Defining parameters
| Level: | \( N \) | \(=\) | \( 16 = 2^{4} \) |
| Weight: | \( k \) | \(=\) | \( 18 \) |
| Character orbit: | \([\chi]\) | \(=\) | 16.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 5 \) | ||
| Sturm bound: | \(36\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{18}(\Gamma_0(16))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 37 | 9 | 28 |
| Cusp forms | 31 | 8 | 23 |
| Eisenstein series | 6 | 1 | 5 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(18\) | \(4\) | \(14\) | \(15\) | \(4\) | \(11\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(19\) | \(5\) | \(14\) | \(16\) | \(4\) | \(12\) | \(3\) | \(1\) | \(2\) | |||
Trace form
Decomposition of \(S_{18}^{\mathrm{new}}(\Gamma_0(16))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | |||||||
| 16.18.a.a | $1$ | $29.316$ | \(\Q\) | None | \(0\) | \(-6084\) | \(1255110\) | \(22465912\) | $-$ | \(q-78^{2}q^{3}+1255110q^{5}+22465912q^{7}+\cdots\) | |
| 16.18.a.b | $1$ | $29.316$ | \(\Q\) | None | \(0\) | \(4284\) | \(-1025850\) | \(-3225992\) | $-$ | \(q+4284q^{3}-1025850q^{5}-3225992q^{7}+\cdots\) | |
| 16.18.a.c | $2$ | $29.316$ | \(\Q(\sqrt{114}) \) | None | \(0\) | \(-11592\) | \(-791924\) | \(18932592\) | $+$ | \(q+(-5796+\beta )q^{3}+(-395962+68\beta )q^{5}+\cdots\) | |
| 16.18.a.d | $2$ | $29.316$ | \(\Q(\sqrt{2146}) \) | None | \(0\) | \(952\) | \(-53620\) | \(333168\) | $+$ | \(q+(476+\beta )q^{3}+(-26810-60\beta )q^{5}+\cdots\) | |
| 16.18.a.e | $2$ | $29.316$ | \(\Q(\sqrt{9361}) \) | None | \(0\) | \(5880\) | \(604044\) | \(-25350160\) | $-$ | \(q+(2940-\beta )q^{3}+(302022-6^{2}\beta )q^{5}+\cdots\) | |
Decomposition of \(S_{18}^{\mathrm{old}}(\Gamma_0(16))\) into lower level spaces
\( S_{18}^{\mathrm{old}}(\Gamma_0(16)) \simeq \) \(S_{18}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 5}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)