Defining parameters
Level: | \( N \) | \(=\) | \( 160 = 2^{5} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 160.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 4 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(160, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 56 | 8 | 48 |
Cusp forms | 40 | 8 | 32 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(160, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
160.3.b.a | $4$ | $4.360$ | \(\Q(i, \sqrt{5})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{1}q^{3}-\beta _{3}q^{5}+(-\beta _{1}+4\beta _{2})q^{7}+\cdots\) |
160.3.b.b | $4$ | $4.360$ | \(\Q(i, \sqrt{5})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{3}+\beta _{2}q^{5}+\beta _{1}q^{7}+(3+2\beta _{2}+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(160, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(160, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 2}\)