Properties

Label 160.5.p.f.33.1
Level $160$
Weight $5$
Character 160.33
Analytic conductor $16.539$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [160,5,Mod(33,160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("160.33"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(160, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 160.p (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,24,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.5391940934\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 10 x^{10} + 68 x^{9} - 52 x^{8} - 784 x^{7} + 960 x^{6} + 3824 x^{5} - 13583 x^{4} + \cdots + 348466 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{24}\cdot 5^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 33.1
Root \(-2.09327 + 0.657043i\) of defining polynomial
Character \(\chi\) \(=\) 160.33
Dual form 160.5.p.f.97.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-11.8869 - 11.8869i) q^{3} +(24.9004 - 2.22894i) q^{5} +(22.2437 - 22.2437i) q^{7} +201.595i q^{9} +212.824 q^{11} +(143.003 + 143.003i) q^{13} +(-322.483 - 269.493i) q^{15} +(115.384 - 115.384i) q^{17} +296.302i q^{19} -528.815 q^{21} +(-350.657 - 350.657i) q^{23} +(615.064 - 111.003i) q^{25} +(1433.50 - 1433.50i) q^{27} -23.8085i q^{29} +324.793 q^{31} +(-2529.81 - 2529.81i) q^{33} +(504.297 - 603.457i) q^{35} +(1487.91 - 1487.91i) q^{37} -3399.72i q^{39} -799.859 q^{41} +(-474.444 - 474.444i) q^{43} +(449.344 + 5019.81i) q^{45} +(-924.838 + 924.838i) q^{47} +1411.44i q^{49} -2743.12 q^{51} +(1835.97 + 1835.97i) q^{53} +(5299.42 - 474.374i) q^{55} +(3522.10 - 3522.10i) q^{57} -134.802i q^{59} -2417.52 q^{61} +(4484.21 + 4484.21i) q^{63} +(3879.59 + 3242.10i) q^{65} +(-1285.62 + 1285.62i) q^{67} +8336.42i q^{69} -4587.66 q^{71} +(-3061.83 - 3061.83i) q^{73} +(-8630.66 - 5991.70i) q^{75} +(4734.00 - 4734.00i) q^{77} +4493.29i q^{79} -17750.4 q^{81} +(1238.34 + 1238.34i) q^{83} +(2615.94 - 3130.31i) q^{85} +(-283.009 + 283.009i) q^{87} -13417.5i q^{89} +6361.83 q^{91} +(-3860.77 - 3860.77i) q^{93} +(660.440 + 7378.04i) q^{95} +(10154.0 - 10154.0i) q^{97} +42904.4i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 24 q^{5} + 48 q^{7} + 320 q^{11} + 260 q^{13} - 592 q^{15} - 60 q^{17} - 400 q^{21} - 176 q^{23} + 836 q^{25} + 2208 q^{27} - 480 q^{31} - 3120 q^{33} + 2208 q^{35} - 500 q^{37} + 2160 q^{41} + 3744 q^{43}+ \cdots + 36460 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −11.8869 11.8869i −1.32076 1.32076i −0.913159 0.407604i \(-0.866364\pi\)
−0.407604 0.913159i \(-0.633636\pi\)
\(4\) 0 0
\(5\) 24.9004 2.22894i 0.996018 0.0891577i
\(6\) 0 0
\(7\) 22.2437 22.2437i 0.453952 0.453952i −0.442712 0.896664i \(-0.645983\pi\)
0.896664 + 0.442712i \(0.145983\pi\)
\(8\) 0 0
\(9\) 201.595i 2.48883i
\(10\) 0 0
\(11\) 212.824 1.75888 0.879440 0.476010i \(-0.157918\pi\)
0.879440 + 0.476010i \(0.157918\pi\)
\(12\) 0 0
\(13\) 143.003 + 143.003i 0.846173 + 0.846173i 0.989653 0.143480i \(-0.0458294\pi\)
−0.143480 + 0.989653i \(0.545829\pi\)
\(14\) 0 0
\(15\) −322.483 269.493i −1.43326 1.19775i
\(16\) 0 0
\(17\) 115.384 115.384i 0.399254 0.399254i −0.478716 0.877970i \(-0.658898\pi\)
0.877970 + 0.478716i \(0.158898\pi\)
\(18\) 0 0
\(19\) 296.302i 0.820780i 0.911910 + 0.410390i \(0.134607\pi\)
−0.911910 + 0.410390i \(0.865393\pi\)
\(20\) 0 0
\(21\) −528.815 −1.19913
\(22\) 0 0
\(23\) −350.657 350.657i −0.662867 0.662867i 0.293188 0.956055i \(-0.405284\pi\)
−0.956055 + 0.293188i \(0.905284\pi\)
\(24\) 0 0
\(25\) 615.064 111.003i 0.984102 0.177605i
\(26\) 0 0
\(27\) 1433.50 1433.50i 1.96639 1.96639i
\(28\) 0 0
\(29\) 23.8085i 0.0283098i −0.999900 0.0141549i \(-0.995494\pi\)
0.999900 0.0141549i \(-0.00450579\pi\)
\(30\) 0 0
\(31\) 324.793 0.337974 0.168987 0.985618i \(-0.445950\pi\)
0.168987 + 0.985618i \(0.445950\pi\)
\(32\) 0 0
\(33\) −2529.81 2529.81i −2.32306 2.32306i
\(34\) 0 0
\(35\) 504.297 603.457i 0.411671 0.492618i
\(36\) 0 0
\(37\) 1487.91 1487.91i 1.08686 1.08686i 0.0910056 0.995850i \(-0.470992\pi\)
0.995850 0.0910056i \(-0.0290081\pi\)
\(38\) 0 0
\(39\) 3399.72i 2.23519i
\(40\) 0 0
\(41\) −799.859 −0.475823 −0.237912 0.971287i \(-0.576463\pi\)
−0.237912 + 0.971287i \(0.576463\pi\)
\(42\) 0 0
\(43\) −474.444 474.444i −0.256595 0.256595i 0.567073 0.823668i \(-0.308076\pi\)
−0.823668 + 0.567073i \(0.808076\pi\)
\(44\) 0 0
\(45\) 449.344 + 5019.81i 0.221898 + 2.47892i
\(46\) 0 0
\(47\) −924.838 + 924.838i −0.418668 + 0.418668i −0.884745 0.466076i \(-0.845667\pi\)
0.466076 + 0.884745i \(0.345667\pi\)
\(48\) 0 0
\(49\) 1411.44i 0.587854i
\(50\) 0 0
\(51\) −2743.12 −1.05464
\(52\) 0 0
\(53\) 1835.97 + 1835.97i 0.653604 + 0.653604i 0.953859 0.300255i \(-0.0970719\pi\)
−0.300255 + 0.953859i \(0.597072\pi\)
\(54\) 0 0
\(55\) 5299.42 474.374i 1.75187 0.156818i
\(56\) 0 0
\(57\) 3522.10 3522.10i 1.08406 1.08406i
\(58\) 0 0
\(59\) 134.802i 0.0387251i −0.999813 0.0193625i \(-0.993836\pi\)
0.999813 0.0193625i \(-0.00616367\pi\)
\(60\) 0 0
\(61\) −2417.52 −0.649697 −0.324849 0.945766i \(-0.605313\pi\)
−0.324849 + 0.945766i \(0.605313\pi\)
\(62\) 0 0
\(63\) 4484.21 + 4484.21i 1.12981 + 1.12981i
\(64\) 0 0
\(65\) 3879.59 + 3242.10i 0.918246 + 0.767360i
\(66\) 0 0
\(67\) −1285.62 + 1285.62i −0.286393 + 0.286393i −0.835652 0.549259i \(-0.814910\pi\)
0.549259 + 0.835652i \(0.314910\pi\)
\(68\) 0 0
\(69\) 8336.42i 1.75098i
\(70\) 0 0
\(71\) −4587.66 −0.910069 −0.455034 0.890474i \(-0.650373\pi\)
−0.455034 + 0.890474i \(0.650373\pi\)
\(72\) 0 0
\(73\) −3061.83 3061.83i −0.574559 0.574559i 0.358840 0.933399i \(-0.383172\pi\)
−0.933399 + 0.358840i \(0.883172\pi\)
\(74\) 0 0
\(75\) −8630.66 5991.70i −1.53434 1.06519i
\(76\) 0 0
\(77\) 4734.00 4734.00i 0.798448 0.798448i
\(78\) 0 0
\(79\) 4493.29i 0.719963i 0.932959 + 0.359981i \(0.117217\pi\)
−0.932959 + 0.359981i \(0.882783\pi\)
\(80\) 0 0
\(81\) −17750.4 −2.70544
\(82\) 0 0
\(83\) 1238.34 + 1238.34i 0.179757 + 0.179757i 0.791250 0.611493i \(-0.209431\pi\)
−0.611493 + 0.791250i \(0.709431\pi\)
\(84\) 0 0
\(85\) 2615.94 3130.31i 0.362067 0.433260i
\(86\) 0 0
\(87\) −283.009 + 283.009i −0.0373905 + 0.0373905i
\(88\) 0 0
\(89\) 13417.5i 1.69391i −0.531666 0.846954i \(-0.678434\pi\)
0.531666 0.846954i \(-0.321566\pi\)
\(90\) 0 0
\(91\) 6361.83 0.768244
\(92\) 0 0
\(93\) −3860.77 3860.77i −0.446384 0.446384i
\(94\) 0 0
\(95\) 660.440 + 7378.04i 0.0731789 + 0.817512i
\(96\) 0 0
\(97\) 10154.0 10154.0i 1.07918 1.07918i 0.0825919 0.996583i \(-0.473680\pi\)
0.996583 0.0825919i \(-0.0263198\pi\)
\(98\) 0 0
\(99\) 42904.4i 4.37755i
\(100\) 0 0
\(101\) 9511.87 0.932445 0.466222 0.884668i \(-0.345615\pi\)
0.466222 + 0.884668i \(0.345615\pi\)
\(102\) 0 0
\(103\) 130.280 + 130.280i 0.0122801 + 0.0122801i 0.713220 0.700940i \(-0.247236\pi\)
−0.700940 + 0.713220i \(0.747236\pi\)
\(104\) 0 0
\(105\) −13167.7 + 1178.70i −1.19435 + 0.106911i
\(106\) 0 0
\(107\) 11690.4 11690.4i 1.02108 1.02108i 0.0213109 0.999773i \(-0.493216\pi\)
0.999773 0.0213109i \(-0.00678397\pi\)
\(108\) 0 0
\(109\) 7318.36i 0.615972i 0.951391 + 0.307986i \(0.0996549\pi\)
−0.951391 + 0.307986i \(0.900345\pi\)
\(110\) 0 0
\(111\) −35373.1 −2.87096
\(112\) 0 0
\(113\) 1217.69 + 1217.69i 0.0953633 + 0.0953633i 0.753179 0.657816i \(-0.228519\pi\)
−0.657816 + 0.753179i \(0.728519\pi\)
\(114\) 0 0
\(115\) −9513.10 7949.91i −0.719327 0.601128i
\(116\) 0 0
\(117\) −28828.7 + 28828.7i −2.10598 + 2.10598i
\(118\) 0 0
\(119\) 5133.14i 0.362484i
\(120\) 0 0
\(121\) 30653.2 2.09366
\(122\) 0 0
\(123\) 9507.81 + 9507.81i 0.628450 + 0.628450i
\(124\) 0 0
\(125\) 15067.9 4134.97i 0.964348 0.264638i
\(126\) 0 0
\(127\) −14954.8 + 14954.8i −0.927199 + 0.927199i −0.997524 0.0703251i \(-0.977596\pi\)
0.0703251 + 0.997524i \(0.477596\pi\)
\(128\) 0 0
\(129\) 11279.3i 0.677802i
\(130\) 0 0
\(131\) 5241.05 0.305404 0.152702 0.988272i \(-0.451202\pi\)
0.152702 + 0.988272i \(0.451202\pi\)
\(132\) 0 0
\(133\) 6590.84 + 6590.84i 0.372595 + 0.372595i
\(134\) 0 0
\(135\) 32499.5 38889.9i 1.78324 2.13388i
\(136\) 0 0
\(137\) −22119.6 + 22119.6i −1.17852 + 1.17852i −0.198396 + 0.980122i \(0.563573\pi\)
−0.980122 + 0.198396i \(0.936427\pi\)
\(138\) 0 0
\(139\) 16817.7i 0.870436i −0.900325 0.435218i \(-0.856671\pi\)
0.900325 0.435218i \(-0.143329\pi\)
\(140\) 0 0
\(141\) 21986.9 1.10592
\(142\) 0 0
\(143\) 30434.6 + 30434.6i 1.48832 + 1.48832i
\(144\) 0 0
\(145\) −53.0678 592.842i −0.00252403 0.0281970i
\(146\) 0 0
\(147\) 16777.6 16777.6i 0.776416 0.776416i
\(148\) 0 0
\(149\) 41393.7i 1.86450i −0.361817 0.932249i \(-0.617844\pi\)
0.361817 0.932249i \(-0.382156\pi\)
\(150\) 0 0
\(151\) −30558.2 −1.34021 −0.670106 0.742265i \(-0.733751\pi\)
−0.670106 + 0.742265i \(0.733751\pi\)
\(152\) 0 0
\(153\) 23260.9 + 23260.9i 0.993674 + 0.993674i
\(154\) 0 0
\(155\) 8087.50 723.946i 0.336628 0.0301330i
\(156\) 0 0
\(157\) 5644.63 5644.63i 0.229000 0.229000i −0.583275 0.812275i \(-0.698229\pi\)
0.812275 + 0.583275i \(0.198229\pi\)
\(158\) 0 0
\(159\) 43647.9i 1.72651i
\(160\) 0 0
\(161\) −15599.8 −0.601820
\(162\) 0 0
\(163\) −18397.9 18397.9i −0.692458 0.692458i 0.270314 0.962772i \(-0.412873\pi\)
−0.962772 + 0.270314i \(0.912873\pi\)
\(164\) 0 0
\(165\) −68632.3 57354.7i −2.52093 2.10669i
\(166\) 0 0
\(167\) 5093.57 5093.57i 0.182637 0.182637i −0.609867 0.792504i \(-0.708777\pi\)
0.792504 + 0.609867i \(0.208777\pi\)
\(168\) 0 0
\(169\) 12338.8i 0.432017i
\(170\) 0 0
\(171\) −59733.0 −2.04278
\(172\) 0 0
\(173\) 10053.1 + 10053.1i 0.335899 + 0.335899i 0.854821 0.518923i \(-0.173667\pi\)
−0.518923 + 0.854821i \(0.673667\pi\)
\(174\) 0 0
\(175\) 11212.2 16150.4i 0.366111 0.527360i
\(176\) 0 0
\(177\) −1602.37 + 1602.37i −0.0511466 + 0.0511466i
\(178\) 0 0
\(179\) 20464.7i 0.638705i 0.947636 + 0.319352i \(0.103465\pi\)
−0.947636 + 0.319352i \(0.896535\pi\)
\(180\) 0 0
\(181\) −17956.1 −0.548093 −0.274046 0.961717i \(-0.588362\pi\)
−0.274046 + 0.961717i \(0.588362\pi\)
\(182\) 0 0
\(183\) 28736.8 + 28736.8i 0.858096 + 0.858096i
\(184\) 0 0
\(185\) 33733.0 40366.0i 0.985626 1.17943i
\(186\) 0 0
\(187\) 24556.6 24556.6i 0.702239 0.702239i
\(188\) 0 0
\(189\) 63772.5i 1.78529i
\(190\) 0 0
\(191\) 50229.3 1.37686 0.688431 0.725302i \(-0.258300\pi\)
0.688431 + 0.725302i \(0.258300\pi\)
\(192\) 0 0
\(193\) −23236.7 23236.7i −0.623821 0.623821i 0.322685 0.946506i \(-0.395414\pi\)
−0.946506 + 0.322685i \(0.895414\pi\)
\(194\) 0 0
\(195\) −7577.78 84654.5i −0.199284 2.22629i
\(196\) 0 0
\(197\) −34856.9 + 34856.9i −0.898164 + 0.898164i −0.995274 0.0971093i \(-0.969040\pi\)
0.0971093 + 0.995274i \(0.469040\pi\)
\(198\) 0 0
\(199\) 52040.7i 1.31412i 0.753836 + 0.657062i \(0.228201\pi\)
−0.753836 + 0.657062i \(0.771799\pi\)
\(200\) 0 0
\(201\) 30564.0 0.756515
\(202\) 0 0
\(203\) −529.589 529.589i −0.0128513 0.0128513i
\(204\) 0 0
\(205\) −19916.8 + 1782.84i −0.473928 + 0.0424233i
\(206\) 0 0
\(207\) 70690.7 70690.7i 1.64976 1.64976i
\(208\) 0 0
\(209\) 63060.2i 1.44365i
\(210\) 0 0
\(211\) −31911.9 −0.716783 −0.358392 0.933571i \(-0.616675\pi\)
−0.358392 + 0.933571i \(0.616675\pi\)
\(212\) 0 0
\(213\) 54532.9 + 54532.9i 1.20199 + 1.20199i
\(214\) 0 0
\(215\) −12871.4 10756.4i −0.278451 0.232696i
\(216\) 0 0
\(217\) 7224.60 7224.60i 0.153424 0.153424i
\(218\) 0 0
\(219\) 72791.0i 1.51771i
\(220\) 0 0
\(221\) 33000.7 0.675675
\(222\) 0 0
\(223\) −60103.0 60103.0i −1.20861 1.20861i −0.971477 0.237133i \(-0.923792\pi\)
−0.237133 0.971477i \(-0.576208\pi\)
\(224\) 0 0
\(225\) 22377.7 + 123994.i 0.442029 + 2.44926i
\(226\) 0 0
\(227\) 23306.2 23306.2i 0.452293 0.452293i −0.443822 0.896115i \(-0.646378\pi\)
0.896115 + 0.443822i \(0.146378\pi\)
\(228\) 0 0
\(229\) 15094.1i 0.287830i 0.989590 + 0.143915i \(0.0459692\pi\)
−0.989590 + 0.143915i \(0.954031\pi\)
\(230\) 0 0
\(231\) −112545. −2.10912
\(232\) 0 0
\(233\) 5434.95 + 5434.95i 0.100112 + 0.100112i 0.755389 0.655277i \(-0.227448\pi\)
−0.655277 + 0.755389i \(0.727448\pi\)
\(234\) 0 0
\(235\) −20967.5 + 25090.3i −0.379674 + 0.454329i
\(236\) 0 0
\(237\) 53411.1 53411.1i 0.950900 0.950900i
\(238\) 0 0
\(239\) 84679.4i 1.48246i 0.671253 + 0.741228i \(0.265756\pi\)
−0.671253 + 0.741228i \(0.734244\pi\)
\(240\) 0 0
\(241\) −39990.5 −0.688530 −0.344265 0.938873i \(-0.611872\pi\)
−0.344265 + 0.938873i \(0.611872\pi\)
\(242\) 0 0
\(243\) 94883.0 + 94883.0i 1.60685 + 1.60685i
\(244\) 0 0
\(245\) 3146.02 + 35145.4i 0.0524118 + 0.585513i
\(246\) 0 0
\(247\) −42372.1 + 42372.1i −0.694522 + 0.694522i
\(248\) 0 0
\(249\) 29440.0i 0.474832i
\(250\) 0 0
\(251\) 92601.1 1.46983 0.734917 0.678157i \(-0.237221\pi\)
0.734917 + 0.678157i \(0.237221\pi\)
\(252\) 0 0
\(253\) −74628.3 74628.3i −1.16590 1.16590i
\(254\) 0 0
\(255\) −68304.8 + 6114.25i −1.05044 + 0.0940292i
\(256\) 0 0
\(257\) 14354.1 14354.1i 0.217326 0.217326i −0.590045 0.807370i \(-0.700890\pi\)
0.807370 + 0.590045i \(0.200890\pi\)
\(258\) 0 0
\(259\) 66193.0i 0.986762i
\(260\) 0 0
\(261\) 4799.68 0.0704581
\(262\) 0 0
\(263\) 59031.1 + 59031.1i 0.853432 + 0.853432i 0.990554 0.137122i \(-0.0437852\pi\)
−0.137122 + 0.990554i \(0.543785\pi\)
\(264\) 0 0
\(265\) 49808.8 + 41624.2i 0.709274 + 0.592727i
\(266\) 0 0
\(267\) −159491. + 159491.i −2.23725 + 2.23725i
\(268\) 0 0
\(269\) 55004.2i 0.760137i 0.924958 + 0.380068i \(0.124100\pi\)
−0.924958 + 0.380068i \(0.875900\pi\)
\(270\) 0 0
\(271\) −2788.66 −0.0379714 −0.0189857 0.999820i \(-0.506044\pi\)
−0.0189857 + 0.999820i \(0.506044\pi\)
\(272\) 0 0
\(273\) −75622.2 75622.2i −1.01467 1.01467i
\(274\) 0 0
\(275\) 130901. 23624.2i 1.73092 0.312386i
\(276\) 0 0
\(277\) −65738.2 + 65738.2i −0.856758 + 0.856758i −0.990955 0.134197i \(-0.957155\pi\)
0.134197 + 0.990955i \(0.457155\pi\)
\(278\) 0 0
\(279\) 65476.7i 0.841160i
\(280\) 0 0
\(281\) −107677. −1.36368 −0.681839 0.731503i \(-0.738819\pi\)
−0.681839 + 0.731503i \(0.738819\pi\)
\(282\) 0 0
\(283\) 66961.9 + 66961.9i 0.836094 + 0.836094i 0.988342 0.152248i \(-0.0486513\pi\)
−0.152248 + 0.988342i \(0.548651\pi\)
\(284\) 0 0
\(285\) 79851.2 95552.3i 0.983087 1.17639i
\(286\) 0 0
\(287\) −17791.8 + 17791.8i −0.216001 + 0.216001i
\(288\) 0 0
\(289\) 56893.9i 0.681193i
\(290\) 0 0
\(291\) −241398. −2.85067
\(292\) 0 0
\(293\) −115668. 115668.i −1.34735 1.34735i −0.888531 0.458817i \(-0.848273\pi\)
−0.458817 0.888531i \(-0.651727\pi\)
\(294\) 0 0
\(295\) −300.466 3356.63i −0.00345264 0.0385709i
\(296\) 0 0
\(297\) 305083. 305083.i 3.45864 3.45864i
\(298\) 0 0
\(299\) 100290.i 1.12180i
\(300\) 0 0
\(301\) −21106.8 −0.232964
\(302\) 0 0
\(303\) −113066. 113066.i −1.23154 1.23154i
\(304\) 0 0
\(305\) −60197.4 + 5388.52i −0.647110 + 0.0579255i
\(306\) 0 0
\(307\) 30159.7 30159.7i 0.320000 0.320000i −0.528767 0.848767i \(-0.677345\pi\)
0.848767 + 0.528767i \(0.177345\pi\)
\(308\) 0 0
\(309\) 3097.24i 0.0324383i
\(310\) 0 0
\(311\) 39594.0 0.409363 0.204681 0.978829i \(-0.434384\pi\)
0.204681 + 0.978829i \(0.434384\pi\)
\(312\) 0 0
\(313\) −37570.1 37570.1i −0.383490 0.383490i 0.488868 0.872358i \(-0.337410\pi\)
−0.872358 + 0.488868i \(0.837410\pi\)
\(314\) 0 0
\(315\) 121654. + 101664.i 1.22604 + 1.02458i
\(316\) 0 0
\(317\) −53295.0 + 53295.0i −0.530356 + 0.530356i −0.920678 0.390322i \(-0.872364\pi\)
0.390322 + 0.920678i \(0.372364\pi\)
\(318\) 0 0
\(319\) 5067.03i 0.0497935i
\(320\) 0 0
\(321\) −277924. −2.69722
\(322\) 0 0
\(323\) 34188.6 + 34188.6i 0.327700 + 0.327700i
\(324\) 0 0
\(325\) 103830. + 72082.2i 0.983005 + 0.682435i
\(326\) 0 0
\(327\) 86992.4 86992.4i 0.813552 0.813552i
\(328\) 0 0
\(329\) 41143.6i 0.380111i
\(330\) 0 0
\(331\) −71328.5 −0.651039 −0.325519 0.945535i \(-0.605539\pi\)
−0.325519 + 0.945535i \(0.605539\pi\)
\(332\) 0 0
\(333\) 299955. + 299955.i 2.70500 + 2.70500i
\(334\) 0 0
\(335\) −29146.9 + 34878.0i −0.259718 + 0.310787i
\(336\) 0 0
\(337\) −689.307 + 689.307i −0.00606950 + 0.00606950i −0.710135 0.704066i \(-0.751366\pi\)
0.704066 + 0.710135i \(0.251366\pi\)
\(338\) 0 0
\(339\) 28949.1i 0.251905i
\(340\) 0 0
\(341\) 69124.0 0.594456
\(342\) 0 0
\(343\) 84802.6 + 84802.6i 0.720810 + 0.720810i
\(344\) 0 0
\(345\) 18581.4 + 207580.i 0.156113 + 1.74401i
\(346\) 0 0
\(347\) −30073.5 + 30073.5i −0.249762 + 0.249762i −0.820873 0.571111i \(-0.806513\pi\)
0.571111 + 0.820873i \(0.306513\pi\)
\(348\) 0 0
\(349\) 128085.i 1.05160i 0.850610 + 0.525798i \(0.176233\pi\)
−0.850610 + 0.525798i \(0.823767\pi\)
\(350\) 0 0
\(351\) 409989. 3.32781
\(352\) 0 0
\(353\) −66658.5 66658.5i −0.534941 0.534941i 0.387098 0.922039i \(-0.373478\pi\)
−0.922039 + 0.387098i \(0.873478\pi\)
\(354\) 0 0
\(355\) −114235. + 10225.6i −0.906445 + 0.0811397i
\(356\) 0 0
\(357\) −61017.0 + 61017.0i −0.478756 + 0.478756i
\(358\) 0 0
\(359\) 144282.i 1.11950i 0.828662 + 0.559749i \(0.189102\pi\)
−0.828662 + 0.559749i \(0.810898\pi\)
\(360\) 0 0
\(361\) 42526.3 0.326320
\(362\) 0 0
\(363\) −364371. 364371.i −2.76522 2.76522i
\(364\) 0 0
\(365\) −83065.5 69416.2i −0.623498 0.521045i
\(366\) 0 0
\(367\) −10896.8 + 10896.8i −0.0809030 + 0.0809030i −0.746400 0.665497i \(-0.768220\pi\)
0.665497 + 0.746400i \(0.268220\pi\)
\(368\) 0 0
\(369\) 161248.i 1.18424i
\(370\) 0 0
\(371\) 81677.5 0.593410
\(372\) 0 0
\(373\) 2879.15 + 2879.15i 0.0206941 + 0.0206941i 0.717378 0.696684i \(-0.245342\pi\)
−0.696684 + 0.717378i \(0.745342\pi\)
\(374\) 0 0
\(375\) −228262. 129959.i −1.62320 0.924150i
\(376\) 0 0
\(377\) 3404.69 3404.69i 0.0239550 0.0239550i
\(378\) 0 0
\(379\) 249883.i 1.73964i −0.493372 0.869818i \(-0.664236\pi\)
0.493372 0.869818i \(-0.335764\pi\)
\(380\) 0 0
\(381\) 355531. 2.44922
\(382\) 0 0
\(383\) 10909.7 + 10909.7i 0.0743732 + 0.0743732i 0.743315 0.668942i \(-0.233252\pi\)
−0.668942 + 0.743315i \(0.733252\pi\)
\(384\) 0 0
\(385\) 107327. 128430.i 0.724080 0.866456i
\(386\) 0 0
\(387\) 95645.7 95645.7i 0.638621 0.638621i
\(388\) 0 0
\(389\) 98799.1i 0.652911i 0.945213 + 0.326455i \(0.105854\pi\)
−0.945213 + 0.326455i \(0.894146\pi\)
\(390\) 0 0
\(391\) −80920.6 −0.529304
\(392\) 0 0
\(393\) −62299.6 62299.6i −0.403367 0.403367i
\(394\) 0 0
\(395\) 10015.3 + 111885.i 0.0641903 + 0.717096i
\(396\) 0 0
\(397\) −113044. + 113044.i −0.717240 + 0.717240i −0.968039 0.250799i \(-0.919307\pi\)
0.250799 + 0.968039i \(0.419307\pi\)
\(398\) 0 0
\(399\) 156689.i 0.984220i
\(400\) 0 0
\(401\) 241590. 1.50242 0.751209 0.660064i \(-0.229471\pi\)
0.751209 + 0.660064i \(0.229471\pi\)
\(402\) 0 0
\(403\) 46446.5 + 46446.5i 0.285985 + 0.285985i
\(404\) 0 0
\(405\) −441992. + 39564.6i −2.69466 + 0.241211i
\(406\) 0 0
\(407\) 316663. 316663.i 1.91165 1.91165i
\(408\) 0 0
\(409\) 135173.i 0.808060i −0.914746 0.404030i \(-0.867609\pi\)
0.914746 0.404030i \(-0.132391\pi\)
\(410\) 0 0
\(411\) 525865. 3.11308
\(412\) 0 0
\(413\) −2998.49 2998.49i −0.0175793 0.0175793i
\(414\) 0 0
\(415\) 33595.5 + 28075.1i 0.195067 + 0.163014i
\(416\) 0 0
\(417\) −199910. + 199910.i −1.14964 + 1.14964i
\(418\) 0 0
\(419\) 57476.5i 0.327388i 0.986511 + 0.163694i \(0.0523409\pi\)
−0.986511 + 0.163694i \(0.947659\pi\)
\(420\) 0 0
\(421\) −217580. −1.22759 −0.613796 0.789465i \(-0.710358\pi\)
−0.613796 + 0.789465i \(0.710358\pi\)
\(422\) 0 0
\(423\) −186443. 186443.i −1.04199 1.04199i
\(424\) 0 0
\(425\) 58160.7 83776.8i 0.321997 0.463816i
\(426\) 0 0
\(427\) −53774.6 + 53774.6i −0.294932 + 0.294932i
\(428\) 0 0
\(429\) 723543.i 3.93142i
\(430\) 0 0
\(431\) 84807.6 0.456541 0.228271 0.973598i \(-0.426693\pi\)
0.228271 + 0.973598i \(0.426693\pi\)
\(432\) 0 0
\(433\) −40613.6 40613.6i −0.216618 0.216618i 0.590453 0.807072i \(-0.298949\pi\)
−0.807072 + 0.590453i \(0.798949\pi\)
\(434\) 0 0
\(435\) −6416.23 + 7677.85i −0.0339079 + 0.0405752i
\(436\) 0 0
\(437\) 103900. 103900.i 0.544068 0.544068i
\(438\) 0 0
\(439\) 153018.i 0.793989i −0.917821 0.396995i \(-0.870053\pi\)
0.917821 0.396995i \(-0.129947\pi\)
\(440\) 0 0
\(441\) −284539. −1.46307
\(442\) 0 0
\(443\) 122642. + 122642.i 0.624929 + 0.624929i 0.946788 0.321859i \(-0.104308\pi\)
−0.321859 + 0.946788i \(0.604308\pi\)
\(444\) 0 0
\(445\) −29906.7 334100.i −0.151025 1.68716i
\(446\) 0 0
\(447\) −492042. + 492042.i −2.46256 + 2.46256i
\(448\) 0 0
\(449\) 241072.i 1.19579i 0.801575 + 0.597894i \(0.203996\pi\)
−0.801575 + 0.597894i \(0.796004\pi\)
\(450\) 0 0
\(451\) −170229. −0.836916
\(452\) 0 0
\(453\) 363241. + 363241.i 1.77010 + 1.77010i
\(454\) 0 0
\(455\) 158412. 14180.2i 0.765185 0.0684949i
\(456\) 0 0
\(457\) 3300.64 3300.64i 0.0158039 0.0158039i −0.699161 0.714965i \(-0.746443\pi\)
0.714965 + 0.699161i \(0.246443\pi\)
\(458\) 0 0
\(459\) 330806.i 1.57018i
\(460\) 0 0
\(461\) 278003. 1.30812 0.654061 0.756442i \(-0.273064\pi\)
0.654061 + 0.756442i \(0.273064\pi\)
\(462\) 0 0
\(463\) −288618. 288618.i −1.34636 1.34636i −0.889579 0.456781i \(-0.849002\pi\)
−0.456781 0.889579i \(-0.650998\pi\)
\(464\) 0 0
\(465\) −104740. 87529.5i −0.484405 0.404808i
\(466\) 0 0
\(467\) −218636. + 218636.i −1.00251 + 1.00251i −0.00251206 + 0.999997i \(0.500800\pi\)
−0.999997 + 0.00251206i \(0.999200\pi\)
\(468\) 0 0
\(469\) 57193.8i 0.260018i
\(470\) 0 0
\(471\) −134194. −0.604911
\(472\) 0 0
\(473\) −100973. 100973.i −0.451320 0.451320i
\(474\) 0 0
\(475\) 32890.5 + 182244.i 0.145775 + 0.807731i
\(476\) 0 0
\(477\) −370123. + 370123.i −1.62671 + 1.62671i
\(478\) 0 0
\(479\) 176726.i 0.770245i −0.922866 0.385122i \(-0.874159\pi\)
0.922866 0.385122i \(-0.125841\pi\)
\(480\) 0 0
\(481\) 425551. 1.83934
\(482\) 0 0
\(483\) 185433. + 185433.i 0.794862 + 0.794862i
\(484\) 0 0
\(485\) 230205. 275471.i 0.978661 1.17109i
\(486\) 0 0
\(487\) −83355.2 + 83355.2i −0.351459 + 0.351459i −0.860652 0.509193i \(-0.829944\pi\)
0.509193 + 0.860652i \(0.329944\pi\)
\(488\) 0 0
\(489\) 437387.i 1.82915i
\(490\) 0 0
\(491\) 323055. 1.34002 0.670012 0.742350i \(-0.266289\pi\)
0.670012 + 0.742350i \(0.266289\pi\)
\(492\) 0 0
\(493\) −2747.13 2747.13i −0.0113028 0.0113028i
\(494\) 0 0
\(495\) 95631.4 + 1.06834e6i 0.390292 + 4.36012i
\(496\) 0 0
\(497\) −102046. + 102046.i −0.413128 + 0.413128i
\(498\) 0 0
\(499\) 305073.i 1.22519i 0.790397 + 0.612594i \(0.209874\pi\)
−0.790397 + 0.612594i \(0.790126\pi\)
\(500\) 0 0
\(501\) −121093. −0.482441
\(502\) 0 0
\(503\) 113631. + 113631.i 0.449120 + 0.449120i 0.895062 0.445942i \(-0.147131\pi\)
−0.445942 + 0.895062i \(0.647131\pi\)
\(504\) 0 0
\(505\) 236850. 21201.4i 0.928732 0.0831347i
\(506\) 0 0
\(507\) 146670. 146670.i 0.570592 0.570592i
\(508\) 0 0
\(509\) 287113.i 1.10820i 0.832451 + 0.554098i \(0.186937\pi\)
−0.832451 + 0.554098i \(0.813063\pi\)
\(510\) 0 0
\(511\) −136213. −0.521645
\(512\) 0 0
\(513\) 424748. + 424748.i 1.61397 + 1.61397i
\(514\) 0 0
\(515\) 3534.41 + 2953.64i 0.0133261 + 0.0111364i
\(516\) 0 0
\(517\) −196828. + 196828.i −0.736387 + 0.736387i
\(518\) 0 0
\(519\) 239000.i 0.887285i
\(520\) 0 0
\(521\) 22942.8 0.0845222 0.0422611 0.999107i \(-0.486544\pi\)
0.0422611 + 0.999107i \(0.486544\pi\)
\(522\) 0 0
\(523\) −340907. 340907.i −1.24633 1.24633i −0.957330 0.288997i \(-0.906678\pi\)
−0.288997 0.957330i \(-0.593322\pi\)
\(524\) 0 0
\(525\) −325255. + 58700.2i −1.18006 + 0.212971i
\(526\) 0 0
\(527\) 37476.1 37476.1i 0.134938 0.134938i
\(528\) 0 0
\(529\) 33920.8i 0.121214i
\(530\) 0 0
\(531\) 27175.4 0.0963801
\(532\) 0 0
\(533\) −114382. 114382.i −0.402629 0.402629i
\(534\) 0 0
\(535\) 265039. 317153.i 0.925980 1.10805i
\(536\) 0 0
\(537\) 243262. 243262.i 0.843578 0.843578i
\(538\) 0 0
\(539\) 300388.i 1.03396i
\(540\) 0 0
\(541\) 277374. 0.947700 0.473850 0.880606i \(-0.342864\pi\)
0.473850 + 0.880606i \(0.342864\pi\)
\(542\) 0 0
\(543\) 213441. + 213441.i 0.723900 + 0.723900i
\(544\) 0 0
\(545\) 16312.2 + 182230.i 0.0549187 + 0.613519i
\(546\) 0 0
\(547\) −267466. + 267466.i −0.893910 + 0.893910i −0.994889 0.100979i \(-0.967803\pi\)
0.100979 + 0.994889i \(0.467803\pi\)
\(548\) 0 0
\(549\) 487361.i 1.61698i
\(550\) 0 0
\(551\) 7054.50 0.0232361
\(552\) 0 0
\(553\) 99947.2 + 99947.2i 0.326829 + 0.326829i
\(554\) 0 0
\(555\) −880805. + 78844.6i −2.85952 + 0.255968i
\(556\) 0 0
\(557\) 52040.5 52040.5i 0.167738 0.167738i −0.618246 0.785984i \(-0.712157\pi\)
0.785984 + 0.618246i \(0.212157\pi\)
\(558\) 0 0
\(559\) 135694.i 0.434248i
\(560\) 0 0
\(561\) −583802. −1.85498
\(562\) 0 0
\(563\) −283287. 283287.i −0.893738 0.893738i 0.101135 0.994873i \(-0.467753\pi\)
−0.994873 + 0.101135i \(0.967753\pi\)
\(564\) 0 0
\(565\) 33035.3 + 27606.9i 0.103486 + 0.0864812i
\(566\) 0 0
\(567\) −394834. + 394834.i −1.22814 + 1.22814i
\(568\) 0 0
\(569\) 241718.i 0.746595i −0.927712 0.373298i \(-0.878227\pi\)
0.927712 0.373298i \(-0.121773\pi\)
\(570\) 0 0
\(571\) 420399. 1.28940 0.644702 0.764434i \(-0.276981\pi\)
0.644702 + 0.764434i \(0.276981\pi\)
\(572\) 0 0
\(573\) −597069. 597069.i −1.81851 1.81851i
\(574\) 0 0
\(575\) −254600. 176752.i −0.770057 0.534600i
\(576\) 0 0
\(577\) 273108. 273108.i 0.820320 0.820320i −0.165834 0.986154i \(-0.553032\pi\)
0.986154 + 0.165834i \(0.0530315\pi\)
\(578\) 0 0
\(579\) 552423.i 1.64784i
\(580\) 0 0
\(581\) 55090.6 0.163202
\(582\) 0 0
\(583\) 390740. + 390740.i 1.14961 + 1.14961i
\(584\) 0 0
\(585\) −653591. + 782106.i −1.90983 + 2.28536i
\(586\) 0 0
\(587\) 175793. 175793.i 0.510181 0.510181i −0.404401 0.914582i \(-0.632520\pi\)
0.914582 + 0.404401i \(0.132520\pi\)
\(588\) 0 0
\(589\) 96236.8i 0.277403i
\(590\) 0 0
\(591\) 828678. 2.37252
\(592\) 0 0
\(593\) −319433. 319433.i −0.908386 0.908386i 0.0877563 0.996142i \(-0.472030\pi\)
−0.996142 + 0.0877563i \(0.972030\pi\)
\(594\) 0 0
\(595\) −11441.5 127817.i −0.0323183 0.361041i
\(596\) 0 0
\(597\) 618600. 618600.i 1.73565 1.73565i
\(598\) 0 0
\(599\) 392811.i 1.09479i 0.836875 + 0.547394i \(0.184380\pi\)
−0.836875 + 0.547394i \(0.815620\pi\)
\(600\) 0 0
\(601\) 382579. 1.05919 0.529593 0.848252i \(-0.322344\pi\)
0.529593 + 0.848252i \(0.322344\pi\)
\(602\) 0 0
\(603\) −259174. 259174.i −0.712783 0.712783i
\(604\) 0 0
\(605\) 763279. 68324.3i 2.08532 0.186666i
\(606\) 0 0
\(607\) 52520.3 52520.3i 0.142544 0.142544i −0.632234 0.774778i \(-0.717862\pi\)
0.774778 + 0.632234i \(0.217862\pi\)
\(608\) 0 0
\(609\) 12590.3i 0.0339470i
\(610\) 0 0
\(611\) −264510. −0.708532
\(612\) 0 0
\(613\) −462843. 462843.i −1.23172 1.23172i −0.963302 0.268420i \(-0.913499\pi\)
−0.268420 0.963302i \(-0.586501\pi\)
\(614\) 0 0
\(615\) 257941. + 215556.i 0.681978 + 0.569916i
\(616\) 0 0
\(617\) −242154. + 242154.i −0.636094 + 0.636094i −0.949590 0.313496i \(-0.898500\pi\)
0.313496 + 0.949590i \(0.398500\pi\)
\(618\) 0 0
\(619\) 265002.i 0.691620i 0.938305 + 0.345810i \(0.112396\pi\)
−0.938305 + 0.345810i \(0.887604\pi\)
\(620\) 0 0
\(621\) −1.00533e6 −2.60691
\(622\) 0 0
\(623\) −298453. 298453.i −0.768954 0.768954i
\(624\) 0 0
\(625\) 365982. 136548.i 0.936913 0.349564i
\(626\) 0 0
\(627\) 749588. 749588.i 1.90672 1.90672i
\(628\) 0 0
\(629\) 343362.i 0.867863i
\(630\) 0 0
\(631\) 39501.6 0.0992102 0.0496051 0.998769i \(-0.484204\pi\)
0.0496051 + 0.998769i \(0.484204\pi\)
\(632\) 0 0
\(633\) 379333. + 379333.i 0.946701 + 0.946701i
\(634\) 0 0
\(635\) −339048. + 405714.i −0.840840 + 1.00617i
\(636\) 0 0
\(637\) −201840. + 201840.i −0.497426 + 0.497426i
\(638\) 0 0
\(639\) 924849.i 2.26501i
\(640\) 0 0
\(641\) −213812. −0.520375 −0.260188 0.965558i \(-0.583784\pi\)
−0.260188 + 0.965558i \(0.583784\pi\)
\(642\) 0 0
\(643\) −12595.9 12595.9i −0.0304654 0.0304654i 0.691710 0.722175i \(-0.256858\pi\)
−0.722175 + 0.691710i \(0.756858\pi\)
\(644\) 0 0
\(645\) 25141.0 + 280860.i 0.0604313 + 0.675103i
\(646\) 0 0
\(647\) −174745. + 174745.i −0.417441 + 0.417441i −0.884321 0.466879i \(-0.845378\pi\)
0.466879 + 0.884321i \(0.345378\pi\)
\(648\) 0 0
\(649\) 28689.2i 0.0681127i
\(650\) 0 0
\(651\) −171756. −0.405274
\(652\) 0 0
\(653\) 91222.0 + 91222.0i 0.213931 + 0.213931i 0.805935 0.592004i \(-0.201663\pi\)
−0.592004 + 0.805935i \(0.701663\pi\)
\(654\) 0 0
\(655\) 130504. 11682.0i 0.304188 0.0272292i
\(656\) 0 0
\(657\) 617249. 617249.i 1.42998 1.42998i
\(658\) 0 0
\(659\) 487216.i 1.12189i −0.827852 0.560946i \(-0.810438\pi\)
0.827852 0.560946i \(-0.189562\pi\)
\(660\) 0 0
\(661\) 122005. 0.279238 0.139619 0.990205i \(-0.455412\pi\)
0.139619 + 0.990205i \(0.455412\pi\)
\(662\) 0 0
\(663\) −392274. 392274.i −0.892407 0.892407i
\(664\) 0 0
\(665\) 178805. + 149424.i 0.404331 + 0.337892i
\(666\) 0 0
\(667\) −8348.61 + 8348.61i −0.0187656 + 0.0187656i
\(668\) 0 0
\(669\) 1.42887e6i 3.19257i
\(670\) 0 0
\(671\) −514508. −1.14274
\(672\) 0 0
\(673\) −57907.9 57907.9i −0.127852 0.127852i 0.640285 0.768137i \(-0.278816\pi\)
−0.768137 + 0.640285i \(0.778816\pi\)
\(674\) 0 0
\(675\) 722569. 1.04082e6i 1.58589 2.28437i
\(676\) 0 0
\(677\) 239495. 239495.i 0.522540 0.522540i −0.395798 0.918338i \(-0.629532\pi\)
0.918338 + 0.395798i \(0.129532\pi\)
\(678\) 0 0
\(679\) 451723.i 0.979789i
\(680\) 0 0
\(681\) −554075. −1.19474
\(682\) 0 0
\(683\) 274018. + 274018.i 0.587405 + 0.587405i 0.936928 0.349523i \(-0.113656\pi\)
−0.349523 + 0.936928i \(0.613656\pi\)
\(684\) 0 0
\(685\) −501484. + 600091.i −1.06875 + 1.27890i
\(686\) 0 0
\(687\) 179422. 179422.i 0.380155 0.380155i
\(688\) 0 0
\(689\) 525100.i 1.10612i
\(690\) 0 0
\(691\) 431064. 0.902787 0.451393 0.892325i \(-0.350927\pi\)
0.451393 + 0.892325i \(0.350927\pi\)
\(692\) 0 0
\(693\) 954350. + 954350.i 1.98720 + 1.98720i
\(694\) 0 0
\(695\) −37485.7 418768.i −0.0776061 0.866970i
\(696\) 0 0
\(697\) −92291.2 + 92291.2i −0.189974 + 0.189974i
\(698\) 0 0
\(699\) 129209.i 0.264447i
\(700\) 0 0
\(701\) −305736. −0.622172 −0.311086 0.950382i \(-0.600693\pi\)
−0.311086 + 0.950382i \(0.600693\pi\)
\(702\) 0 0
\(703\) 440869. + 440869.i 0.892070 + 0.892070i
\(704\) 0 0
\(705\) 547482. 49007.5i 1.10152 0.0986016i
\(706\) 0 0
\(707\) 211579. 211579.i 0.423286 0.423286i
\(708\) 0 0
\(709\) 695518.i 1.38362i 0.722081 + 0.691809i \(0.243186\pi\)
−0.722081 + 0.691809i \(0.756814\pi\)
\(710\) 0 0
\(711\) −905825. −1.79186
\(712\) 0 0
\(713\) −113891. 113891.i −0.224032 0.224032i
\(714\) 0 0
\(715\) 825671. + 689997.i 1.61508 + 1.34969i
\(716\) 0 0
\(717\) 1.00657e6 1.00657e6i 1.95797 1.95797i
\(718\) 0 0
\(719\) 585333.i 1.13226i −0.824317 0.566129i \(-0.808441\pi\)
0.824317 0.566129i \(-0.191559\pi\)
\(720\) 0 0
\(721\) 5795.81 0.0111492
\(722\) 0 0
\(723\) 475361. + 475361.i 0.909384 + 0.909384i
\(724\) 0 0
\(725\) −2642.82 14643.8i −0.00502797 0.0278597i
\(726\) 0 0
\(727\) 199545. 199545.i 0.377548 0.377548i −0.492669 0.870217i \(-0.663979\pi\)
0.870217 + 0.492669i \(0.163979\pi\)
\(728\) 0 0
\(729\) 817943.i 1.53910i
\(730\) 0 0
\(731\) −109487. −0.204893
\(732\) 0 0
\(733\) −440566. 440566.i −0.819980 0.819980i 0.166125 0.986105i \(-0.446875\pi\)
−0.986105 + 0.166125i \(0.946875\pi\)
\(734\) 0 0
\(735\) 380373. 455165.i 0.704100 0.842548i
\(736\) 0 0
\(737\) −273611. + 273611.i −0.503731 + 0.503731i
\(738\) 0 0
\(739\) 502182.i 0.919543i −0.888037 0.459771i \(-0.847931\pi\)
0.888037 0.459771i \(-0.152069\pi\)
\(740\) 0 0
\(741\) 1.00734e6 1.83460
\(742\) 0 0
\(743\) −67600.2 67600.2i −0.122453 0.122453i 0.643224 0.765678i \(-0.277596\pi\)
−0.765678 + 0.643224i \(0.777596\pi\)
\(744\) 0 0
\(745\) −92264.3 1.03072e6i −0.166234 1.85707i
\(746\) 0 0
\(747\) −249644. + 249644.i −0.447383 + 0.447383i
\(748\) 0 0
\(749\) 520074.i 0.927047i
\(750\) 0 0
\(751\) −1.00829e6 −1.78775 −0.893873 0.448319i \(-0.852023\pi\)
−0.893873 + 0.448319i \(0.852023\pi\)
\(752\) 0 0
\(753\) −1.10074e6 1.10074e6i −1.94130 1.94130i
\(754\) 0 0
\(755\) −760912. + 68112.5i −1.33487 + 0.119490i
\(756\) 0 0
\(757\) −530890. + 530890.i −0.926431 + 0.926431i −0.997473 0.0710427i \(-0.977367\pi\)
0.0710427 + 0.997473i \(0.477367\pi\)
\(758\) 0 0
\(759\) 1.77419e6i 3.07976i
\(760\) 0 0
\(761\) −750812. −1.29647 −0.648234 0.761441i \(-0.724492\pi\)
−0.648234 + 0.761441i \(0.724492\pi\)
\(762\) 0 0
\(763\) 162787. + 162787.i 0.279622 + 0.279622i
\(764\) 0 0
\(765\) 631054. + 527360.i 1.07831 + 0.901123i
\(766\) 0 0
\(767\) 19277.1 19277.1i 0.0327681 0.0327681i
\(768\) 0 0
\(769\) 529196.i 0.894878i 0.894314 + 0.447439i \(0.147664\pi\)
−0.894314 + 0.447439i \(0.852336\pi\)
\(770\) 0 0
\(771\) −341251. −0.574071
\(772\) 0 0
\(773\) 154197. + 154197.i 0.258057 + 0.258057i 0.824263 0.566206i \(-0.191589\pi\)
−0.566206 + 0.824263i \(0.691589\pi\)
\(774\) 0 0
\(775\) 199769. 36053.2i 0.332601 0.0600261i
\(776\) 0 0
\(777\) −786827. + 786827.i −1.30328 + 1.30328i
\(778\) 0 0
\(779\) 237000.i 0.390546i
\(780\) 0 0
\(781\) −976365. −1.60070
\(782\) 0 0
\(783\) −34129.4 34129.4i −0.0556680 0.0556680i
\(784\) 0 0
\(785\) 127972. 153135.i 0.207671 0.248506i
\(786\) 0 0
\(787\) −538266. + 538266.i −0.869055 + 0.869055i −0.992368 0.123313i \(-0.960648\pi\)
0.123313 + 0.992368i \(0.460648\pi\)
\(788\) 0 0
\(789\) 1.40339e6i 2.25436i
\(790\) 0 0
\(791\) 54172.0 0.0865808
\(792\) 0 0
\(793\) −345714. 345714.i −0.549756 0.549756i
\(794\) 0 0
\(795\) −97288.7 1.08685e6i −0.153932 1.71963i
\(796\) 0 0
\(797\) −612655. + 612655.i −0.964494 + 0.964494i −0.999391 0.0348973i \(-0.988890\pi\)
0.0348973 + 0.999391i \(0.488890\pi\)
\(798\) 0 0
\(799\) 213424.i 0.334310i
\(800\) 0 0
\(801\) 2.70489e6 4.21585
\(802\) 0 0
\(803\) −651631. 651631.i −1.01058 1.01058i
\(804\) 0 0
\(805\) −388441. + 34771.0i −0.599424 + 0.0536569i
\(806\) 0 0
\(807\) 653828. 653828.i 1.00396 1.00396i
\(808\) 0 0
\(809\) 304723.i 0.465596i −0.972525 0.232798i \(-0.925212\pi\)
0.972525 0.232798i \(-0.0747880\pi\)
\(810\) 0 0
\(811\) 517570. 0.786914 0.393457 0.919343i \(-0.371279\pi\)
0.393457 + 0.919343i \(0.371279\pi\)
\(812\) 0 0
\(813\) 33148.4 + 33148.4i 0.0501513 + 0.0501513i
\(814\) 0 0
\(815\) −499124. 417108.i −0.751439 0.627963i
\(816\) 0 0
\(817\) 140579. 140579.i 0.210608 0.210608i
\(818\) 0 0
\(819\) 1.28251e6i 1.91203i
\(820\) 0 0
\(821\) −270912. −0.401922 −0.200961 0.979599i \(-0.564406\pi\)
−0.200961 + 0.979599i \(0.564406\pi\)
\(822\) 0 0
\(823\) 698746. + 698746.i 1.03162 + 1.03162i 0.999483 + 0.0321369i \(0.0102313\pi\)
0.0321369 + 0.999483i \(0.489769\pi\)
\(824\) 0 0
\(825\) −1.83681e6 1.27518e6i −2.69872 1.87354i
\(826\) 0 0
\(827\) −796692. + 796692.i −1.16487 + 1.16487i −0.181480 + 0.983395i \(0.558089\pi\)
−0.983395 + 0.181480i \(0.941911\pi\)
\(828\) 0 0
\(829\) 72341.1i 0.105263i −0.998614 0.0526315i \(-0.983239\pi\)
0.998614 0.0526315i \(-0.0167609\pi\)
\(830\) 0 0
\(831\) 1.56284e6 2.26315
\(832\) 0 0
\(833\) 162858. + 162858.i 0.234703 + 0.234703i
\(834\) 0 0
\(835\) 115479. 138185.i 0.165626 0.198193i
\(836\) 0 0
\(837\) 465590. 465590.i 0.664589 0.664589i
\(838\) 0 0
\(839\) 1.20946e6i 1.71818i 0.511823 + 0.859091i \(0.328970\pi\)
−0.511823 + 0.859091i \(0.671030\pi\)
\(840\) 0 0
\(841\) 706714. 0.999199
\(842\) 0 0
\(843\) 1.27995e6 + 1.27995e6i 1.80109 + 1.80109i
\(844\) 0 0
\(845\) 27502.6 + 307242.i 0.0385177 + 0.430296i
\(846\) 0 0
\(847\) 681840. 681840.i 0.950421 0.950421i
\(848\) 0 0
\(849\) 1.59193e6i 2.20856i
\(850\) 0 0
\(851\) −1.04349e6 −1.44088
\(852\) 0 0
\(853\) 866353. + 866353.i 1.19069 + 1.19069i 0.976875 + 0.213810i \(0.0685874\pi\)
0.213810 + 0.976875i \(0.431413\pi\)
\(854\) 0 0
\(855\) −1.48738e6 + 133141.i −2.03465 + 0.182130i
\(856\) 0 0
\(857\) −688481. + 688481.i −0.937411 + 0.937411i −0.998153 0.0607421i \(-0.980653\pi\)
0.0607421 + 0.998153i \(0.480653\pi\)
\(858\) 0 0
\(859\) 204193.i 0.276729i −0.990381 0.138364i \(-0.955816\pi\)
0.990381 0.138364i \(-0.0441845\pi\)
\(860\) 0 0
\(861\) 422977. 0.570573
\(862\) 0 0
\(863\) −186718. 186718.i −0.250706 0.250706i 0.570554 0.821260i \(-0.306729\pi\)
−0.821260 + 0.570554i \(0.806729\pi\)
\(864\) 0 0
\(865\) 272735. + 227919.i 0.364509 + 0.304613i
\(866\) 0 0
\(867\) 676290. 676290.i 0.899694 0.899694i
\(868\) 0 0
\(869\) 956282.i 1.26633i
\(870\) 0 0
\(871\) −367695. −0.484676
\(872\) 0 0
\(873\) 2.04699e6 + 2.04699e6i 2.68588 + 2.68588i
\(874\) 0 0
\(875\) 243189. 427143.i 0.317635 0.557901i
\(876\) 0 0
\(877\) −263947. + 263947.i −0.343176 + 0.343176i −0.857560 0.514384i \(-0.828021\pi\)
0.514384 + 0.857560i \(0.328021\pi\)
\(878\) 0 0
\(879\) 2.74987e6i 3.55905i
\(880\) 0 0
\(881\) −25475.7 −0.0328227 −0.0164114 0.999865i \(-0.505224\pi\)
−0.0164114 + 0.999865i \(0.505224\pi\)
\(882\) 0 0
\(883\) −78535.9 78535.9i −0.100727 0.100727i 0.654947 0.755675i \(-0.272691\pi\)
−0.755675 + 0.654947i \(0.772691\pi\)
\(884\) 0 0
\(885\) −36328.2 + 43471.4i −0.0463828 + 0.0555031i
\(886\) 0 0
\(887\) 130030. 130030.i 0.165270 0.165270i −0.619626 0.784897i \(-0.712716\pi\)
0.784897 + 0.619626i \(0.212716\pi\)
\(888\) 0 0
\(889\) 665299.i 0.841809i
\(890\) 0 0
\(891\) −3.77771e6 −4.75854
\(892\) 0 0
\(893\) −274031. 274031.i −0.343635 0.343635i
\(894\) 0 0
\(895\) 45614.8 + 509581.i 0.0569455 + 0.636161i
\(896\) 0 0
\(897\) −1.19213e6 + 1.19213e6i −1.48163 + 1.48163i
\(898\) 0 0
\(899\) 7732.85i 0.00956798i
\(900\) 0 0
\(901\) 423685. 0.521907
\(902\) 0 0
\(903\) 250893. + 250893.i 0.307690 + 0.307690i
\(904\) 0 0
\(905\) −447114. + 40023.0i −0.545910 + 0.0488667i
\(906\) 0 0
\(907\) −136278. + 136278.i −0.165658 + 0.165658i −0.785068 0.619410i \(-0.787372\pi\)
0.619410 + 0.785068i \(0.287372\pi\)
\(908\) 0 0
\(909\) 1.91755e6i 2.32070i
\(910\) 0 0
\(911\) −536004. −0.645849 −0.322924 0.946425i \(-0.604666\pi\)
−0.322924 + 0.946425i \(0.604666\pi\)
\(912\) 0 0
\(913\) 263550. + 263550.i 0.316170 + 0.316170i
\(914\) 0 0
\(915\) 779611. + 651505.i 0.931184 + 0.778172i
\(916\) 0 0
\(917\) 116580. 116580.i 0.138639 0.138639i
\(918\) 0 0
\(919\) 503315.i 0.595949i −0.954574 0.297974i \(-0.903689\pi\)
0.954574 0.297974i \(-0.0963110\pi\)
\(920\) 0 0
\(921\) −717008. −0.845288
\(922\) 0 0
\(923\) −656050. 656050.i −0.770076 0.770076i
\(924\) 0 0
\(925\) 749994. 1.08032e6i 0.876546 1.26261i
\(926\) 0 0
\(927\) −26263.8 + 26263.8i −0.0305631 + 0.0305631i
\(928\) 0 0
\(929\) 599808.i 0.694994i −0.937681 0.347497i \(-0.887032\pi\)
0.937681 0.347497i \(-0.112968\pi\)
\(930\) 0 0
\(931\) −418212. −0.482499
\(932\) 0 0
\(933\) −470648. 470648.i −0.540671 0.540671i
\(934\) 0 0
\(935\) 556735. 666205.i 0.636832 0.762053i
\(936\) 0 0
\(937\) 66697.5 66697.5i 0.0759679 0.0759679i −0.668102 0.744070i \(-0.732893\pi\)
0.744070 + 0.668102i \(0.232893\pi\)
\(938\) 0 0
\(939\) 893183.i 1.01300i
\(940\) 0 0
\(941\) 1.05842e6 1.19531 0.597653 0.801755i \(-0.296100\pi\)
0.597653 + 0.801755i \(0.296100\pi\)
\(942\) 0 0
\(943\) 280476. + 280476.i 0.315408 + 0.315408i
\(944\) 0 0
\(945\) −142145. 1.58796e6i −0.159173 1.77818i
\(946\) 0 0
\(947\) −233853. + 233853.i −0.260761 + 0.260761i −0.825363 0.564602i \(-0.809030\pi\)
0.564602 + 0.825363i \(0.309030\pi\)
\(948\) 0 0
\(949\) 875702.i 0.972353i
\(950\) 0 0
\(951\) 1.26702e6 1.40095
\(952\) 0 0
\(953\) 572309. + 572309.i 0.630152 + 0.630152i 0.948106 0.317954i \(-0.102996\pi\)
−0.317954 + 0.948106i \(0.602996\pi\)
\(954\) 0 0
\(955\) 1.25073e6 111958.i 1.37138 0.122758i
\(956\) 0 0
\(957\) −60231.1 + 60231.1i −0.0657653 + 0.0657653i
\(958\) 0 0
\(959\) 984042.i 1.06998i
\(960\) 0 0
\(961\) −818030. −0.885773
\(962\) 0 0
\(963\) 2.35672e6 + 2.35672e6i 2.54130 + 2.54130i
\(964\) 0 0
\(965\) −630398. 526811.i −0.676955 0.565718i
\(966\) 0 0
\(967\) −864750. + 864750.i −0.924778 + 0.924778i −0.997362 0.0725841i \(-0.976875\pi\)
0.0725841 + 0.997362i \(0.476875\pi\)
\(968\) 0 0
\(969\) 812790.i 0.865627i
\(970\) 0 0
\(971\) 1.46781e6 1.55679 0.778397 0.627773i \(-0.216033\pi\)
0.778397 + 0.627773i \(0.216033\pi\)
\(972\) 0 0
\(973\) −374087. 374087.i −0.395137 0.395137i
\(974\) 0 0
\(975\) −377380. 2.09104e6i −0.396981 2.19965i
\(976\) 0 0
\(977\) 668236. 668236.i 0.700069 0.700069i −0.264356 0.964425i \(-0.585159\pi\)
0.964425 + 0.264356i \(0.0851594\pi\)
\(978\) 0 0
\(979\) 2.85556e6i 2.97938i
\(980\) 0 0
\(981\) −1.47535e6 −1.53305
\(982\) 0 0
\(983\) −672172. 672172.i −0.695622 0.695622i 0.267841 0.963463i \(-0.413690\pi\)
−0.963463 + 0.267841i \(0.913690\pi\)
\(984\) 0 0
\(985\) −790257. + 945645.i −0.814509 + 0.974666i
\(986\) 0 0
\(987\) 489068. 489068.i 0.502037 0.502037i
\(988\) 0 0
\(989\) 332734.i 0.340177i
\(990\) 0 0
\(991\) −1.33096e6 −1.35524 −0.677621 0.735411i \(-0.736989\pi\)
−0.677621 + 0.735411i \(0.736989\pi\)
\(992\) 0 0
\(993\) 847872. + 847872.i 0.859868 + 0.859868i
\(994\) 0 0
\(995\) 115996. + 1.29584e6i 0.117164 + 1.30889i
\(996\) 0 0
\(997\) 482609. 482609.i 0.485518 0.485518i −0.421371 0.906889i \(-0.638451\pi\)
0.906889 + 0.421371i \(0.138451\pi\)
\(998\) 0 0
\(999\) 4.26582e6i 4.27436i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.5.p.f.33.1 yes 12
4.3 odd 2 160.5.p.e.33.6 12
5.2 odd 4 inner 160.5.p.f.97.1 yes 12
8.3 odd 2 320.5.p.r.193.1 12
8.5 even 2 320.5.p.s.193.6 12
20.7 even 4 160.5.p.e.97.6 yes 12
40.27 even 4 320.5.p.r.257.1 12
40.37 odd 4 320.5.p.s.257.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.5.p.e.33.6 12 4.3 odd 2
160.5.p.e.97.6 yes 12 20.7 even 4
160.5.p.f.33.1 yes 12 1.1 even 1 trivial
160.5.p.f.97.1 yes 12 5.2 odd 4 inner
320.5.p.r.193.1 12 8.3 odd 2
320.5.p.r.257.1 12 40.27 even 4
320.5.p.s.193.6 12 8.5 even 2
320.5.p.s.257.6 12 40.37 odd 4