Properties

Label 1584.3.j.h.1297.4
Level $1584$
Weight $3$
Character 1584.1297
Analytic conductor $43.161$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1584,3,Mod(1297,1584)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1584.1297"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1584, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1584 = 2^{4} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1584.j (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(43.1608738747\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} + 11x^{2} - 10x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 396)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1297.4
Root \(0.500000 - 3.07253i\) of defining polynomial
Character \(\chi\) \(=\) 1584.1297
Dual form 1584.3.j.h.1297.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.69042 q^{5} +4.24264i q^{7} +(4.69042 + 9.94987i) q^{11} -12.7279i q^{13} -19.8997i q^{17} -33.9411i q^{19} -32.8329 q^{23} -3.00000 q^{25} -39.7995i q^{29} +10.0000 q^{31} +19.8997i q^{35} +2.00000 q^{37} -39.7995i q^{41} +16.9706i q^{43} -32.8329 q^{47} +31.0000 q^{49} +89.1179 q^{53} +(22.0000 + 46.6690i) q^{55} +65.6658 q^{59} -29.6985i q^{61} -59.6992i q^{65} -38.0000 q^{67} +79.7371 q^{71} +110.309i q^{73} +(-42.2137 + 19.8997i) q^{77} -55.1543i q^{79} -39.7995i q^{83} -93.3381i q^{85} +103.189 q^{89} +54.0000 q^{91} -159.198i q^{95} -112.000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{25} + 40 q^{31} + 8 q^{37} + 124 q^{49} + 88 q^{55} - 152 q^{67} + 216 q^{91} - 448 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1584\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(353\) \(991\) \(1189\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 4.69042 0.938083 0.469042 0.883176i \(-0.344599\pi\)
0.469042 + 0.883176i \(0.344599\pi\)
\(6\) 0 0
\(7\) 4.24264i 0.606092i 0.952976 + 0.303046i \(0.0980035\pi\)
−0.952976 + 0.303046i \(0.901996\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.69042 + 9.94987i 0.426401 + 0.904534i
\(12\) 0 0
\(13\) 12.7279i 0.979071i −0.871983 0.489535i \(-0.837166\pi\)
0.871983 0.489535i \(-0.162834\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 19.8997i 1.17057i −0.810826 0.585287i \(-0.800982\pi\)
0.810826 0.585287i \(-0.199018\pi\)
\(18\) 0 0
\(19\) 33.9411i 1.78638i −0.449684 0.893188i \(-0.648464\pi\)
0.449684 0.893188i \(-0.351536\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −32.8329 −1.42752 −0.713759 0.700391i \(-0.753009\pi\)
−0.713759 + 0.700391i \(0.753009\pi\)
\(24\) 0 0
\(25\) −3.00000 −0.120000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 39.7995i 1.37240i −0.727415 0.686198i \(-0.759278\pi\)
0.727415 0.686198i \(-0.240722\pi\)
\(30\) 0 0
\(31\) 10.0000 0.322581 0.161290 0.986907i \(-0.448434\pi\)
0.161290 + 0.986907i \(0.448434\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 19.8997i 0.568564i
\(36\) 0 0
\(37\) 2.00000 0.0540541 0.0270270 0.999635i \(-0.491396\pi\)
0.0270270 + 0.999635i \(0.491396\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 39.7995i 0.970719i −0.874315 0.485360i \(-0.838689\pi\)
0.874315 0.485360i \(-0.161311\pi\)
\(42\) 0 0
\(43\) 16.9706i 0.394664i 0.980337 + 0.197332i \(0.0632277\pi\)
−0.980337 + 0.197332i \(0.936772\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −32.8329 −0.698573 −0.349286 0.937016i \(-0.613576\pi\)
−0.349286 + 0.937016i \(0.613576\pi\)
\(48\) 0 0
\(49\) 31.0000 0.632653
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 89.1179 1.68147 0.840735 0.541447i \(-0.182123\pi\)
0.840735 + 0.541447i \(0.182123\pi\)
\(54\) 0 0
\(55\) 22.0000 + 46.6690i 0.400000 + 0.848528i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 65.6658 1.11298 0.556490 0.830854i \(-0.312148\pi\)
0.556490 + 0.830854i \(0.312148\pi\)
\(60\) 0 0
\(61\) 29.6985i 0.486860i −0.969918 0.243430i \(-0.921727\pi\)
0.969918 0.243430i \(-0.0782727\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 59.6992i 0.918450i
\(66\) 0 0
\(67\) −38.0000 −0.567164 −0.283582 0.958948i \(-0.591523\pi\)
−0.283582 + 0.958948i \(0.591523\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 79.7371 1.12306 0.561529 0.827457i \(-0.310213\pi\)
0.561529 + 0.827457i \(0.310213\pi\)
\(72\) 0 0
\(73\) 110.309i 1.51108i 0.655104 + 0.755539i \(0.272625\pi\)
−0.655104 + 0.755539i \(0.727375\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −42.2137 + 19.8997i −0.548230 + 0.258438i
\(78\) 0 0
\(79\) 55.1543i 0.698156i −0.937094 0.349078i \(-0.886495\pi\)
0.937094 0.349078i \(-0.113505\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 39.7995i 0.479512i −0.970833 0.239756i \(-0.922933\pi\)
0.970833 0.239756i \(-0.0770674\pi\)
\(84\) 0 0
\(85\) 93.3381i 1.09810i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 103.189 1.15943 0.579714 0.814820i \(-0.303164\pi\)
0.579714 + 0.814820i \(0.303164\pi\)
\(90\) 0 0
\(91\) 54.0000 0.593407
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 159.198i 1.67577i
\(96\) 0 0
\(97\) −112.000 −1.15464 −0.577320 0.816518i \(-0.695901\pi\)
−0.577320 + 0.816518i \(0.695901\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) −26.0000 −0.252427 −0.126214 0.992003i \(-0.540282\pi\)
−0.126214 + 0.992003i \(0.540282\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 139.298i 1.30185i −0.759141 0.650926i \(-0.774381\pi\)
0.759141 0.650926i \(-0.225619\pi\)
\(108\) 0 0
\(109\) 80.6102i 0.739543i 0.929123 + 0.369771i \(0.120564\pi\)
−0.929123 + 0.369771i \(0.879436\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −65.6658 −0.581113 −0.290557 0.956858i \(-0.593840\pi\)
−0.290557 + 0.956858i \(0.593840\pi\)
\(114\) 0 0
\(115\) −154.000 −1.33913
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 84.4275 0.709475
\(120\) 0 0
\(121\) −77.0000 + 93.3381i −0.636364 + 0.771389i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −131.332 −1.05065
\(126\) 0 0
\(127\) 72.1249i 0.567913i 0.958837 + 0.283956i \(0.0916471\pi\)
−0.958837 + 0.283956i \(0.908353\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 198.997i 1.51906i −0.650469 0.759532i \(-0.725428\pi\)
0.650469 0.759532i \(-0.274572\pi\)
\(132\) 0 0
\(133\) 144.000 1.08271
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 75.0467 0.547786 0.273893 0.961760i \(-0.411689\pi\)
0.273893 + 0.961760i \(0.411689\pi\)
\(138\) 0 0
\(139\) 161.220i 1.15986i 0.814667 + 0.579929i \(0.196920\pi\)
−0.814667 + 0.579929i \(0.803080\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 126.641 59.6992i 0.885603 0.417477i
\(144\) 0 0
\(145\) 186.676i 1.28742i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 79.5990i 0.534221i 0.963666 + 0.267111i \(0.0860689\pi\)
−0.963666 + 0.267111i \(0.913931\pi\)
\(150\) 0 0
\(151\) 89.0955i 0.590036i −0.955492 0.295018i \(-0.904674\pi\)
0.955492 0.295018i \(-0.0953257\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 46.9042 0.302607
\(156\) 0 0
\(157\) −70.0000 −0.445860 −0.222930 0.974834i \(-0.571562\pi\)
−0.222930 + 0.974834i \(0.571562\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 139.298i 0.865206i
\(162\) 0 0
\(163\) 196.000 1.20245 0.601227 0.799078i \(-0.294679\pi\)
0.601227 + 0.799078i \(0.294679\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 278.596i 1.66824i −0.551581 0.834121i \(-0.685975\pi\)
0.551581 0.834121i \(-0.314025\pi\)
\(168\) 0 0
\(169\) 7.00000 0.0414201
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 79.5990i 0.460110i −0.973178 0.230055i \(-0.926109\pi\)
0.973178 0.230055i \(-0.0738906\pi\)
\(174\) 0 0
\(175\) 12.7279i 0.0727310i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 9.38083 0.0524069 0.0262034 0.999657i \(-0.491658\pi\)
0.0262034 + 0.999657i \(0.491658\pi\)
\(180\) 0 0
\(181\) 302.000 1.66851 0.834254 0.551380i \(-0.185899\pi\)
0.834254 + 0.551380i \(0.185899\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 9.38083 0.0507072
\(186\) 0 0
\(187\) 198.000 93.3381i 1.05882 0.499134i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −229.830 −1.20330 −0.601650 0.798760i \(-0.705490\pi\)
−0.601650 + 0.798760i \(0.705490\pi\)
\(192\) 0 0
\(193\) 305.470i 1.58275i 0.611333 + 0.791373i \(0.290634\pi\)
−0.611333 + 0.791373i \(0.709366\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) −182.000 −0.914573 −0.457286 0.889319i \(-0.651179\pi\)
−0.457286 + 0.889319i \(0.651179\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 168.855 0.831798
\(204\) 0 0
\(205\) 186.676i 0.910616i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 337.710 159.198i 1.61584 0.761713i
\(210\) 0 0
\(211\) 212.132i 1.00537i −0.864471 0.502683i \(-0.832346\pi\)
0.864471 0.502683i \(-0.167654\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 79.5990i 0.370228i
\(216\) 0 0
\(217\) 42.4264i 0.195513i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −253.282 −1.14607
\(222\) 0 0
\(223\) 250.000 1.12108 0.560538 0.828129i \(-0.310594\pi\)
0.560538 + 0.828129i \(0.310594\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 139.298i 0.613649i 0.951766 + 0.306824i \(0.0992664\pi\)
−0.951766 + 0.306824i \(0.900734\pi\)
\(228\) 0 0
\(229\) −418.000 −1.82533 −0.912664 0.408711i \(-0.865978\pi\)
−0.912664 + 0.408711i \(0.865978\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 358.195i 1.53732i −0.639658 0.768660i \(-0.720924\pi\)
0.639658 0.768660i \(-0.279076\pi\)
\(234\) 0 0
\(235\) −154.000 −0.655319
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 39.7995i 0.166525i 0.996528 + 0.0832625i \(0.0265340\pi\)
−0.996528 + 0.0832625i \(0.973466\pi\)
\(240\) 0 0
\(241\) 356.382i 1.47876i −0.673287 0.739381i \(-0.735118\pi\)
0.673287 0.739381i \(-0.264882\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 145.403 0.593481
\(246\) 0 0
\(247\) −432.000 −1.74899
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −18.7617 −0.0747477 −0.0373738 0.999301i \(-0.511899\pi\)
−0.0373738 + 0.999301i \(0.511899\pi\)
\(252\) 0 0
\(253\) −154.000 326.683i −0.608696 1.29124i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 103.189 0.401514 0.200757 0.979641i \(-0.435660\pi\)
0.200757 + 0.979641i \(0.435660\pi\)
\(258\) 0 0
\(259\) 8.48528i 0.0327617i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 397.995i 1.51329i 0.653827 + 0.756644i \(0.273163\pi\)
−0.653827 + 0.756644i \(0.726837\pi\)
\(264\) 0 0
\(265\) 418.000 1.57736
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 426.828 1.58672 0.793360 0.608752i \(-0.208330\pi\)
0.793360 + 0.608752i \(0.208330\pi\)
\(270\) 0 0
\(271\) 207.889i 0.767120i −0.923516 0.383560i \(-0.874698\pi\)
0.923516 0.383560i \(-0.125302\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −14.0712 29.8496i −0.0511682 0.108544i
\(276\) 0 0
\(277\) 318.198i 1.14873i 0.818600 + 0.574365i \(0.194751\pi\)
−0.818600 + 0.574365i \(0.805249\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 417.895i 1.48717i −0.668642 0.743585i \(-0.733124\pi\)
0.668642 0.743585i \(-0.266876\pi\)
\(282\) 0 0
\(283\) 364.867i 1.28928i 0.764485 + 0.644642i \(0.222993\pi\)
−0.764485 + 0.644642i \(0.777007\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 168.855 0.588345
\(288\) 0 0
\(289\) −107.000 −0.370242
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 278.596i 0.950841i 0.879759 + 0.475421i \(0.157704\pi\)
−0.879759 + 0.475421i \(0.842296\pi\)
\(294\) 0 0
\(295\) 308.000 1.04407
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 417.895i 1.39764i
\(300\) 0 0
\(301\) −72.0000 −0.239203
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 139.298i 0.456716i
\(306\) 0 0
\(307\) 42.4264i 0.138197i −0.997610 0.0690984i \(-0.977988\pi\)
0.997610 0.0690984i \(-0.0220122\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 23.4521 0.0754086 0.0377043 0.999289i \(-0.487996\pi\)
0.0377043 + 0.999289i \(0.487996\pi\)
\(312\) 0 0
\(313\) 506.000 1.61661 0.808307 0.588762i \(-0.200384\pi\)
0.808307 + 0.588762i \(0.200384\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −333.020 −1.05053 −0.525267 0.850937i \(-0.676035\pi\)
−0.525267 + 0.850937i \(0.676035\pi\)
\(318\) 0 0
\(319\) 396.000 186.676i 1.24138 0.585192i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −675.420 −2.09108
\(324\) 0 0
\(325\) 38.1838i 0.117489i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 139.298i 0.423399i
\(330\) 0 0
\(331\) −296.000 −0.894260 −0.447130 0.894469i \(-0.647554\pi\)
−0.447130 + 0.894469i \(0.647554\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −178.236 −0.532047
\(336\) 0 0
\(337\) 76.3675i 0.226610i 0.993560 + 0.113305i \(0.0361437\pi\)
−0.993560 + 0.113305i \(0.963856\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 46.9042 + 99.4987i 0.137549 + 0.291785i
\(342\) 0 0
\(343\) 339.411i 0.989537i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 437.794i 1.26166i −0.775923 0.630828i \(-0.782715\pi\)
0.775923 0.630828i \(-0.217285\pi\)
\(348\) 0 0
\(349\) 292.742i 0.838803i 0.907801 + 0.419401i \(0.137760\pi\)
−0.907801 + 0.419401i \(0.862240\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 131.332 0.372044 0.186022 0.982546i \(-0.440440\pi\)
0.186022 + 0.982546i \(0.440440\pi\)
\(354\) 0 0
\(355\) 374.000 1.05352
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 278.596i 0.776035i 0.921652 + 0.388017i \(0.126840\pi\)
−0.921652 + 0.388017i \(0.873160\pi\)
\(360\) 0 0
\(361\) −791.000 −2.19114
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 517.393i 1.41752i
\(366\) 0 0
\(367\) −206.000 −0.561308 −0.280654 0.959809i \(-0.590551\pi\)
−0.280654 + 0.959809i \(0.590551\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 378.095i 1.01912i
\(372\) 0 0
\(373\) 657.609i 1.76303i 0.472158 + 0.881514i \(0.343475\pi\)
−0.472158 + 0.881514i \(0.656525\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −506.565 −1.34367
\(378\) 0 0
\(379\) −692.000 −1.82586 −0.912929 0.408119i \(-0.866185\pi\)
−0.912929 + 0.408119i \(0.866185\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 333.020 0.869503 0.434751 0.900551i \(-0.356836\pi\)
0.434751 + 0.900551i \(0.356836\pi\)
\(384\) 0 0
\(385\) −198.000 + 93.3381i −0.514286 + 0.242437i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −558.159 −1.43486 −0.717429 0.696632i \(-0.754681\pi\)
−0.717429 + 0.696632i \(0.754681\pi\)
\(390\) 0 0
\(391\) 653.367i 1.67101i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 258.697i 0.654928i
\(396\) 0 0
\(397\) 362.000 0.911839 0.455919 0.890021i \(-0.349311\pi\)
0.455919 + 0.890021i \(0.349311\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −65.6658 −0.163755 −0.0818776 0.996642i \(-0.526092\pi\)
−0.0818776 + 0.996642i \(0.526092\pi\)
\(402\) 0 0
\(403\) 127.279i 0.315829i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 9.38083 + 19.8997i 0.0230487 + 0.0488937i
\(408\) 0 0
\(409\) 585.484i 1.43150i −0.698355 0.715751i \(-0.746085\pi\)
0.698355 0.715751i \(-0.253915\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 278.596i 0.674568i
\(414\) 0 0
\(415\) 186.676i 0.449822i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 150.093 0.358218 0.179109 0.983829i \(-0.442679\pi\)
0.179109 + 0.983829i \(0.442679\pi\)
\(420\) 0 0
\(421\) −22.0000 −0.0522565 −0.0261283 0.999659i \(-0.508318\pi\)
−0.0261283 + 0.999659i \(0.508318\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 59.6992i 0.140469i
\(426\) 0 0
\(427\) 126.000 0.295082
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 278.596i 0.646396i −0.946331 0.323198i \(-0.895242\pi\)
0.946331 0.323198i \(-0.104758\pi\)
\(432\) 0 0
\(433\) 62.0000 0.143187 0.0715935 0.997434i \(-0.477192\pi\)
0.0715935 + 0.997434i \(0.477192\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1114.39i 2.55008i
\(438\) 0 0
\(439\) 89.0955i 0.202951i 0.994838 + 0.101475i \(0.0323563\pi\)
−0.994838 + 0.101475i \(0.967644\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −750.467 −1.69406 −0.847028 0.531549i \(-0.821610\pi\)
−0.847028 + 0.531549i \(0.821610\pi\)
\(444\) 0 0
\(445\) 484.000 1.08764
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 637.897 1.42070 0.710352 0.703846i \(-0.248536\pi\)
0.710352 + 0.703846i \(0.248536\pi\)
\(450\) 0 0
\(451\) 396.000 186.676i 0.878049 0.413916i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 253.282 0.556665
\(456\) 0 0
\(457\) 381.838i 0.835531i −0.908555 0.417765i \(-0.862813\pi\)
0.908555 0.417765i \(-0.137187\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 835.789i 1.81299i 0.422214 + 0.906496i \(0.361253\pi\)
−0.422214 + 0.906496i \(0.638747\pi\)
\(462\) 0 0
\(463\) −482.000 −1.04104 −0.520518 0.853850i \(-0.674261\pi\)
−0.520518 + 0.853850i \(0.674261\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 684.801 1.46638 0.733191 0.680022i \(-0.238030\pi\)
0.733191 + 0.680022i \(0.238030\pi\)
\(468\) 0 0
\(469\) 161.220i 0.343753i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −168.855 + 79.5990i −0.356987 + 0.168285i
\(474\) 0 0
\(475\) 101.823i 0.214365i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 397.995i 0.830887i 0.909619 + 0.415444i \(0.136374\pi\)
−0.909619 + 0.415444i \(0.863626\pi\)
\(480\) 0 0
\(481\) 25.4558i 0.0529228i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −525.327 −1.08315
\(486\) 0 0
\(487\) 682.000 1.40041 0.700205 0.713942i \(-0.253092\pi\)
0.700205 + 0.713942i \(0.253092\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 179.098i 0.364761i −0.983228 0.182381i \(-0.941620\pi\)
0.983228 0.182381i \(-0.0583803\pi\)
\(492\) 0 0
\(493\) −792.000 −1.60649
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 338.296i 0.680676i
\(498\) 0 0
\(499\) −152.000 −0.304609 −0.152305 0.988334i \(-0.548669\pi\)
−0.152305 + 0.988334i \(0.548669\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 39.7995i 0.0791242i −0.999217 0.0395621i \(-0.987404\pi\)
0.999217 0.0395621i \(-0.0125963\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −558.159 −1.09658 −0.548290 0.836288i \(-0.684721\pi\)
−0.548290 + 0.836288i \(0.684721\pi\)
\(510\) 0 0
\(511\) −468.000 −0.915851
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −121.951 −0.236798
\(516\) 0 0
\(517\) −154.000 326.683i −0.297872 0.631883i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −121.951 −0.234071 −0.117035 0.993128i \(-0.537339\pi\)
−0.117035 + 0.993128i \(0.537339\pi\)
\(522\) 0 0
\(523\) 916.410i 1.75222i −0.482112 0.876109i \(-0.660130\pi\)
0.482112 0.876109i \(-0.339870\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 198.997i 0.377604i
\(528\) 0 0
\(529\) 549.000 1.03781
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −506.565 −0.950403
\(534\) 0 0
\(535\) 653.367i 1.22125i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 145.403 + 308.446i 0.269764 + 0.572256i
\(540\) 0 0
\(541\) 946.109i 1.74881i 0.485192 + 0.874407i \(0.338750\pi\)
−0.485192 + 0.874407i \(0.661250\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 378.095i 0.693753i
\(546\) 0 0
\(547\) 237.588i 0.434347i −0.976133 0.217174i \(-0.930316\pi\)
0.976133 0.217174i \(-0.0696838\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1350.84 −2.45161
\(552\) 0 0
\(553\) 234.000 0.423146
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 676.591i 1.21471i 0.794432 + 0.607353i \(0.207769\pi\)
−0.794432 + 0.607353i \(0.792231\pi\)
\(558\) 0 0
\(559\) 216.000 0.386404
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 417.895i 0.742264i 0.928580 + 0.371132i \(0.121030\pi\)
−0.928580 + 0.371132i \(0.878970\pi\)
\(564\) 0 0
\(565\) −308.000 −0.545133
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 417.895i 0.734437i −0.930135 0.367219i \(-0.880310\pi\)
0.930135 0.367219i \(-0.119690\pi\)
\(570\) 0 0
\(571\) 704.278i 1.23341i 0.787193 + 0.616706i \(0.211533\pi\)
−0.787193 + 0.616706i \(0.788467\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 98.4987 0.171302
\(576\) 0 0
\(577\) 536.000 0.928943 0.464471 0.885588i \(-0.346244\pi\)
0.464471 + 0.885588i \(0.346244\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 168.855 0.290628
\(582\) 0 0
\(583\) 418.000 + 886.712i 0.716981 + 1.52095i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 853.656 1.45427 0.727134 0.686495i \(-0.240852\pi\)
0.727134 + 0.686495i \(0.240852\pi\)
\(588\) 0 0
\(589\) 339.411i 0.576250i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 696.491i 1.17452i −0.809398 0.587261i \(-0.800206\pi\)
0.809398 0.587261i \(-0.199794\pi\)
\(594\) 0 0
\(595\) 396.000 0.665546
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −567.540 −0.947480 −0.473740 0.880665i \(-0.657096\pi\)
−0.473740 + 0.880665i \(0.657096\pi\)
\(600\) 0 0
\(601\) 42.4264i 0.0705930i −0.999377 0.0352965i \(-0.988762\pi\)
0.999377 0.0352965i \(-0.0112376\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −361.162 + 437.794i −0.596962 + 0.723627i
\(606\) 0 0
\(607\) 292.742i 0.482277i −0.970491 0.241139i \(-0.922479\pi\)
0.970491 0.241139i \(-0.0775208\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 417.895i 0.683952i
\(612\) 0 0
\(613\) 801.859i 1.30809i −0.756456 0.654045i \(-0.773071\pi\)
0.756456 0.654045i \(-0.226929\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 609.754 0.988256 0.494128 0.869389i \(-0.335487\pi\)
0.494128 + 0.869389i \(0.335487\pi\)
\(618\) 0 0
\(619\) 346.000 0.558966 0.279483 0.960151i \(-0.409837\pi\)
0.279483 + 0.960151i \(0.409837\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 437.794i 0.702720i
\(624\) 0 0
\(625\) −541.000 −0.865600
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 39.7995i 0.0632742i
\(630\) 0 0
\(631\) −770.000 −1.22029 −0.610143 0.792292i \(-0.708888\pi\)
−0.610143 + 0.792292i \(0.708888\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 338.296i 0.532749i
\(636\) 0 0
\(637\) 394.566i 0.619412i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 722.324 1.12687 0.563435 0.826160i \(-0.309479\pi\)
0.563435 + 0.826160i \(0.309479\pi\)
\(642\) 0 0
\(643\) −302.000 −0.469673 −0.234837 0.972035i \(-0.575456\pi\)
−0.234837 + 0.972035i \(0.575456\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −229.830 −0.355225 −0.177612 0.984101i \(-0.556837\pi\)
−0.177612 + 0.984101i \(0.556837\pi\)
\(648\) 0 0
\(649\) 308.000 + 653.367i 0.474576 + 1.00673i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 60.9754 0.0933773 0.0466887 0.998909i \(-0.485133\pi\)
0.0466887 + 0.998909i \(0.485133\pi\)
\(654\) 0 0
\(655\) 933.381i 1.42501i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1293.48i 1.96280i 0.191980 + 0.981399i \(0.438509\pi\)
−0.191980 + 0.981399i \(0.561491\pi\)
\(660\) 0 0
\(661\) 710.000 1.07413 0.537065 0.843541i \(-0.319533\pi\)
0.537065 + 0.843541i \(0.319533\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 675.420 1.01567
\(666\) 0 0
\(667\) 1306.73i 1.95912i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 295.496 139.298i 0.440382 0.207598i
\(672\) 0 0
\(673\) 161.220i 0.239555i −0.992801 0.119777i \(-0.961782\pi\)
0.992801 0.119777i \(-0.0382181\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 835.789i 1.23455i 0.786748 + 0.617274i \(0.211763\pi\)
−0.786748 + 0.617274i \(0.788237\pi\)
\(678\) 0 0
\(679\) 475.176i 0.699817i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −131.332 −0.192286 −0.0961432 0.995368i \(-0.530651\pi\)
−0.0961432 + 0.995368i \(0.530651\pi\)
\(684\) 0 0
\(685\) 352.000 0.513869
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1134.29i 1.64628i
\(690\) 0 0
\(691\) −530.000 −0.767004 −0.383502 0.923540i \(-0.625282\pi\)
−0.383502 + 0.923540i \(0.625282\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 756.190i 1.08804i
\(696\) 0 0
\(697\) −792.000 −1.13630
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 795.990i 1.13551i −0.823199 0.567753i \(-0.807813\pi\)
0.823199 0.567753i \(-0.192187\pi\)
\(702\) 0 0
\(703\) 67.8823i 0.0965608i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −154.000 −0.217207 −0.108604 0.994085i \(-0.534638\pi\)
−0.108604 + 0.994085i \(0.534638\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −328.329 −0.460490
\(714\) 0 0
\(715\) 594.000 280.014i 0.830769 0.391628i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −623.825 −0.867629 −0.433815 0.901002i \(-0.642833\pi\)
−0.433815 + 0.901002i \(0.642833\pi\)
\(720\) 0 0
\(721\) 110.309i 0.152994i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 119.398i 0.164688i
\(726\) 0 0
\(727\) 22.0000 0.0302613 0.0151307 0.999886i \(-0.495184\pi\)
0.0151307 + 0.999886i \(0.495184\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 337.710 0.461983
\(732\) 0 0
\(733\) 352.139i 0.480408i 0.970722 + 0.240204i \(0.0772144\pi\)
−0.970722 + 0.240204i \(0.922786\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −178.236 378.095i −0.241840 0.513019i
\(738\) 0 0
\(739\) 347.897i 0.470767i 0.971903 + 0.235383i \(0.0756345\pi\)
−0.971903 + 0.235383i \(0.924365\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1154.19i 1.55341i 0.629863 + 0.776706i \(0.283111\pi\)
−0.629863 + 0.776706i \(0.716889\pi\)
\(744\) 0 0
\(745\) 373.352i 0.501144i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 590.992 0.789042
\(750\) 0 0
\(751\) 730.000 0.972037 0.486019 0.873948i \(-0.338449\pi\)
0.486019 + 0.873948i \(0.338449\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 417.895i 0.553503i
\(756\) 0 0
\(757\) −826.000 −1.09115 −0.545575 0.838062i \(-0.683689\pi\)
−0.545575 + 0.838062i \(0.683689\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1054.69i 1.38592i −0.720975 0.692961i \(-0.756306\pi\)
0.720975 0.692961i \(-0.243694\pi\)
\(762\) 0 0
\(763\) −342.000 −0.448231
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 835.789i 1.08969i
\(768\) 0 0
\(769\) 967.322i 1.25790i 0.777447 + 0.628948i \(0.216514\pi\)
−0.777447 + 0.628948i \(0.783486\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −164.165 −0.212373 −0.106187 0.994346i \(-0.533864\pi\)
−0.106187 + 0.994346i \(0.533864\pi\)
\(774\) 0 0
\(775\) −30.0000 −0.0387097
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1350.84 −1.73407
\(780\) 0 0
\(781\) 374.000 + 793.374i 0.478873 + 1.01584i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −328.329 −0.418254
\(786\) 0 0
\(787\) 475.176i 0.603781i 0.953343 + 0.301891i \(0.0976177\pi\)
−0.953343 + 0.301891i \(0.902382\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 278.596i 0.352208i
\(792\) 0 0
\(793\) −378.000 −0.476671
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −952.154 −1.19467 −0.597337 0.801991i \(-0.703774\pi\)
−0.597337 + 0.801991i \(0.703774\pi\)
\(798\) 0 0
\(799\) 653.367i 0.817730i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1097.56 + 517.393i −1.36682 + 0.644326i
\(804\) 0 0
\(805\) 653.367i 0.811636i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 835.789i 1.03311i −0.856253 0.516557i \(-0.827213\pi\)
0.856253 0.516557i \(-0.172787\pi\)
\(810\) 0 0
\(811\) 475.176i 0.585913i 0.956126 + 0.292957i \(0.0946392\pi\)
−0.956126 + 0.292957i \(0.905361\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 919.321 1.12800
\(816\) 0 0
\(817\) 576.000 0.705018
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 79.5990i 0.0969537i 0.998824 + 0.0484769i \(0.0154367\pi\)
−0.998824 + 0.0484769i \(0.984563\pi\)
\(822\) 0 0
\(823\) −1274.00 −1.54800 −0.773998 0.633189i \(-0.781746\pi\)
−0.773998 + 0.633189i \(0.781746\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1392.98i 1.68438i −0.539181 0.842190i \(-0.681266\pi\)
0.539181 0.842190i \(-0.318734\pi\)
\(828\) 0 0
\(829\) 158.000 0.190591 0.0952955 0.995449i \(-0.469620\pi\)
0.0952955 + 0.995449i \(0.469620\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 616.892i 0.740567i
\(834\) 0 0
\(835\) 1306.73i 1.56495i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 248.592 0.296296 0.148148 0.988965i \(-0.452669\pi\)
0.148148 + 0.988965i \(0.452669\pi\)
\(840\) 0 0
\(841\) −743.000 −0.883472
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 32.8329 0.0388555
\(846\) 0 0
\(847\) −396.000 326.683i −0.467532 0.385695i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −65.6658 −0.0771631
\(852\) 0 0
\(853\) 309.713i 0.363086i 0.983383 + 0.181543i \(0.0581092\pi\)
−0.983383 + 0.181543i \(0.941891\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 835.789i 0.975250i 0.873053 + 0.487625i \(0.162137\pi\)
−0.873053 + 0.487625i \(0.837863\pi\)
\(858\) 0 0
\(859\) 340.000 0.395809 0.197905 0.980221i \(-0.436586\pi\)
0.197905 + 0.980221i \(0.436586\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −595.683 −0.690247 −0.345123 0.938557i \(-0.612163\pi\)
−0.345123 + 0.938557i \(0.612163\pi\)
\(864\) 0 0
\(865\) 373.352i 0.431621i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 548.779 258.697i 0.631506 0.297695i
\(870\) 0 0
\(871\) 483.661i 0.555294i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 557.193i 0.636792i
\(876\) 0 0
\(877\) 504.874i 0.575683i −0.957678 0.287842i \(-0.907062\pi\)
0.957678 0.287842i \(-0.0929377\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −769.228 −0.873131 −0.436565 0.899673i \(-0.643805\pi\)
−0.436565 + 0.899673i \(0.643805\pi\)
\(882\) 0 0
\(883\) 106.000 0.120045 0.0600227 0.998197i \(-0.480883\pi\)
0.0600227 + 0.998197i \(0.480883\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 278.596i 0.314088i −0.987592 0.157044i \(-0.949803\pi\)
0.987592 0.157044i \(-0.0501965\pi\)
\(888\) 0 0
\(889\) −306.000 −0.344207
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1114.39i 1.24791i
\(894\) 0 0
\(895\) 44.0000 0.0491620
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 397.995i 0.442709i
\(900\) 0 0
\(901\) 1773.42i 1.96828i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1416.51 1.56520
\(906\) 0 0
\(907\) 94.0000 0.103638 0.0518192 0.998656i \(-0.483498\pi\)
0.0518192 + 0.998656i \(0.483498\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1740.14 1.91015 0.955074 0.296368i \(-0.0957756\pi\)
0.955074 + 0.296368i \(0.0957756\pi\)
\(912\) 0 0
\(913\) 396.000 186.676i 0.433735 0.204465i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 844.275 0.920692
\(918\) 0 0
\(919\) 776.403i 0.844835i 0.906401 + 0.422417i \(0.138818\pi\)
−0.906401 + 0.422417i \(0.861182\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1014.89i 1.09955i
\(924\) 0 0
\(925\) −6.00000 −0.00648649
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −93.8083 −0.100978 −0.0504889 0.998725i \(-0.516078\pi\)
−0.0504889 + 0.998725i \(0.516078\pi\)
\(930\) 0 0
\(931\) 1052.17i 1.13016i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 928.702 437.794i 0.993265 0.468229i
\(936\) 0 0
\(937\) 1204.91i 1.28592i 0.765898 + 0.642962i \(0.222295\pi\)
−0.765898 + 0.642962i \(0.777705\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 278.596i 0.296064i −0.988983 0.148032i \(-0.952706\pi\)
0.988983 0.148032i \(-0.0472939\pi\)
\(942\) 0 0
\(943\) 1306.73i 1.38572i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1838.64 1.94154 0.970772 0.240002i \(-0.0771481\pi\)
0.970772 + 0.240002i \(0.0771481\pi\)
\(948\) 0 0
\(949\) 1404.00 1.47945
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 517.393i 0.542910i −0.962451 0.271455i \(-0.912495\pi\)
0.962451 0.271455i \(-0.0875049\pi\)
\(954\) 0 0
\(955\) −1078.00 −1.12880
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 318.396i 0.332008i
\(960\) 0 0
\(961\) −861.000 −0.895942
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1432.78i 1.48475i
\(966\) 0 0
\(967\) 666.095i 0.688826i −0.938818 0.344413i \(-0.888078\pi\)
0.938818 0.344413i \(-0.111922\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1838.64 1.89356 0.946778 0.321887i \(-0.104317\pi\)
0.946778 + 0.321887i \(0.104317\pi\)
\(972\) 0 0
\(973\) −684.000 −0.702980
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1191.37 −1.21941 −0.609706 0.792628i \(-0.708713\pi\)
−0.609706 + 0.792628i \(0.708713\pi\)
\(978\) 0 0
\(979\) 484.000 + 1026.72i 0.494382 + 1.04874i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 304.877 0.310150 0.155075 0.987903i \(-0.450438\pi\)
0.155075 + 0.987903i \(0.450438\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 557.193i 0.563390i
\(990\) 0 0
\(991\) 1474.00 1.48739 0.743693 0.668521i \(-0.233072\pi\)
0.743693 + 0.668521i \(0.233072\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −853.656 −0.857945
\(996\) 0 0
\(997\) 1463.71i 1.46812i 0.679087 + 0.734058i \(0.262376\pi\)
−0.679087 + 0.734058i \(0.737624\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1584.3.j.h.1297.4 4
3.2 odd 2 inner 1584.3.j.h.1297.2 4
4.3 odd 2 396.3.f.c.109.3 yes 4
11.10 odd 2 inner 1584.3.j.h.1297.3 4
12.11 even 2 396.3.f.c.109.1 4
33.32 even 2 inner 1584.3.j.h.1297.1 4
44.43 even 2 396.3.f.c.109.4 yes 4
132.131 odd 2 396.3.f.c.109.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
396.3.f.c.109.1 4 12.11 even 2
396.3.f.c.109.2 yes 4 132.131 odd 2
396.3.f.c.109.3 yes 4 4.3 odd 2
396.3.f.c.109.4 yes 4 44.43 even 2
1584.3.j.h.1297.1 4 33.32 even 2 inner
1584.3.j.h.1297.2 4 3.2 odd 2 inner
1584.3.j.h.1297.3 4 11.10 odd 2 inner
1584.3.j.h.1297.4 4 1.1 even 1 trivial