Properties

Label 16.18.a
Level $16$
Weight $18$
Character orbit 16.a
Rep. character $\chi_{16}(1,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $5$
Sturm bound $36$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 16 = 2^{4} \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 16.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(36\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{18}(\Gamma_0(16))\).

Total New Old
Modular forms 37 9 28
Cusp forms 31 8 23
Eisenstein series 6 1 5

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(18\)\(4\)\(14\)\(15\)\(4\)\(11\)\(3\)\(0\)\(3\)
\(-\)\(19\)\(5\)\(14\)\(16\)\(4\)\(12\)\(3\)\(1\)\(2\)

Trace form

\( 8 q - 6560 q^{3} - 12240 q^{5} + 13155520 q^{7} + 381202024 q^{9} - 638633184 q^{11} - 795138960 q^{13} + 22854157888 q^{15} + 9464779920 q^{17} - 122492026912 q^{19} - 128236029696 q^{21} - 169801828800 q^{23}+ \cdots - 15\!\cdots\!60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{18}^{\mathrm{new}}(\Gamma_0(16))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2
16.18.a.a 16.a 1.a $1$ $29.316$ \(\Q\) None 2.18.a.a \(0\) \(-6084\) \(1255110\) \(22465912\) $-$ $\mathrm{SU}(2)$ \(q-78^{2}q^{3}+1255110q^{5}+22465912q^{7}+\cdots\)
16.18.a.b 16.a 1.a $1$ $29.316$ \(\Q\) None 1.18.a.a \(0\) \(4284\) \(-1025850\) \(-3225992\) $-$ $\mathrm{SU}(2)$ \(q+4284q^{3}-1025850q^{5}-3225992q^{7}+\cdots\)
16.18.a.c 16.a 1.a $2$ $29.316$ \(\Q(\sqrt{114}) \) None 8.18.a.b \(0\) \(-11592\) \(-791924\) \(18932592\) $+$ $\mathrm{SU}(2)$ \(q+(-5796+\beta )q^{3}+(-395962+68\beta )q^{5}+\cdots\)
16.18.a.d 16.a 1.a $2$ $29.316$ \(\Q(\sqrt{2146}) \) None 8.18.a.a \(0\) \(952\) \(-53620\) \(333168\) $+$ $\mathrm{SU}(2)$ \(q+(476+\beta )q^{3}+(-26810-60\beta )q^{5}+\cdots\)
16.18.a.e 16.a 1.a $2$ $29.316$ \(\Q(\sqrt{9361}) \) None 4.18.a.a \(0\) \(5880\) \(604044\) \(-25350160\) $-$ $\mathrm{SU}(2)$ \(q+(2940-\beta )q^{3}+(302022-6^{2}\beta )q^{5}+\cdots\)

Decomposition of \(S_{18}^{\mathrm{old}}(\Gamma_0(16))\) into lower level spaces

\( S_{18}^{\mathrm{old}}(\Gamma_0(16)) \simeq \) \(S_{18}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 5}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)