i 1.17776i 0.808220 + 0.588881i \(0.200431\pi\)
−0.808220 + 0.588881i \(0.799569\pi\)
\(90\) 0 0
\(91\) −2675.81 −0.323126
\(92\) 0 0
\(93\) −940.632 940.632i −0.108756 0.108756i
\(94\) 0 0
\(95\) 3960.24 11638.8i 0.438808 1.28962i
\(96\) 0 0
\(97\) 2598.26 2598.26i 0.276146 0.276146i −0.555422 0.831568i \(-0.687443\pi\)
0.831568 + 0.555422i \(0.187443\pi\)
\(98\) 0 0
\(99\) 601.776i 0.0613994i
\(100\) 0 0
\(101\) 3327.69 0.326212 0.163106 0.986609i \(-0.447849\pi\)
0.163106 + 0.986609i \(0.447849\pi\)
\(102\) 0 0
\(103\) 8137.26 + 8137.26i 0.767014 + 0.767014i 0.977580 0.210565i \(-0.0675305\pi\)
−0.210565 + 0.977580i \(0.567530\pi\)
\(104\) 0 0
\(105\) 2719.95 + 925.498i 0.246708 + 0.0839454i
\(106\) 0 0
\(107\) 3124.52 3124.52i 0.272908 0.272908i −0.557362 0.830270i \(-0.688186\pi\)
0.830270 + 0.557362i \(0.188186\pi\)
\(108\) 0 0
\(109\) 2631.32i 0.221473i 0.993850 + 0.110737i \(0.0353210\pi\)
−0.993850 + 0.110737i \(0.964679\pi\)
\(110\) 0 0
\(111\) −8701.78 −0.706256
\(112\) 0 0
\(113\) −2336.40 2336.40i −0.182974 0.182974i 0.609676 0.792651i \(-0.291299\pi\)
−0.792651 + 0.609676i \(0.791299\pi\)
\(114\) 0 0
\(115\) −7095.38 14414.3i −0.536513 1.08993i
\(116\) 0 0
\(117\) −1651.95 + 1651.95i −0.120677 + 0.120677i
\(118\) 0 0
\(119\) 375.136i 0.0264908i
\(120\) 0 0
\(121\) −12162.2 −0.830695
\(122\) 0 0
\(123\) 1712.35 + 1712.35i 0.113183 + 0.113183i
\(124\) 0 0
\(125\) −8652.52 13010.6i −0.553761 0.832676i
\(126\) 0 0
\(127\) 6166.99 6166.99i 0.382354 0.382354i −0.489596 0.871950i \(-0.662856\pi\)
0.871950 + 0.489596i \(0.162856\pi\)
\(128\) 0 0
\(129\) 18662.9i 1.12150i
\(130\) 0 0
\(131\) −20224.9 −1.17854 −0.589268 0.807938i \(-0.700584\pi\)
−0.589268 + 0.807938i \(0.700584\pi\)
\(132\) 0 0
\(133\) 4813.94 + 4813.94i 0.272143 + 0.272143i
\(134\) 0 0
\(135\) 17332.7 8531.91i 0.951038 0.468143i
\(136\) 0 0
\(137\) −12087.7 + 12087.7i −0.644026 + 0.644026i −0.951543 0.307517i \(-0.900502\pi\)
0.307517 + 0.951543i \(0.400502\pi\)
\(138\) 0 0
\(139\) 26395.0i 1.36613i 0.730357 + 0.683066i \(0.239354\pi\)
−0.730357 + 0.683066i \(0.760646\pi\)
\(140\) 0 0
\(141\) 14178.3 0.713160
\(142\) 0 0
\(143\) 6804.57 + 6804.57i 0.332758 + 0.332758i
\(144\) 0 0
\(145\) 2760.32 8112.32i 0.131288 0.385842i
\(146\) 0 0
\(147\) 12968.8 12968.8i 0.600157 0.600157i
\(148\) 0 0
\(149\) 5424.74i 0.244347i −0.992509 0.122173i \(-0.961014\pi\)
0.992509 0.122173i \(-0.0389864\pi\)
\(150\) 0 0
\(151\) −35373.8 −1.55141 −0.775707 0.631093i \(-0.782607\pi\)
−0.775707 + 0.631093i \(0.782607\pi\)
\(152\) 0 0
\(153\) −231.595 231.595i −0.00989342 0.00989342i
\(154\) 0 0
\(155\) −3792.58 1290.47i −0.157860 0.0537138i
\(156\) 0 0
\(157\) −25285.4 + 25285.4i −1.02582 + 1.02582i −0.0261610 + 0.999658i \(0.508328\pi\)
−0.999658 + 0.0261610i \(0.991672\pi\)
\(158\) 0 0
\(159\) 37111.9i 1.46798i
\(160\) 0 0
\(161\) 8896.68 0.343223
\(162\) 0 0
\(163\) 34060.2 + 34060.2i 1.28195 + 1.28195i 0.939554 + 0.342400i \(0.111240\pi\)
0.342400 + 0.939554i \(0.388760\pi\)
\(164\) 0 0
\(165\) −4563.29 9270.36i −0.167614 0.340509i
\(166\) 0 0
\(167\) −15449.9 + 15449.9i −0.553978 + 0.553978i −0.927586 0.373609i \(-0.878120\pi\)
0.373609 + 0.927586i \(0.378120\pi\)
\(168\) 0 0
\(169\) 8797.71i 0.308032i
\(170\) 0 0
\(171\) 5943.89 0.203273
\(172\) 0 0
\(173\) 33327.6 + 33327.6i 1.11355 + 1.11355i 0.992666 + 0.120889i \(0.0385745\pi\)
0.120889 + 0.992666i \(0.461426\pi\)
\(174\) 0 0
\(175\) 8580.06 1116.94i 0.280165 0.0364714i
\(176\) 0 0
\(177\) 21665.3 21665.3i 0.691542 0.691542i
\(178\) 0 0
\(179\) 57241.9i 1.78652i 0.449539 + 0.893261i \(0.351588\pi\)
−0.449539 + 0.893261i \(0.648412\pi\)
\(180\) 0 0
\(181\) 59471.5 1.81531 0.907657 0.419712i \(-0.137869\pi\)
0.907657 + 0.419712i \(0.137869\pi\)
\(182\) 0 0
\(183\) 37981.3 + 37981.3i 1.13414 + 1.13414i
\(184\) 0 0
\(185\) −23511.6 + 11573.5i −0.686973 + 0.338159i
\(186\) 0 0
\(187\) −953.969 + 953.969i −0.0272804 + 0.0272804i
\(188\) 0 0
\(189\) 10697.9i 0.299485i
\(190\) 0 0
\(191\) −45377.5 −1.24387 −0.621934 0.783070i \(-0.713653\pi\)
−0.621934 + 0.783070i \(0.713653\pi\)
\(192\) 0 0
\(193\) −31631.1 31631.1i −0.849181 0.849181i 0.140850 0.990031i \(-0.455016\pi\)
−0.990031 + 0.140850i \(0.955016\pi\)
\(194\) 0 0
\(195\) 12921.5 37975.0i 0.339815 0.998685i
\(196\) 0 0
\(197\) −3453.09 + 3453.09i −0.0889766 + 0.0889766i −0.750194 0.661218i \(-0.770040\pi\)
0.661218 + 0.750194i \(0.270040\pi\)
\(198\) 0 0
\(199\) 10928.2i 0.275959i 0.990435 + 0.137979i \(0.0440608\pi\)
−0.990435 + 0.137979i \(0.955939\pi\)
\(200\) 0 0
\(201\) −58538.7 −1.44894
\(202\) 0 0
\(203\) 3355.36 + 3355.36i 0.0814229 + 0.0814229i
\(204\) 0 0
\(205\) 6904.10 + 2349.21i 0.164286 + 0.0559002i
\(206\) 0 0
\(207\) 5492.48 5492.48i 0.128182 0.128182i
\(208\) 0 0
\(209\) 24483.7i 0.560510i
\(210\) 0 0
\(211\) −27715.9 −0.622536 −0.311268 0.950322i \(-0.600754\pi\)
−0.311268 + 0.950322i \(0.600754\pi\)
\(212\) 0 0
\(213\) 40190.7 + 40190.7i 0.885863 + 0.885863i
\(214\) 0 0
\(215\) −24821.9 50426.0i −0.536981 1.09088i
\(216\) 0 0
\(217\) 1568.66 1568.66i 0.0333126 0.0333126i
\(218\) 0 0
\(219\) 27461.2i 0.572573i
\(220\) 0 0
\(221\) −5237.51 −0.107236
\(222\) 0 0
\(223\) 9091.56 + 9091.56i 0.182822 + 0.182822i 0.792584 0.609762i \(-0.208735\pi\)
−0.609762 + 0.792584i \(0.708735\pi\)
\(224\) 0 0
\(225\) 4607.45 5986.56i 0.0910114 0.118253i
\(226\) 0 0
\(227\) −8020.36 + 8020.36i −0.155647 + 0.155647i −0.780635 0.624987i \(-0.785104\pi\)
0.624987 + 0.780635i \(0.285104\pi\)
\(228\) 0 0
\(229\) 48238.0i 0.919853i −0.887957 0.459927i \(-0.847876\pi\)
0.887957 0.459927i \(-0.152124\pi\)
\(230\) 0 0
\(231\) 5721.76 0.107227
\(232\) 0 0
\(233\) −45097.1 45097.1i −0.830685 0.830685i 0.156925 0.987610i \(-0.449842\pi\)
−0.987610 + 0.156925i \(0.949842\pi\)
\(234\) 0 0
\(235\) 38308.9 18857.4i 0.693688 0.341464i
\(236\) 0 0
\(237\) −51971.7 + 51971.7i −0.925274 + 0.925274i
\(238\) 0 0
\(239\) 6916.36i 0.121083i 0.998166 + 0.0605413i \(0.0192827\pi\)
−0.998166 + 0.0605413i \(0.980717\pi\)
\(240\) 0 0
\(241\) −38121.8 −0.656355 −0.328177 0.944616i \(-0.606434\pi\)
−0.328177 + 0.944616i \(0.606434\pi\)
\(242\) 0 0
\(243\) 12351.4 + 12351.4i 0.209172 + 0.209172i
\(244\) 0 0
\(245\) 17792.2 52289.5i 0.296413 0.871129i
\(246\) 0 0
\(247\) 67210.5 67210.5i 1.10165 1.10165i
\(248\) 0 0
\(249\) 47248.5i 0.762060i
\(250\) 0 0
\(251\) −124349. −1.97375 −0.986877 0.161472i \(-0.948376\pi\)
−0.986877 + 0.161472i \(0.948376\pi\)
\(252\) 0 0
\(253\) −22624.2 22624.2i −0.353454 0.353454i
\(254\) 0 0
\(255\) 5323.92 + 1811.53i 0.0818749 + 0.0278590i
\(256\) 0 0
\(257\) 84312.6 84312.6i 1.27652 1.27652i 0.333912 0.942604i \(-0.391631\pi\)
0.942604 0.333912i \(-0.108369\pi\)
\(258\) 0 0
\(259\) 14511.6i 0.216330i
\(260\) 0 0
\(261\) 4142.94 0.0608174
\(262\) 0 0
\(263\) −54700.1 54700.1i −0.790818 0.790818i 0.190809 0.981627i \(-0.438889\pi\)
−0.981627 + 0.190809i \(0.938889\pi\)
\(264\) 0 0
\(265\) 49359.3 + 100274.i 0.702874 + 1.42790i
\(266\) 0 0
\(267\) 54761.3 54761.3i 0.768159 0.768159i
\(268\) 0 0
\(269\) 73699.2i 1.01849i 0.860621 + 0.509246i \(0.170076\pi\)
−0.860621 + 0.509246i \(0.829924\pi\)
\(270\) 0 0
\(271\) 78168.3 1.06437 0.532185 0.846628i \(-0.321371\pi\)
0.532185 + 0.846628i \(0.321371\pi\)
\(272\) 0 0
\(273\) 15706.9 + 15706.9i 0.210749 + 0.210749i
\(274\) 0 0
\(275\) −24659.4 18978.7i −0.326075 0.250958i
\(276\) 0 0
\(277\) 65009.6 65009.6i 0.847263 0.847263i −0.142528 0.989791i \(-0.545523\pi\)
0.989791 + 0.142528i \(0.0455231\pi\)
\(278\) 0 0
\(279\) 1936.86i 0.0248823i
\(280\) 0 0
\(281\) −11459.2 −0.145125 −0.0725625 0.997364i \(-0.523118\pi\)
−0.0725625 + 0.997364i \(0.523118\pi\)
\(282\) 0 0
\(283\) −28206.9 28206.9i −0.352194 0.352194i 0.508731 0.860925i \(-0.330115\pi\)
−0.860925 + 0.508731i \(0.830115\pi\)
\(284\) 0 0
\(285\) −91565.8 + 45072.8i −1.12731 + 0.554913i
\(286\) 0 0
\(287\) −2855.62 + 2855.62i −0.0346686 + 0.0346686i
\(288\) 0 0
\(289\) 82786.7i 0.991208i
\(290\) 0 0
\(291\) −30503.4 −0.360215
\(292\) 0 0
\(293\) −22836.5 22836.5i −0.266008 0.266008i 0.561481 0.827489i \(-0.310232\pi\)
−0.827489 + 0.561481i \(0.810232\pi\)
\(294\) 0 0
\(295\) 29723.1 87353.5i 0.341547 1.00377i
\(296\) 0 0
\(297\) 27204.7 27204.7i 0.308412 0.308412i
\(298\) 0 0
\(299\) 124212.i 1.38938i
\(300\) 0 0
\(301\) 31123.5 0.343522
\(302\) 0 0
\(303\) −19533.5 19533.5i −0.212762 0.212762i
\(304\) 0 0
\(305\) 153139. + 52107.4i 1.64621 + 0.560144i
\(306\) 0 0
\(307\) −8529.02 + 8529.02i −0.0904946 + 0.0904946i −0.750905 0.660410i \(-0.770382\pi\)
0.660410 + 0.750905i \(0.270382\pi\)
\(308\) 0 0
\(309\) 95530.9i 1.00052i
\(310\) 0 0
\(311\) −105916. −1.09507 −0.547533 0.836784i \(-0.684433\pi\)
−0.547533 + 0.836784i \(0.684433\pi\)
\(312\) 0 0
\(313\) −10898.7 10898.7i −0.111246 0.111246i 0.649293 0.760539i \(-0.275065\pi\)
−0.760539 + 0.649293i \(0.775065\pi\)
\(314\) 0 0
\(315\) 1847.49 + 3753.18i 0.0186192 + 0.0378250i
\(316\) 0 0
\(317\) −109920. + 109920.i −1.09385 + 1.09385i −0.0987371 + 0.995114i \(0.531480\pi\)
−0.995114 + 0.0987371i \(0.968520\pi\)
\(318\) 0 0
\(319\) 17065.3i 0.167700i
\(320\) 0 0
\(321\) −36681.7 −0.355991
\(322\) 0 0
\(323\) 9422.60 + 9422.60i 0.0903162 + 0.0903162i
\(324\) 0 0
\(325\) −15594.3 119792.i −0.147638 1.13412i
\(326\) 0 0
\(327\) 15445.8 15445.8i 0.144449 0.144449i
\(328\) 0 0
\(329\) 23644.7i 0.218445i
\(330\) 0 0
\(331\) 203372. 1.85624 0.928120 0.372281i \(-0.121424\pi\)
0.928120 + 0.372281i \(0.121424\pi\)
\(332\) 0 0
\(333\) −8958.95 8958.95i −0.0807920 0.0807920i
\(334\) 0 0
\(335\) −158168. + 77857.3i −1.40938 + 0.693761i
\(336\) 0 0
\(337\) 65706.7 65706.7i 0.578562 0.578562i −0.355945 0.934507i \(-0.615841\pi\)
0.934507 + 0.355945i \(0.115841\pi\)
\(338\) 0 0
\(339\) 27429.2i 0.238679i
\(340\) 0 0
\(341\) −7978.18 −0.0686112
\(342\) 0 0
\(343\) 45131.3 + 45131.3i 0.383610 + 0.383610i
\(344\) 0 0
\(345\) −42962.1 + 126261.i −0.360950 + 1.06080i
\(346\) 0 0
\(347\) −163409. + 163409.i −1.35712 + 1.35712i −0.479669 + 0.877450i \(0.659243\pi\)
−0.877450 + 0.479669i \(0.840757\pi\)
\(348\) 0 0
\(349\) 88734.9i 0.728523i −0.931297 0.364262i \(-0.881321\pi\)
0.931297 0.364262i \(-0.118679\pi\)
\(350\) 0 0
\(351\) 149360. 1.21233
\(352\) 0 0
\(353\) −55238.6 55238.6i −0.443296 0.443296i 0.449822 0.893118i \(-0.351487\pi\)
−0.893118 + 0.449822i \(0.851487\pi\)
\(354\) 0 0
\(355\) 162047. + 55138.5i 1.28583 + 0.437521i
\(356\) 0 0
\(357\) −2202.04 + 2202.04i −0.0172778 + 0.0172778i
\(358\) 0 0
\(359\) 185465.i 1.43904i 0.694472 + 0.719520i \(0.255638\pi\)
−0.694472 + 0.719520i \(0.744362\pi\)
\(360\) 0 0
\(361\) −111510. −0.855660
\(362\) 0 0
\(363\) 71391.8 + 71391.8i 0.541795 + 0.541795i
\(364\) 0 0
\(365\) −36523.8 74198.4i −0.274151 0.556940i
\(366\) 0 0
\(367\) −46321.2 + 46321.2i −0.343913 + 0.343913i −0.857836 0.513923i \(-0.828192\pi\)
0.513923 + 0.857836i \(0.328192\pi\)
\(368\) 0 0
\(369\) 3525.91i 0.0258951i
\(370\) 0 0
\(371\) −61890.2 −0.449649
\(372\) 0 0
\(373\) 13254.6 + 13254.6i 0.0952685 + 0.0952685i 0.753135 0.657866i \(-0.228541\pi\)
−0.657866 + 0.753135i \(0.728541\pi\)
\(374\) 0 0
\(375\) −25581.6 + 127162.i −0.181913 + 0.904260i
\(376\) 0 0
\(377\) 46846.3 46846.3i 0.329604 0.329604i
\(378\) 0 0
\(379\) 22044.3i 0.153468i −0.997052 0.0767339i \(-0.975551\pi\)
0.997052 0.0767339i \(-0.0244492\pi\)
\(380\) 0 0
\(381\) −72400.1 −0.498757
\(382\) 0 0
\(383\) −85971.7 85971.7i −0.586082 0.586082i 0.350486 0.936568i \(-0.386016\pi\)
−0.936568 + 0.350486i \(0.886016\pi\)
\(384\) 0 0
\(385\) 15459.8 7610.02i 0.104300 0.0513410i
\(386\) 0 0
\(387\) 19214.5 19214.5i 0.128294 0.128294i
\(388\) 0 0
\(389\) 87723.7i 0.579719i −0.957069 0.289860i \(-0.906391\pi\)
0.957069 0.289860i \(-0.0936086\pi\)
\(390\) 0 0
\(391\) 17414.0 0.113906
\(392\) 0 0
\(393\) 118719. + 118719.i 0.768663 + 0.768663i
\(394\) 0 0
\(395\) −71301.1 + 209547.i −0.456985 + 1.34304i
\(396\) 0 0
\(397\) −109959. + 109959.i −0.697672 + 0.697672i −0.963908 0.266236i \(-0.914220\pi\)
0.266236 + 0.963908i \(0.414220\pi\)
\(398\) 0 0
\(399\) 56515.4i 0.354994i
\(400\) 0 0
\(401\) 185829. 1.15565 0.577823 0.816162i \(-0.303903\pi\)
0.577823 + 0.816162i \(0.303903\pi\)
\(402\) 0 0
\(403\) −21901.0 21901.0i −0.134851 0.134851i
\(404\) 0 0
\(405\) −128653. 43775.8i −0.784350 0.266885i
\(406\) 0 0
\(407\) −36903.0 + 36903.0i −0.222778 + 0.222778i
\(408\) 0 0
\(409\) 292244.i 1.74702i 0.486804 + 0.873511i \(0.338163\pi\)
−0.486804 + 0.873511i \(0.661837\pi\)
\(410\) 0 0
\(411\) 141909. 0.840091
\(412\) 0 0
\(413\) 36130.5 + 36130.5i 0.211823 + 0.211823i
\(414\) 0 0
\(415\) 62841.1 + 127662.i 0.364878 + 0.741253i
\(416\) 0 0
\(417\) 154938. 154938.i 0.891017 0.891017i
\(418\) 0 0
\(419\) 16893.3i 0.0962250i −0.998842 0.0481125i \(-0.984679\pi\)
0.998842 0.0481125i \(-0.0153206\pi\)
\(420\) 0 0
\(421\) 189191. 1.06742 0.533711 0.845667i \(-0.320797\pi\)
0.533711 + 0.845667i \(0.320797\pi\)
\(422\) 0 0
\(423\) 14597.3 + 14597.3i 0.0815818 + 0.0815818i
\(424\) 0 0
\(425\) 16794.2 2186.24i 0.0929785 0.0121038i
\(426\) 0 0
\(427\) −63340.0 + 63340.0i −0.347394 + 0.347394i
\(428\) 0 0
\(429\) 79885.3i 0.434062i
\(430\) 0 0
\(431\) 142307. 0.766078 0.383039 0.923732i \(-0.374877\pi\)
0.383039 + 0.923732i \(0.374877\pi\)
\(432\) 0 0
\(433\) −26214.7 26214.7i −0.139820 0.139820i 0.633732 0.773552i \(-0.281522\pi\)
−0.773552 + 0.633732i \(0.781522\pi\)
\(434\) 0 0
\(435\) −63822.1 + 31416.1i −0.337282 + 0.166025i
\(436\) 0 0
\(437\) −223465. + 223465.i −1.17017 + 1.17017i
\(438\) 0 0
\(439\) 992.994i 0.00515250i 0.999997 + 0.00257625i \(0.000820046\pi\)
−0.999997 + 0.00257625i \(0.999180\pi\)
\(440\) 0 0
\(441\) 26704.1 0.137310
\(442\) 0 0
\(443\) −178707. 178707.i −0.910616 0.910616i 0.0857046 0.996321i \(-0.472686\pi\)
−0.996321 + 0.0857046i \(0.972686\pi\)
\(444\) 0 0
\(445\) 75128.2 220795.i 0.379387 1.11498i
\(446\) 0 0
\(447\) −31843.1 + 31843.1i −0.159368 + 0.159368i
\(448\) 0 0
\(449\) 113623.i 0.563602i −0.959473 0.281801i \(-0.909068\pi\)
0.959473 0.281801i \(-0.0909318\pi\)
\(450\) 0 0
\(451\) 14523.7 0.0714040
\(452\) 0 0
\(453\) 207643. + 207643.i 1.01186 + 1.01186i
\(454\) 0 0
\(455\) 63329.5 + 21548.7i 0.305903 + 0.104087i
\(456\) 0 0
\(457\) −183745. + 183745.i −0.879800 + 0.879800i −0.993514 0.113713i \(-0.963725\pi\)
0.113713 + 0.993514i \(0.463725\pi\)
\(458\) 0 0
\(459\) 20939.6i 0.0993902i
\(460\) 0 0
\(461\) 153365. 0.721648 0.360824 0.932634i \(-0.382495\pi\)
0.360824 + 0.932634i \(0.382495\pi\)
\(462\) 0 0
\(463\) −26760.0 26760.0i −0.124831 0.124831i 0.641931 0.766762i \(-0.278134\pi\)
−0.766762 + 0.641931i \(0.778134\pi\)
\(464\) 0 0
\(465\) 14687.3 + 29837.4i 0.0679260 + 0.137992i
\(466\) 0 0
\(467\) −16906.2 + 16906.2i −0.0775197 + 0.0775197i −0.744804 0.667284i \(-0.767457\pi\)
0.667284 + 0.744804i \(0.267457\pi\)
\(468\) 0 0
\(469\) 97622.9i 0.443819i
\(470\) 0 0
\(471\) 296849. 1.33812
\(472\) 0 0
\(473\) −79146.8 79146.8i −0.353762 0.353762i
\(474\) 0 0
\(475\) −187457. + 243567.i −0.830836 + 1.07952i
\(476\) 0 0
\(477\) −38208.7 + 38208.7i −0.167929 + 0.167929i
\(478\) 0 0
\(479\) 306921.i 1.33769i −0.743402 0.668845i \(-0.766789\pi\)
0.743402 0.668845i \(-0.233211\pi\)
\(480\) 0 0
\(481\) −202606. −0.875715
\(482\) 0 0
\(483\) −52223.3 52223.3i −0.223857 0.223857i
\(484\) 0 0
\(485\) −82418.2 + 40569.9i −0.350380 + 0.172473i
\(486\) 0 0
\(487\) −108919. + 108919.i −0.459246 + 0.459246i −0.898408 0.439162i \(-0.855276\pi\)
0.439162 + 0.898408i \(0.355276\pi\)
\(488\) 0 0
\(489\) 399865.i 1.67223i
\(490\) 0 0
\(491\) 326694. 1.35512 0.677561 0.735466i \(-0.263037\pi\)
0.677561 + 0.735466i \(0.263037\pi\)
\(492\) 0 0
\(493\) 6567.63 + 6567.63i 0.0270218 + 0.0270218i
\(494\) 0 0
\(495\) 4846.18 14242.5i 0.0197783 0.0581266i
\(496\) 0 0
\(497\) −67024.6 + 67024.6i −0.271345 + 0.271345i
\(498\) 0 0
\(499\) 326410.i 1.31088i −0.755249 0.655438i \(-0.772484\pi\)
0.755249 0.655438i \(-0.227516\pi\)
\(500\) 0 0
\(501\) 181381. 0.722630
\(502\) 0 0
\(503\) −85489.2 85489.2i −0.337890 0.337890i 0.517683 0.855573i \(-0.326795\pi\)
−0.855573 + 0.517683i \(0.826795\pi\)
\(504\) 0 0
\(505\) −78757.9 26798.4i −0.308824 0.105081i
\(506\) 0 0
\(507\) 51642.3 51642.3i 0.200904 0.200904i
\(508\) 0 0
\(509\) 305248.i 1.17819i 0.808062 + 0.589097i \(0.200517\pi\)
−0.808062 + 0.589097i \(0.799483\pi\)
\(510\) 0 0
\(511\) 45796.0 0.175382
\(512\) 0 0
\(513\) −268708. 268708.i −1.02105 1.02105i
\(514\) 0 0
\(515\) −127057. 258118.i −0.479055 0.973205i
\(516\) 0 0
\(517\) 60128.3 60128.3i 0.224956 0.224956i
\(518\) 0 0
\(519\) 391264.i 1.45256i
\(520\) 0 0
\(521\) −402585. −1.48314 −0.741570 0.670876i \(-0.765918\pi\)
−0.741570 + 0.670876i \(0.765918\pi\)
\(522\) 0 0
\(523\) −221582. 221582.i −0.810085 0.810085i 0.174562 0.984646i \(-0.444149\pi\)
−0.984646 + 0.174562i \(0.944149\pi\)
\(524\) 0 0
\(525\) −56921.1 43808.3i −0.206516 0.158942i
\(526\) 0 0
\(527\) 3070.42 3070.42i 0.0110555 0.0110555i
\(528\) 0 0
\(529\) 133147.i 0.475797i
\(530\) 0 0
\(531\) 44611.2 0.158218
\(532\) 0 0
\(533\) 39869.2 + 39869.2i 0.140340 + 0.140340i
\(534\) 0 0
\(535\) −99111.6 + 48787.2i −0.346272 + 0.170450i
\(536\) 0 0
\(537\) 336008. 336008.i 1.16520 1.16520i
\(538\) 0 0
\(539\) 109998.i 0.378622i
\(540\) 0 0
\(541\) 368732. 1.25984 0.629921 0.776660i \(-0.283087\pi\)
0.629921 + 0.776660i \(0.283087\pi\)
\(542\) 0 0
\(543\) −349096. 349096.i −1.18398 1.18398i
\(544\) 0 0
\(545\) 21190.4 62276.7i 0.0713422 0.209668i
\(546\) 0 0
\(547\) 156455. 156455.i 0.522894 0.522894i −0.395550 0.918444i \(-0.629446\pi\)
0.918444 + 0.395550i \(0.129446\pi\)
\(548\) 0 0
\(549\) 78207.6i 0.259480i
\(550\) 0 0
\(551\) −168558. −0.555197
\(552\) 0 0
\(553\) −86671.3 86671.3i −0.283416 0.283416i
\(554\) 0 0
\(555\) 205949. + 70076.7i 0.668610 + 0.227503i
\(556\) 0 0
\(557\) −8510.31 + 8510.31i −0.0274306 + 0.0274306i −0.720689 0.693258i \(-0.756174\pi\)
0.693258 + 0.720689i \(0.256174\pi\)
\(558\) 0 0
\(559\) 434535.i 1.39060i
\(560\) 0 0
\(561\) 11199.5 0.0355856
\(562\) 0 0
\(563\) −94453.3 94453.3i −0.297989 0.297989i 0.542237 0.840226i \(-0.317578\pi\)
−0.840226 + 0.542237i \(0.817578\pi\)
\(564\) 0 0
\(565\) 36481.2 + 74111.9i 0.114281 + 0.232162i
\(566\) 0 0
\(567\) 53212.4 53212.4i 0.165519 0.165519i
\(568\) 0 0
\(569\) 45472.2i 0.140450i 0.997531 + 0.0702250i \(0.0223717\pi\)
−0.997531 + 0.0702250i \(0.977628\pi\)
\(570\) 0 0
\(571\) 118436. 0.363253 0.181627 0.983368i \(-0.441864\pi\)
0.181627 + 0.983368i \(0.441864\pi\)
\(572\) 0 0
\(573\) 266365. + 266365.i 0.811274 + 0.811274i
\(574\) 0 0
\(575\) 51848.7 + 398290.i 0.156820 + 1.20466i
\(576\) 0 0
\(577\) −382393. + 382393.i −1.14857 + 1.14857i −0.161737 + 0.986834i \(0.551710\pi\)
−0.986834 + 0.161737i \(0.948290\pi\)
\(578\) 0 0
\(579\) 371348.i 1.10770i
\(580\) 0 0
\(581\) −78794.5 −0.233423
\(582\) 0 0
\(583\) 157386. + 157386.i 0.463052 + 0.463052i
\(584\) 0 0
\(585\) 52400.6 25793.9i 0.153118 0.0753713i
\(586\) 0 0
\(587\) 127125. 127125.i 0.368938 0.368938i −0.498152 0.867090i \(-0.665988\pi\)
0.867090 + 0.498152i \(0.165988\pi\)
\(588\) 0 0
\(589\) 78802.5i 0.227148i
\(590\) 0 0
\(591\) 40539.1 0.116064
\(592\) 0 0
\(593\) 82595.6 + 82595.6i 0.234881 + 0.234881i 0.814726 0.579846i \(-0.196887\pi\)
−0.579846 + 0.814726i \(0.696887\pi\)
\(594\) 0 0
\(595\) −3021.02 + 8878.50i −0.00853336 + 0.0250787i
\(596\) 0 0
\(597\) 64148.5 64148.5i 0.179986 0.179986i
\(598\) 0 0
\(599\) 284407.i 0.792658i 0.918109 + 0.396329i \(0.129716\pi\)
−0.918109 + 0.396329i \(0.870284\pi\)
\(600\) 0 0
\(601\) 77011.4 0.213209 0.106605 0.994301i \(-0.466002\pi\)
0.106605 + 0.994301i \(0.466002\pi\)
\(602\) 0 0
\(603\) −60268.8 60268.8i −0.165752 0.165752i
\(604\) 0 0
\(605\) 287848. + 97944.0i 0.786417 + 0.267588i
\(606\) 0 0
\(607\) −218416. + 218416.i −0.592797 + 0.592797i −0.938386 0.345589i \(-0.887679\pi\)
0.345589 + 0.938386i \(0.387679\pi\)
\(608\) 0 0
\(609\) 39391.7i 0.106211i
\(610\) 0 0
\(611\) 330119. 0.884276
\(612\) 0 0
\(613\) 51582.1 + 51582.1i 0.137271 + 0.137271i 0.772403 0.635132i \(-0.219054\pi\)
−0.635132 + 0.772403i \(0.719054\pi\)
\(614\) 0 0
\(615\) −26737.1 54316.6i −0.0706909 0.143609i
\(616\) 0 0
\(617\) 443595. 443595.i 1.16524 1.16524i 0.181932 0.983311i \(-0.441765\pi\)
0.983311 0.181932i \(-0.0582351\pi\)
\(618\) 0 0
\(619\) 83558.0i 0.218076i −0.994038 0.109038i \(-0.965223\pi\)
0.994038 0.109038i \(-0.0347769\pi\)
\(620\) 0 0
\(621\) −496602. −1.28773
\(622\) 0 0
\(623\) 91323.4 + 91323.4i 0.235291 + 0.235291i
\(624\) 0 0
\(625\) 100007. + 377606.i 0.256018 + 0.966672i
\(626\) 0 0
\(627\) −143718. + 143718.i −0.365575 + 0.365575i
\(628\) 0 0
\(629\) 28404.5i 0.0717935i
\(630\) 0 0
\(631\) −353413. −0.887614 −0.443807 0.896122i \(-0.646372\pi\)
−0.443807 + 0.896122i \(0.646372\pi\)
\(632\) 0 0
\(633\) 162692. + 162692.i 0.406030 + 0.406030i
\(634\) 0 0
\(635\) −195620. + 96293.1i −0.485139 + 0.238807i
\(636\) 0 0
\(637\) 301957. 301957.i 0.744159 0.744159i
\(638\) 0 0
\(639\) 82757.0i 0.202676i
\(640\) 0 0
\(641\) −158849. −0.386605 −0.193302 0.981139i \(-0.561920\pi\)
−0.193302 + 0.981139i \(0.561920\pi\)
\(642\) 0 0
\(643\) 340018. + 340018.i 0.822395 + 0.822395i 0.986451 0.164056i \(-0.0524579\pi\)
−0.164056 + 0.986451i \(0.552458\pi\)
\(644\) 0 0
\(645\) −150295. + 441703.i −0.361265 + 1.06172i
\(646\) 0 0
\(647\) −18322.4 + 18322.4i −0.0437696 + 0.0437696i −0.728653 0.684883i \(-0.759853\pi\)
0.684883 + 0.728653i \(0.259853\pi\)
\(648\) 0 0
\(649\) 183759.i 0.436274i
\(650\) 0 0
\(651\) −18415.9 −0.0434542
\(652\) 0 0
\(653\) −471423. 471423.i −1.10557 1.10557i −0.993726 0.111840i \(-0.964326\pi\)
−0.111840 0.993726i \(-0.535674\pi\)
\(654\) 0 0
\(655\) 478670. + 162874.i 1.11572 + 0.379637i
\(656\) 0 0
\(657\) 28272.8 28272.8i 0.0654994 0.0654994i
\(658\) 0 0
\(659\) 293208.i 0.675158i 0.941297 + 0.337579i \(0.109608\pi\)
−0.941297 + 0.337579i \(0.890392\pi\)
\(660\) 0 0
\(661\) −372067. −0.851567 −0.425783 0.904825i \(-0.640001\pi\)
−0.425783 + 0.904825i \(0.640001\pi\)
\(662\) 0 0
\(663\) 30744.1 + 30744.1i 0.0699414 + 0.0699414i
\(664\) 0 0
\(665\) −75166.2 152701.i −0.169973 0.345301i
\(666\) 0 0
\(667\) −155757. + 155757.i −0.350104 + 0.350104i
\(668\) 0 0
\(669\) 106734.i 0.238480i
\(670\) 0 0
\(671\) 322147. 0.715499
\(672\) 0 0
\(673\) −523473. 523473.i −1.15575 1.15575i −0.985380 0.170370i \(-0.945504\pi\)
−0.170370 0.985380i \(-0.554496\pi\)
\(674\) 0 0
\(675\) −478928. + 62346.0i −1.05115 + 0.136836i
\(676\) 0 0
\(677\) −41663.3 + 41663.3i −0.0909025 + 0.0909025i −0.751096 0.660193i \(-0.770474\pi\)
0.660193 + 0.751096i \(0.270474\pi\)
\(678\) 0 0
\(679\) 50869.4i 0.110336i
\(680\) 0 0
\(681\) 94158.5 0.203032
\(682\) 0 0
\(683\) 43709.0 + 43709.0i 0.0936978 + 0.0936978i 0.752402 0.658704i \(-0.228895\pi\)
−0.658704 + 0.752402i \(0.728895\pi\)
\(684\) 0 0
\(685\) 383429. 188741.i 0.817154 0.402240i
\(686\) 0 0
\(687\) −283156. + 283156.i −0.599946 + 0.599946i
\(688\) 0 0
\(689\) 864089.i 1.82020i
\(690\) 0 0
\(691\) −376222. −0.787932 −0.393966 0.919125i \(-0.628897\pi\)
−0.393966 + 0.919125i \(0.628897\pi\)
\(692\) 0 0
\(693\) 5890.86 + 5890.86i 0.0122663 + 0.0122663i
\(694\) 0 0
\(695\) 212563. 624702.i 0.440066 1.29331i
\(696\) 0 0
\(697\) −5589.47 + 5589.47i −0.0115055 + 0.0115055i
\(698\) 0 0
\(699\) 529437.i 1.08358i
\(700\) 0 0
\(701\) 368085. 0.749052 0.374526 0.927216i \(-0.377805\pi\)
0.374526 + 0.927216i \(0.377805\pi\)
\(702\) 0 0
\(703\) 364501. + 364501.i 0.737544 + 0.737544i
\(704\) 0 0
\(705\) −335565. 114180.i −0.675146 0.229727i
\(706\) 0 0
\(707\) 32575.2 32575.2i 0.0651701 0.0651701i
\(708\) 0 0
\(709\) 98291.9i 0.195535i −0.995209 0.0977676i \(-0.968830\pi\)
0.995209 0.0977676i \(-0.0311702\pi\)
\(710\) 0 0
\(711\) −107015. −0.211693
\(712\) 0 0
\(713\) 72817.8 + 72817.8i 0.143238 + 0.143238i
\(714\) 0 0
\(715\) −106248. 215845.i −0.207831 0.422211i
\(716\) 0 0
\(717\) 40598.8 40598.8i 0.0789724 0.0789724i
\(718\) 0 0
\(719\) 794535.i 1.53693i 0.639889 + 0.768467i \(0.278980\pi\)
−0.639889 + 0.768467i \(0.721020\pi\)
\(720\) 0 0
\(721\) 159313. 0.306466
\(722\) 0 0
\(723\) 223774. + 223774.i 0.428087 + 0.428087i
\(724\) 0 0
\(725\) −130659. + 169769.i −0.248579 + 0.322984i
\(726\) 0 0
\(727\) 128220. 128220.i 0.242598 0.242598i −0.575326 0.817924i \(-0.695125\pi\)
0.817924 + 0.575326i \(0.195125\pi\)
\(728\) 0 0
\(729\) 585310.i 1.10136i
\(730\) 0 0
\(731\) 60919.7 0.114005
\(732\) 0 0
\(733\) −395711. 395711.i −0.736496 0.736496i 0.235402 0.971898i \(-0.424359\pi\)
−0.971898 + 0.235402i \(0.924359\pi\)
\(734\) 0 0
\(735\) −411377. + 202498.i −0.761493 + 0.374841i
\(736\) 0 0
\(737\) −248255. + 248255.i −0.457049 + 0.457049i
\(738\) 0 0
\(739\) 60404.7i 0.110607i 0.998470 + 0.0553034i \(0.0176126\pi\)
−0.998470 + 0.0553034i \(0.982387\pi\)
\(740\) 0 0
\(741\) −789048. −1.43703
\(742\) 0 0
\(743\) 507349. + 507349.i 0.919028 + 0.919028i 0.996959 0.0779307i \(-0.0248313\pi\)
−0.0779307 + 0.996959i \(0.524831\pi\)
\(744\) 0 0
\(745\) −43686.2 + 128390.i −0.0787103 + 0.231322i
\(746\) 0 0
\(747\) −48644.8 + 48644.8i −0.0871757 + 0.0871757i
\(748\) 0 0
\(749\) 61172.7i 0.109042i
\(750\) 0 0
\(751\) −232337. −0.411944 −0.205972 0.978558i \(-0.566036\pi\)
−0.205972 + 0.978558i \(0.566036\pi\)
\(752\) 0 0
\(753\) 729922. + 729922.i 1.28732 + 1.28732i
\(754\) 0 0
\(755\) 837206. + 284870.i 1.46872 + 0.499750i
\(756\) 0 0
\(757\) 230972. 230972.i 0.403059 0.403059i −0.476251 0.879309i \(-0.658005\pi\)
0.879309 + 0.476251i \(0.158005\pi\)
\(758\) 0 0
\(759\) 265607.i 0.461059i
\(760\) 0 0
\(761\) 772369. 1.33369 0.666846 0.745196i \(-0.267644\pi\)
0.666846 + 0.745196i \(0.267644\pi\)
\(762\) 0 0
\(763\) 25758.4 + 25758.4i 0.0442455 + 0.0442455i
\(764\) 0 0
\(765\) 3616.19 + 7346.32i 0.00617914 + 0.0125530i
\(766\) 0 0
\(767\) 504441. 504441.i 0.857471 0.857471i
\(768\) 0 0
\(769\) 451596.i 0.763656i 0.924233 + 0.381828i \(0.124705\pi\)
−0.924233 + 0.381828i \(0.875295\pi\)
\(770\) 0 0
\(771\) −989825. −1.66514
\(772\) 0 0
\(773\) −133837. 133837.i −0.223983 0.223983i 0.586190 0.810174i \(-0.300627\pi\)
−0.810174 + 0.586190i \(0.800627\pi\)
\(774\) 0 0
\(775\) 79368.2 + 61084.4i 0.132143 + 0.101701i
\(776\) 0 0
\(777\) −85182.9 + 85182.9i −0.141095 + 0.141095i
\(778\) 0 0
\(779\) 143454.i 0.236395i
\(780\) 0 0
\(781\) 340886. 0.558866
\(782\) 0 0
\(783\) −187292. 187292.i −0.305489 0.305489i
\(784\) 0 0
\(785\) 802067. 394813.i 1.30158 0.640697i
\(786\) 0 0
\(787\) −126454. + 126454.i −0.204166 + 0.204166i −0.801782 0.597616i \(-0.796115\pi\)
0.597616 + 0.801782i \(0.296115\pi\)
\(788\) 0 0
\(789\) 642176.i 1.03157i
\(790\) 0 0
\(791\) −45742.7 −0.0731086
\(792\) 0 0
\(793\) 884331. + 884331.i 1.40627 + 1.40627i
\(794\) 0 0
\(795\) 298867. 878343.i 0.472873 1.38973i
\(796\) 0 0
\(797\) 120100. 120100.i 0.189072 0.189072i −0.606223 0.795295i \(-0.707316\pi\)
0.795295 + 0.606223i \(0.207316\pi\)
\(798\) 0 0
\(799\) 46281.1i 0.0724953i
\(800\) 0 0
\(801\) 112759. 0.175747
\(802\) 0 0
\(803\) −116459. 116459.i −0.180610 0.180610i
\(804\) 0 0
\(805\) −210562. 71646.3i −0.324928 0.110561i
\(806\) 0 0
\(807\) 432612. 432612.i 0.664280 0.664280i
\(808\) 0 0
\(809\) 752935.i 1.15043i −0.818002 0.575215i \(-0.804918\pi\)
0.818002 0.575215i \(-0.195082\pi\)
\(810\) 0 0
\(811\) −703128. −1.06904 −0.534518 0.845157i \(-0.679507\pi\)
−0.534518 + 0.845157i \(0.679507\pi\)
\(812\) 0 0
\(813\) −458846. 458846.i −0.694202 0.694202i
\(814\) 0 0
\(815\) −531826. 1.08041e6i −0.800672 1.62657i
\(816\) 0 0
\(817\) −781754. + 781754.i −1.17119 + 1.17119i
\(818\) 0 0
\(819\) 32342.2i 0.0482172i
\(820\) 0 0
\(821\) −981569. −1.45624 −0.728122 0.685447i \(-0.759607\pi\)
−0.728122 + 0.685447i \(0.759607\pi\)
\(822\) 0 0
\(823\) −612290. 612290.i −0.903977 0.903977i 0.0918005 0.995777i \(-0.470738\pi\)
−0.995777 + 0.0918005i \(0.970738\pi\)
\(824\) 0 0
\(825\) 33345.7 + 256154.i 0.0489928 + 0.376352i
\(826\) 0 0
\(827\) 733789. 733789.i 1.07290 1.07290i 0.0757773 0.997125i \(-0.475856\pi\)
0.997125 0.0757773i \(-0.0241438\pi\)
\(828\) 0 0
\(829\) 716433.i 1.04248i −0.853411 0.521239i \(-0.825470\pi\)
0.853411 0.521239i \(-0.174530\pi\)
\(830\) 0 0
\(831\) −763209. −1.10520
\(832\) 0 0
\(833\) 42332.9 + 42332.9i 0.0610082 + 0.0610082i
\(834\) 0 0
\(835\) 490079. 241239.i 0.702900 0.345999i
\(836\) 0 0
\(837\) −87560.5 + 87560.5i −0.124985 + 0.124985i
\(838\) 0 0
\(839\) 451894.i 0.641967i −0.947085 0.320983i \(-0.895987\pi\)
0.947085 0.320983i \(-0.104013\pi\)
\(840\) 0 0
\(841\) 589794. 0.833890
\(842\) 0 0
\(843\) 67265.2 + 67265.2i 0.0946532 + 0.0946532i
\(844\) 0 0
\(845\) 70849.2 208219.i 0.0992251 0.291613i
\(846\) 0 0
\(847\) −119058. + 119058.i −0.165955 + 0.165955i
\(848\) 0 0
\(849\) 331147.i 0.459415i
\(850\) 0 0
\(851\) 673637. 0.930180
\(852\) 0 0
\(853\) 119583. + 119583.i 0.164351 + 0.164351i 0.784491 0.620140i \(-0.212924\pi\)
−0.620140 + 0.784491i \(0.712924\pi\)
\(854\) 0 0
\(855\) −140677. 47867.0i −0.192438 0.0654793i
\(856\) 0 0
\(857\) −43402.1 + 43402.1i −0.0590947 + 0.0590947i −0.736037 0.676942i \(-0.763305\pi\)
0.676942 + 0.736037i \(0.263305\pi\)
\(858\) 0 0
\(859\) 979955.i 1.32807i −0.747703 0.664033i \(-0.768843\pi\)
0.747703 0.664033i \(-0.231157\pi\)
\(860\) 0 0
\(861\) 33524.8 0.0452231
\(862\) 0 0
\(863\) 584170. + 584170.i 0.784365 + 0.784365i 0.980564 0.196199i \(-0.0628600\pi\)
−0.196199 + 0.980564i \(0.562860\pi\)
\(864\) 0 0
\(865\) −520386. 1.05717e6i −0.695494 1.41290i
\(866\) 0 0
\(867\) 485956. 485956.i 0.646485 0.646485i
\(868\) 0 0
\(869\) 440809.i 0.583729i
\(870\) 0 0
\(871\) −1.36298e6 −1.79660
\(872\) 0 0
\(873\) −31404.9 31404.9i −0.0412067 0.0412067i
\(874\) 0 0
\(875\) −212063. 42661.4i −0.276980 0.0557210i
\(876\) 0 0
\(877\) 513510. 513510.i 0.667651 0.667651i −0.289521 0.957172i \(-0.593496\pi\)
0.957172 + 0.289521i \(0.0934959\pi\)
\(878\) 0 0
\(879\) 268100.i 0.346991i
\(880\) 0 0
\(881\) 855655. 1.10242 0.551210 0.834367i \(-0.314166\pi\)
0.551210 + 0.834367i \(0.314166\pi\)
\(882\) 0 0
\(883\) 198666. + 198666.i 0.254802 + 0.254802i 0.822936 0.568134i \(-0.192335\pi\)
−0.568134 + 0.822936i \(0.692335\pi\)
\(884\) 0 0
\(885\) −687236. + 338289.i −0.877444 + 0.431917i
\(886\) 0 0
\(887\) 383776. 383776.i 0.487787 0.487787i −0.419820 0.907607i \(-0.637907\pi\)
0.907607 + 0.419820i \(0.137907\pi\)
\(888\) 0 0
\(889\) 120739.i 0.152772i
\(890\) 0 0
\(891\) −270638. −0.340905
\(892\) 0 0
\(893\) −593903. 593903.i −0.744754 0.744754i
\(894\) 0 0
\(895\) 460977. 1.35477e6i 0.575484 1.69129i
\(896\) 0 0
\(897\) −729123. + 729123.i −0.906183 + 0.906183i
\(898\) 0 0
\(899\) 54926.0i 0.0679608i
\(900\) 0 0
\(901\) −121141. −0.149225
\(902\) 0 0
\(903\) −182694. 182694.i −0.224052 0.224052i
\(904\) 0 0
\(905\) −1.40754e6 478933.i −1.71855 0.584759i
\(906\) 0 0
\(907\) −871665. + 871665.i −1.05958 + 1.05958i −0.0614745 + 0.998109i \(0.519580\pi\)
−0.998109 + 0.0614745i \(0.980420\pi\)
\(908\) 0 0
\(909\) 40221.5i 0.0486777i
\(910\) 0 0
\(911\) 533857. 0.643263 0.321631 0.946865i \(-0.395769\pi\)
0.321631 + 0.946865i \(0.395769\pi\)
\(912\) 0 0
\(913\) 200374. + 200374.i 0.240381 + 0.240381i
\(914\) 0 0
\(915\) −593051. 1.20479e6i −0.708353 1.43903i
\(916\) 0 0
\(917\) −197984. + 197984.i −0.235446 + 0.235446i
\(918\) 0 0
\(919\) 801208.i 0.948668i 0.880345 + 0.474334i \(0.157311\pi\)
−0.880345 + 0.474334i \(0.842689\pi\)
\(920\) 0 0
\(921\) 100130. 0.118045
\(922\) 0 0
\(923\) 935774. + 935774.i 1.09842 + 1.09842i
\(924\) 0 0
\(925\) 649663. 84572.0i 0.759285 0.0988423i
\(926\) 0 0
\(927\) 98354.2 98354.2i 0.114455 0.114455i
\(928\) 0 0
\(929\) 1.50011e6i 1.73817i −0.494666 0.869083i \(-0.664710\pi\)
0.494666 0.869083i \(-0.335290\pi\)
\(930\) 0 0
\(931\) −1.08648e6 −1.25349
\(932\) 0 0
\(933\) 621724. + 621724.i 0.714223 + 0.714223i
\(934\) 0 0
\(935\) 30260.4 14895.5i 0.0346140 0.0170386i
\(936\) 0 0
\(937\) −108595. + 108595.i −0.123688 + 0.123688i −0.766241 0.642553i \(-0.777875\pi\)
0.642553 + 0.766241i \(0.277875\pi\)
\(938\) 0 0
\(939\) 127950.i 0.145114i
\(940\) 0 0
\(941\) 690224. 0.779490 0.389745 0.920923i \(-0.372563\pi\)
0.389745 + 0.920923i \(0.372563\pi\)
\(942\) 0 0
\(943\) −132559. 132559.i −0.149069 0.149069i
\(944\) 0 0
\(945\) 86151.7 253192.i 0.0964718 0.283522i
\(946\) 0 0
\(947\) 498365. 498365.i 0.555709 0.555709i −0.372374 0.928083i \(-0.621456\pi\)
0.928083 + 0.372374i \(0.121456\pi\)
\(948\) 0 0
\(949\) 639388.i 0.709957i
\(950\) 0 0
\(951\) 1.29045e6 1.42686
\(952\) 0 0
\(953\) 512766. + 512766.i 0.564590 + 0.564590i 0.930608 0.366018i \(-0.119279\pi\)
−0.366018 + 0.930608i \(0.619279\pi\)
\(954\) 0 0
\(955\) 1.07397e6 + 365432.i 1.17757 + 0.400682i
\(956\) 0 0
\(957\) −100173. + 100173.i −0.109377 + 0.109377i
\(958\) 0 0
\(959\) 236657.i 0.257325i
\(960\) 0 0
\(961\) −897843. −0.972195
\(962\) 0 0
\(963\) −37765.8 37765.8i −0.0407236 0.0407236i
\(964\) 0 0
\(965\) 493897. + 1.00336e6i 0.530374 + 1.07746i
\(966\) 0 0
\(967\) −396636. + 396636.i −0.424169 + 0.424169i −0.886636 0.462467i \(-0.846964\pi\)
0.462467 + 0.886636i \(0.346964\pi\)
\(968\) 0 0
\(969\) 110621.i 0.117812i
\(970\) 0 0
\(971\) −850885. −0.902469 −0.451235 0.892405i \(-0.649016\pi\)
−0.451235 + 0.892405i \(0.649016\pi\)
\(972\) 0 0
\(973\) 258384. + 258384.i 0.272923 + 0.272923i
\(974\) 0 0
\(975\) −611636. + 794712.i −0.643404 + 0.835989i
\(976\) 0 0
\(977\) −322165. + 322165.i −0.337512 + 0.337512i −0.855430 0.517918i \(-0.826707\pi\)
0.517918 + 0.855430i \(0.326707\pi\)
\(978\) 0 0
\(979\) 464470.i 0.484610i
\(980\) 0 0
\(981\) 31804.5 0.0330484
\(982\) 0 0
\(983\) 36685.2 + 36685.2i 0.0379650 + 0.0379650i 0.725834 0.687869i \(-0.241454\pi\)
−0.687869 + 0.725834i \(0.741454\pi\)
\(984\) 0 0
\(985\) 109534. 53917.5i 0.112895 0.0555722i
\(986\) 0 0
\(987\) 138794. 138794.i 0.142474 0.142474i
\(988\) 0 0
\(989\) 1.44477e6i 1.47708i
\(990\) 0 0
\(991\) −1.13688e6 −1.15762 −0.578810 0.815462i \(-0.696483\pi\)
−0.578810 + 0.815462i \(0.696483\pi\)
\(992\) 0 0
\(993\) −1.19378e6 1.19378e6i −1.21067 1.21067i
\(994\) 0 0
\(995\) 88006.7 258643.i 0.0888934 0.261249i
\(996\) 0 0
\(997\) 893711. 893711.i 0.899097 0.899097i −0.0962593 0.995356i \(-0.530688\pi\)
0.995356 + 0.0962593i \(0.0306878\pi\)
\(998\) 0 0
\(999\) 810022.i 0.811644i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.5.p.f.33.2 yes 12
4.3 odd 2 160.5.p.e.33.5 12
5.2 odd 4 inner 160.5.p.f.97.2 yes 12
8.3 odd 2 320.5.p.r.193.2 12
8.5 even 2 320.5.p.s.193.5 12
20.7 even 4 160.5.p.e.97.5 yes 12
40.27 even 4 320.5.p.r.257.2 12
40.37 odd 4 320.5.p.s.257.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.5.p.e.33.5 12 4.3 odd 2
160.5.p.e.97.5 yes 12 20.7 even 4
160.5.p.f.33.2 yes 12 1.1 even 1 trivial
160.5.p.f.97.2 yes 12 5.2 odd 4 inner
320.5.p.r.193.2 12 8.3 odd 2
320.5.p.r.257.2 12 40.27 even 4
320.5.p.s.193.5 12 8.5 even 2
320.5.p.s.257.5 12 40.37 odd 4