Properties

Label 1584.3.i.d.881.7
Level $1584$
Weight $3$
Character 1584.881
Analytic conductor $43.161$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1584,3,Mod(881,1584)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1584, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1584.881"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1584 = 2^{4} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1584.i (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,16,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(43.1608738747\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.765751005184.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 7x^{6} - 38x^{5} - 3x^{4} + 212x^{3} - 140x^{2} - 352x + 396 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 792)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.7
Root \(1.31766 - 0.650677i\) of defining polynomial
Character \(\chi\) \(=\) 1584.881
Dual form 1584.3.i.d.881.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.14112i q^{5} -6.53081 q^{7} +3.31662i q^{11} +17.6314 q^{13} +11.2438i q^{17} +6.26101 q^{19} +11.7312i q^{23} -1.43108 q^{25} -11.5270i q^{29} -15.5120 q^{31} -33.5757i q^{35} +30.0340 q^{37} +49.6155i q^{41} +17.3813 q^{43} -31.5758i q^{47} -6.34853 q^{49} +81.4442i q^{53} -17.0512 q^{55} -3.76090i q^{59} -90.3789 q^{61} +90.6450i q^{65} -94.3890 q^{67} +54.0794i q^{71} +16.1593 q^{73} -21.6602i q^{77} -149.604 q^{79} -86.6168i q^{83} -57.8058 q^{85} +115.959i q^{89} -115.147 q^{91} +32.1886i q^{95} +61.8154 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{7} + 8 q^{13} - 8 q^{19} + 16 q^{25} - 8 q^{31} + 8 q^{37} + 40 q^{43} - 160 q^{49} + 72 q^{61} + 16 q^{67} - 64 q^{79} + 240 q^{85} - 416 q^{91} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1584\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(353\) \(991\) \(1189\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.14112i 1.02822i 0.857723 + 0.514112i \(0.171878\pi\)
−0.857723 + 0.514112i \(0.828122\pi\)
\(6\) 0 0
\(7\) −6.53081 −0.932973 −0.466486 0.884528i \(-0.654480\pi\)
−0.466486 + 0.884528i \(0.654480\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.31662i 0.301511i
\(12\) 0 0
\(13\) 17.6314 1.35626 0.678130 0.734942i \(-0.262791\pi\)
0.678130 + 0.734942i \(0.262791\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 11.2438i 0.661402i 0.943736 + 0.330701i \(0.107285\pi\)
−0.943736 + 0.330701i \(0.892715\pi\)
\(18\) 0 0
\(19\) 6.26101 0.329527 0.164763 0.986333i \(-0.447314\pi\)
0.164763 + 0.986333i \(0.447314\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 11.7312i 0.510050i 0.966934 + 0.255025i \(0.0820837\pi\)
−0.966934 + 0.255025i \(0.917916\pi\)
\(24\) 0 0
\(25\) −1.43108 −0.0572431
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 11.5270i − 0.397482i −0.980052 0.198741i \(-0.936315\pi\)
0.980052 0.198741i \(-0.0636853\pi\)
\(30\) 0 0
\(31\) −15.5120 −0.500386 −0.250193 0.968196i \(-0.580494\pi\)
−0.250193 + 0.968196i \(0.580494\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 33.5757i − 0.959304i
\(36\) 0 0
\(37\) 30.0340 0.811729 0.405864 0.913933i \(-0.366971\pi\)
0.405864 + 0.913933i \(0.366971\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 49.6155i 1.21013i 0.796175 + 0.605067i \(0.206854\pi\)
−0.796175 + 0.605067i \(0.793146\pi\)
\(42\) 0 0
\(43\) 17.3813 0.404215 0.202108 0.979363i \(-0.435221\pi\)
0.202108 + 0.979363i \(0.435221\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 31.5758i − 0.671826i −0.941893 0.335913i \(-0.890955\pi\)
0.941893 0.335913i \(-0.109045\pi\)
\(48\) 0 0
\(49\) −6.34853 −0.129562
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 81.4442i 1.53668i 0.640040 + 0.768341i \(0.278918\pi\)
−0.640040 + 0.768341i \(0.721082\pi\)
\(54\) 0 0
\(55\) −17.0512 −0.310021
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 3.76090i − 0.0637440i −0.999492 0.0318720i \(-0.989853\pi\)
0.999492 0.0318720i \(-0.0101469\pi\)
\(60\) 0 0
\(61\) −90.3789 −1.48162 −0.740811 0.671714i \(-0.765559\pi\)
−0.740811 + 0.671714i \(0.765559\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 90.6450i 1.39454i
\(66\) 0 0
\(67\) −94.3890 −1.40879 −0.704395 0.709808i \(-0.748782\pi\)
−0.704395 + 0.709808i \(0.748782\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 54.0794i 0.761681i 0.924641 + 0.380841i \(0.124365\pi\)
−0.924641 + 0.380841i \(0.875635\pi\)
\(72\) 0 0
\(73\) 16.1593 0.221360 0.110680 0.993856i \(-0.464697\pi\)
0.110680 + 0.993856i \(0.464697\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 21.6602i − 0.281302i
\(78\) 0 0
\(79\) −149.604 −1.89372 −0.946858 0.321652i \(-0.895762\pi\)
−0.946858 + 0.321652i \(0.895762\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 86.6168i − 1.04358i −0.853075 0.521788i \(-0.825265\pi\)
0.853075 0.521788i \(-0.174735\pi\)
\(84\) 0 0
\(85\) −57.8058 −0.680069
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 115.959i 1.30291i 0.758689 + 0.651453i \(0.225840\pi\)
−0.758689 + 0.651453i \(0.774160\pi\)
\(90\) 0 0
\(91\) −115.147 −1.26535
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 32.1886i 0.338827i
\(96\) 0 0
\(97\) 61.8154 0.637272 0.318636 0.947877i \(-0.396775\pi\)
0.318636 + 0.947877i \(0.396775\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 54.2101i − 0.536734i −0.963317 0.268367i \(-0.913516\pi\)
0.963317 0.268367i \(-0.0864840\pi\)
\(102\) 0 0
\(103\) −71.5138 −0.694308 −0.347154 0.937808i \(-0.612852\pi\)
−0.347154 + 0.937808i \(0.612852\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 68.4553i − 0.639769i −0.947457 0.319884i \(-0.896356\pi\)
0.947457 0.319884i \(-0.103644\pi\)
\(108\) 0 0
\(109\) −56.9124 −0.522132 −0.261066 0.965321i \(-0.584074\pi\)
−0.261066 + 0.965321i \(0.584074\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 5.00225i − 0.0442677i −0.999755 0.0221339i \(-0.992954\pi\)
0.999755 0.0221339i \(-0.00704600\pi\)
\(114\) 0 0
\(115\) −60.3112 −0.524445
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 73.4313i − 0.617070i
\(120\) 0 0
\(121\) −11.0000 −0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 121.171i 0.969365i
\(126\) 0 0
\(127\) −103.416 −0.814297 −0.407148 0.913362i \(-0.633477\pi\)
−0.407148 + 0.913362i \(0.633477\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 224.687i 1.71517i 0.514346 + 0.857583i \(0.328035\pi\)
−0.514346 + 0.857583i \(0.671965\pi\)
\(132\) 0 0
\(133\) −40.8894 −0.307439
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 107.878i − 0.787434i −0.919232 0.393717i \(-0.871189\pi\)
0.919232 0.393717i \(-0.128811\pi\)
\(138\) 0 0
\(139\) 244.702 1.76045 0.880223 0.474560i \(-0.157393\pi\)
0.880223 + 0.474560i \(0.157393\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 58.4767i 0.408928i
\(144\) 0 0
\(145\) 59.2616 0.408701
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 102.226i − 0.686083i −0.939320 0.343041i \(-0.888543\pi\)
0.939320 0.343041i \(-0.111457\pi\)
\(150\) 0 0
\(151\) 15.8765 0.105142 0.0525711 0.998617i \(-0.483258\pi\)
0.0525711 + 0.998617i \(0.483258\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 79.7488i − 0.514508i
\(156\) 0 0
\(157\) −289.531 −1.84415 −0.922075 0.387012i \(-0.873507\pi\)
−0.922075 + 0.387012i \(0.873507\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 76.6139i − 0.475863i
\(162\) 0 0
\(163\) −68.0738 −0.417630 −0.208815 0.977955i \(-0.566961\pi\)
−0.208815 + 0.977955i \(0.566961\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 38.5311i 0.230725i 0.993323 + 0.115363i \(0.0368030\pi\)
−0.993323 + 0.115363i \(0.963197\pi\)
\(168\) 0 0
\(169\) 141.865 0.839440
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 70.6790i 0.408549i 0.978914 + 0.204274i \(0.0654835\pi\)
−0.978914 + 0.204274i \(0.934516\pi\)
\(174\) 0 0
\(175\) 9.34610 0.0534063
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 126.675i 0.707684i 0.935305 + 0.353842i \(0.115125\pi\)
−0.935305 + 0.353842i \(0.884875\pi\)
\(180\) 0 0
\(181\) −131.282 −0.725312 −0.362656 0.931923i \(-0.618130\pi\)
−0.362656 + 0.931923i \(0.618130\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 154.408i 0.834639i
\(186\) 0 0
\(187\) −37.2916 −0.199420
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 69.1159i − 0.361864i −0.983496 0.180932i \(-0.942089\pi\)
0.983496 0.180932i \(-0.0579113\pi\)
\(192\) 0 0
\(193\) 29.6968 0.153869 0.0769346 0.997036i \(-0.475487\pi\)
0.0769346 + 0.997036i \(0.475487\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 190.155i 0.965253i 0.875826 + 0.482626i \(0.160317\pi\)
−0.875826 + 0.482626i \(0.839683\pi\)
\(198\) 0 0
\(199\) 324.697 1.63164 0.815821 0.578305i \(-0.196285\pi\)
0.815821 + 0.578305i \(0.196285\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 75.2806i 0.370840i
\(204\) 0 0
\(205\) −255.079 −1.24429
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 20.7654i 0.0993560i
\(210\) 0 0
\(211\) −137.160 −0.650048 −0.325024 0.945706i \(-0.605372\pi\)
−0.325024 + 0.945706i \(0.605372\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 89.3591i 0.415624i
\(216\) 0 0
\(217\) 101.306 0.466846
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 198.244i 0.897032i
\(222\) 0 0
\(223\) −307.199 −1.37758 −0.688788 0.724963i \(-0.741857\pi\)
−0.688788 + 0.724963i \(0.741857\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 209.890i 0.924625i 0.886717 + 0.462313i \(0.152980\pi\)
−0.886717 + 0.462313i \(0.847020\pi\)
\(228\) 0 0
\(229\) −223.991 −0.978127 −0.489064 0.872248i \(-0.662661\pi\)
−0.489064 + 0.872248i \(0.662661\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 103.049i − 0.442269i −0.975243 0.221134i \(-0.929024\pi\)
0.975243 0.221134i \(-0.0709759\pi\)
\(234\) 0 0
\(235\) 162.335 0.690787
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 300.704i 1.25818i 0.777333 + 0.629089i \(0.216572\pi\)
−0.777333 + 0.629089i \(0.783428\pi\)
\(240\) 0 0
\(241\) −87.3178 −0.362314 −0.181157 0.983454i \(-0.557984\pi\)
−0.181157 + 0.983454i \(0.557984\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 32.6385i − 0.133219i
\(246\) 0 0
\(247\) 110.390 0.446924
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 257.973i 1.02778i 0.857856 + 0.513890i \(0.171796\pi\)
−0.857856 + 0.513890i \(0.828204\pi\)
\(252\) 0 0
\(253\) −38.9078 −0.153786
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 176.473i − 0.686667i −0.939214 0.343334i \(-0.888444\pi\)
0.939214 0.343334i \(-0.111556\pi\)
\(258\) 0 0
\(259\) −196.146 −0.757321
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 430.468i 1.63676i 0.574677 + 0.818380i \(0.305128\pi\)
−0.574677 + 0.818380i \(0.694872\pi\)
\(264\) 0 0
\(265\) −418.714 −1.58005
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 317.393i − 1.17990i −0.807440 0.589950i \(-0.799148\pi\)
0.807440 0.589950i \(-0.200852\pi\)
\(270\) 0 0
\(271\) 221.303 0.816617 0.408309 0.912844i \(-0.366119\pi\)
0.408309 + 0.912844i \(0.366119\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 4.74635i − 0.0172595i
\(276\) 0 0
\(277\) 358.691 1.29491 0.647456 0.762103i \(-0.275833\pi\)
0.647456 + 0.762103i \(0.275833\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 349.449i − 1.24359i −0.783179 0.621796i \(-0.786403\pi\)
0.783179 0.621796i \(-0.213597\pi\)
\(282\) 0 0
\(283\) 32.9640 0.116480 0.0582402 0.998303i \(-0.481451\pi\)
0.0582402 + 0.998303i \(0.481451\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 324.029i − 1.12902i
\(288\) 0 0
\(289\) 162.576 0.562548
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 34.2107i − 0.116760i −0.998294 0.0583800i \(-0.981407\pi\)
0.998294 0.0583800i \(-0.0185935\pi\)
\(294\) 0 0
\(295\) 19.3352 0.0655431
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 206.836i 0.691760i
\(300\) 0 0
\(301\) −113.514 −0.377122
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 464.649i − 1.52344i
\(306\) 0 0
\(307\) 259.296 0.844612 0.422306 0.906453i \(-0.361221\pi\)
0.422306 + 0.906453i \(0.361221\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 203.443i 0.654158i 0.944997 + 0.327079i \(0.106064\pi\)
−0.944997 + 0.327079i \(0.893936\pi\)
\(312\) 0 0
\(313\) −260.512 −0.832308 −0.416154 0.909294i \(-0.636622\pi\)
−0.416154 + 0.909294i \(0.636622\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 430.399i 1.35772i 0.734265 + 0.678862i \(0.237527\pi\)
−0.734265 + 0.678862i \(0.762473\pi\)
\(318\) 0 0
\(319\) 38.2307 0.119845
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 70.3977i 0.217950i
\(324\) 0 0
\(325\) −25.2319 −0.0776365
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 206.216i 0.626795i
\(330\) 0 0
\(331\) −281.803 −0.851368 −0.425684 0.904872i \(-0.639967\pi\)
−0.425684 + 0.904872i \(0.639967\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 485.265i − 1.44855i
\(336\) 0 0
\(337\) 540.253 1.60313 0.801563 0.597911i \(-0.204002\pi\)
0.801563 + 0.597911i \(0.204002\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 51.4473i − 0.150872i
\(342\) 0 0
\(343\) 361.471 1.05385
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 203.053i 0.585168i 0.956240 + 0.292584i \(0.0945151\pi\)
−0.956240 + 0.292584i \(0.905485\pi\)
\(348\) 0 0
\(349\) 484.661 1.38871 0.694357 0.719631i \(-0.255689\pi\)
0.694357 + 0.719631i \(0.255689\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 667.489i − 1.89090i −0.325761 0.945452i \(-0.605621\pi\)
0.325761 0.945452i \(-0.394379\pi\)
\(354\) 0 0
\(355\) −278.028 −0.783178
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 357.533i − 0.995915i −0.867202 0.497957i \(-0.834084\pi\)
0.867202 0.497957i \(-0.165916\pi\)
\(360\) 0 0
\(361\) −321.800 −0.891412
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 83.0767i 0.227607i
\(366\) 0 0
\(367\) 55.6254 0.151568 0.0757839 0.997124i \(-0.475854\pi\)
0.0757839 + 0.997124i \(0.475854\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 531.896i − 1.43368i
\(372\) 0 0
\(373\) −512.765 −1.37470 −0.687352 0.726324i \(-0.741227\pi\)
−0.687352 + 0.726324i \(0.741227\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 203.237i − 0.539089i
\(378\) 0 0
\(379\) 414.573 1.09386 0.546930 0.837179i \(-0.315797\pi\)
0.546930 + 0.837179i \(0.315797\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 218.336i − 0.570067i −0.958518 0.285033i \(-0.907995\pi\)
0.958518 0.285033i \(-0.0920047\pi\)
\(384\) 0 0
\(385\) 111.358 0.289241
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 176.025i − 0.452508i −0.974068 0.226254i \(-0.927352\pi\)
0.974068 0.226254i \(-0.0726479\pi\)
\(390\) 0 0
\(391\) −131.903 −0.337348
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 769.129i − 1.94716i
\(396\) 0 0
\(397\) −453.253 −1.14169 −0.570847 0.821056i \(-0.693385\pi\)
−0.570847 + 0.821056i \(0.693385\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 485.460i 1.21062i 0.795988 + 0.605312i \(0.206952\pi\)
−0.795988 + 0.605312i \(0.793048\pi\)
\(402\) 0 0
\(403\) −273.497 −0.678653
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 99.6114i 0.244745i
\(408\) 0 0
\(409\) 723.039 1.76782 0.883911 0.467655i \(-0.154901\pi\)
0.883911 + 0.467655i \(0.154901\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 24.5617i 0.0594714i
\(414\) 0 0
\(415\) 445.307 1.07303
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 409.844i − 0.978149i −0.872242 0.489074i \(-0.837335\pi\)
0.872242 0.489074i \(-0.162665\pi\)
\(420\) 0 0
\(421\) 387.315 0.919988 0.459994 0.887922i \(-0.347852\pi\)
0.459994 + 0.887922i \(0.347852\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 16.0908i − 0.0378607i
\(426\) 0 0
\(427\) 590.248 1.38231
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 415.264i 0.963490i 0.876311 + 0.481745i \(0.159997\pi\)
−0.876311 + 0.481745i \(0.840003\pi\)
\(432\) 0 0
\(433\) −109.402 −0.252659 −0.126330 0.991988i \(-0.540320\pi\)
−0.126330 + 0.991988i \(0.540320\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 73.4488i 0.168075i
\(438\) 0 0
\(439\) −251.139 −0.572070 −0.286035 0.958219i \(-0.592337\pi\)
−0.286035 + 0.958219i \(0.592337\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 877.049i 1.97979i 0.141785 + 0.989897i \(0.454716\pi\)
−0.141785 + 0.989897i \(0.545284\pi\)
\(444\) 0 0
\(445\) −596.157 −1.33968
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 552.992i − 1.23161i −0.787900 0.615803i \(-0.788832\pi\)
0.787900 0.615803i \(-0.211168\pi\)
\(450\) 0 0
\(451\) −164.556 −0.364869
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 591.985i − 1.30107i
\(456\) 0 0
\(457\) 470.246 1.02898 0.514492 0.857495i \(-0.327981\pi\)
0.514492 + 0.857495i \(0.327981\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 481.242i 1.04391i 0.852973 + 0.521955i \(0.174797\pi\)
−0.852973 + 0.521955i \(0.825203\pi\)
\(462\) 0 0
\(463\) 390.401 0.843198 0.421599 0.906782i \(-0.361469\pi\)
0.421599 + 0.906782i \(0.361469\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 841.146i − 1.80117i −0.434681 0.900584i \(-0.643139\pi\)
0.434681 0.900584i \(-0.356861\pi\)
\(468\) 0 0
\(469\) 616.436 1.31436
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 57.6471i 0.121876i
\(474\) 0 0
\(475\) −8.95999 −0.0188631
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 494.806i − 1.03300i −0.856288 0.516499i \(-0.827235\pi\)
0.856288 0.516499i \(-0.172765\pi\)
\(480\) 0 0
\(481\) 529.540 1.10092
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 317.800i 0.655258i
\(486\) 0 0
\(487\) −587.629 −1.20663 −0.603315 0.797503i \(-0.706154\pi\)
−0.603315 + 0.797503i \(0.706154\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 19.6397i 0.0399994i 0.999800 + 0.0199997i \(0.00636652\pi\)
−0.999800 + 0.0199997i \(0.993633\pi\)
\(492\) 0 0
\(493\) 129.608 0.262896
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 353.182i − 0.710628i
\(498\) 0 0
\(499\) 206.961 0.414752 0.207376 0.978261i \(-0.433508\pi\)
0.207376 + 0.978261i \(0.433508\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 579.562i 1.15221i 0.817375 + 0.576106i \(0.195428\pi\)
−0.817375 + 0.576106i \(0.804572\pi\)
\(504\) 0 0
\(505\) 278.701 0.551882
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 245.866i 0.483037i 0.970396 + 0.241518i \(0.0776454\pi\)
−0.970396 + 0.241518i \(0.922355\pi\)
\(510\) 0 0
\(511\) −105.533 −0.206523
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 367.661i − 0.713904i
\(516\) 0 0
\(517\) 104.725 0.202563
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 666.364i − 1.27901i −0.768787 0.639505i \(-0.779139\pi\)
0.768787 0.639505i \(-0.220861\pi\)
\(522\) 0 0
\(523\) 37.5819 0.0718583 0.0359292 0.999354i \(-0.488561\pi\)
0.0359292 + 0.999354i \(0.488561\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 174.414i − 0.330956i
\(528\) 0 0
\(529\) 391.380 0.739849
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 874.789i 1.64126i
\(534\) 0 0
\(535\) 351.936 0.657825
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 21.0557i − 0.0390644i
\(540\) 0 0
\(541\) 492.691 0.910705 0.455352 0.890311i \(-0.349513\pi\)
0.455352 + 0.890311i \(0.349513\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 292.593i − 0.536868i
\(546\) 0 0
\(547\) −514.210 −0.940055 −0.470027 0.882652i \(-0.655756\pi\)
−0.470027 + 0.882652i \(0.655756\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 72.1706i − 0.130981i
\(552\) 0 0
\(553\) 977.032 1.76679
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 295.653i 0.530795i 0.964139 + 0.265398i \(0.0855032\pi\)
−0.964139 + 0.265398i \(0.914497\pi\)
\(558\) 0 0
\(559\) 306.456 0.548221
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 746.059i 1.32515i 0.748996 + 0.662575i \(0.230536\pi\)
−0.748996 + 0.662575i \(0.769464\pi\)
\(564\) 0 0
\(565\) 25.7172 0.0455171
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 29.8074i 0.0523856i 0.999657 + 0.0261928i \(0.00833838\pi\)
−0.999657 + 0.0261928i \(0.991662\pi\)
\(570\) 0 0
\(571\) 853.099 1.49404 0.747022 0.664799i \(-0.231483\pi\)
0.747022 + 0.664799i \(0.231483\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 16.7882i − 0.0291969i
\(576\) 0 0
\(577\) 694.635 1.20387 0.601937 0.798544i \(-0.294396\pi\)
0.601937 + 0.798544i \(0.294396\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 565.678i 0.973628i
\(582\) 0 0
\(583\) −270.120 −0.463327
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 57.7063i − 0.0983072i −0.998791 0.0491536i \(-0.984348\pi\)
0.998791 0.0491536i \(-0.0156524\pi\)
\(588\) 0 0
\(589\) −97.1205 −0.164890
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 85.9372i 0.144919i 0.997371 + 0.0724597i \(0.0230849\pi\)
−0.997371 + 0.0724597i \(0.976915\pi\)
\(594\) 0 0
\(595\) 377.519 0.634486
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 309.516i − 0.516721i −0.966049 0.258360i \(-0.916818\pi\)
0.966049 0.258360i \(-0.0831822\pi\)
\(600\) 0 0
\(601\) 685.624 1.14081 0.570403 0.821365i \(-0.306787\pi\)
0.570403 + 0.821365i \(0.306787\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 56.5523i − 0.0934748i
\(606\) 0 0
\(607\) 72.9666 0.120209 0.0601043 0.998192i \(-0.480857\pi\)
0.0601043 + 0.998192i \(0.480857\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 556.725i − 0.911170i
\(612\) 0 0
\(613\) −1048.28 −1.71008 −0.855039 0.518563i \(-0.826467\pi\)
−0.855039 + 0.518563i \(0.826467\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 262.873i 0.426051i 0.977047 + 0.213025i \(0.0683317\pi\)
−0.977047 + 0.213025i \(0.931668\pi\)
\(618\) 0 0
\(619\) −518.070 −0.836946 −0.418473 0.908229i \(-0.637435\pi\)
−0.418473 + 0.908229i \(0.637435\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 757.303i − 1.21558i
\(624\) 0 0
\(625\) −658.729 −1.05397
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 337.697i 0.536879i
\(630\) 0 0
\(631\) −1045.97 −1.65763 −0.828816 0.559521i \(-0.810985\pi\)
−0.828816 + 0.559521i \(0.810985\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 531.672i − 0.837279i
\(636\) 0 0
\(637\) −111.933 −0.175720
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 150.474i − 0.234749i −0.993088 0.117374i \(-0.962552\pi\)
0.993088 0.117374i \(-0.0374477\pi\)
\(642\) 0 0
\(643\) 532.270 0.827792 0.413896 0.910324i \(-0.364168\pi\)
0.413896 + 0.910324i \(0.364168\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 554.583i 0.857161i 0.903504 + 0.428581i \(0.140986\pi\)
−0.903504 + 0.428581i \(0.859014\pi\)
\(648\) 0 0
\(649\) 12.4735 0.0192195
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 24.2762i − 0.0371765i −0.999827 0.0185882i \(-0.994083\pi\)
0.999827 0.0185882i \(-0.00591716\pi\)
\(654\) 0 0
\(655\) −1155.14 −1.76357
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 502.822i − 0.763007i −0.924367 0.381504i \(-0.875406\pi\)
0.924367 0.381504i \(-0.124594\pi\)
\(660\) 0 0
\(661\) −1086.03 −1.64301 −0.821505 0.570202i \(-0.806865\pi\)
−0.821505 + 0.570202i \(0.806865\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 210.217i − 0.316116i
\(666\) 0 0
\(667\) 135.225 0.202736
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 299.753i − 0.446726i
\(672\) 0 0
\(673\) 1261.06 1.87378 0.936891 0.349622i \(-0.113690\pi\)
0.936891 + 0.349622i \(0.113690\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 315.493i − 0.466017i −0.972475 0.233008i \(-0.925143\pi\)
0.972475 0.233008i \(-0.0748569\pi\)
\(678\) 0 0
\(679\) −403.705 −0.594558
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 736.009i − 1.07761i −0.842430 0.538806i \(-0.818875\pi\)
0.842430 0.538806i \(-0.181125\pi\)
\(684\) 0 0
\(685\) 554.616 0.809658
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1435.97i 2.08414i
\(690\) 0 0
\(691\) 1180.45 1.70832 0.854158 0.520014i \(-0.174073\pi\)
0.854158 + 0.520014i \(0.174073\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1258.04i 1.81013i
\(696\) 0 0
\(697\) −557.868 −0.800385
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 263.104i − 0.375327i −0.982233 0.187663i \(-0.939909\pi\)
0.982233 0.187663i \(-0.0600914\pi\)
\(702\) 0 0
\(703\) 188.043 0.267486
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 354.036i 0.500758i
\(708\) 0 0
\(709\) 93.4100 0.131749 0.0658745 0.997828i \(-0.479016\pi\)
0.0658745 + 0.997828i \(0.479016\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 181.973i − 0.255222i
\(714\) 0 0
\(715\) −300.635 −0.420469
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 1244.91i − 1.73145i −0.500523 0.865723i \(-0.666859\pi\)
0.500523 0.865723i \(-0.333141\pi\)
\(720\) 0 0
\(721\) 467.043 0.647771
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 16.4960i 0.0227531i
\(726\) 0 0
\(727\) 1428.70 1.96520 0.982601 0.185727i \(-0.0594640\pi\)
0.982601 + 0.185727i \(0.0594640\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 195.432i 0.267349i
\(732\) 0 0
\(733\) −1022.10 −1.39440 −0.697202 0.716875i \(-0.745572\pi\)
−0.697202 + 0.716875i \(0.745572\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 313.053i − 0.424766i
\(738\) 0 0
\(739\) −1068.37 −1.44569 −0.722846 0.691009i \(-0.757166\pi\)
−0.722846 + 0.691009i \(0.757166\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 970.958i 1.30681i 0.757009 + 0.653404i \(0.226660\pi\)
−0.757009 + 0.653404i \(0.773340\pi\)
\(744\) 0 0
\(745\) 525.558 0.705446
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 447.068i 0.596887i
\(750\) 0 0
\(751\) 1375.55 1.83163 0.915814 0.401603i \(-0.131547\pi\)
0.915814 + 0.401603i \(0.131547\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 81.6228i 0.108110i
\(756\) 0 0
\(757\) 53.6621 0.0708878 0.0354439 0.999372i \(-0.488715\pi\)
0.0354439 + 0.999372i \(0.488715\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 946.461i − 1.24371i −0.783134 0.621853i \(-0.786380\pi\)
0.783134 0.621853i \(-0.213620\pi\)
\(762\) 0 0
\(763\) 371.684 0.487135
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 66.3098i − 0.0864534i
\(768\) 0 0
\(769\) −145.151 −0.188754 −0.0943768 0.995537i \(-0.530086\pi\)
−0.0943768 + 0.995537i \(0.530086\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 615.110i − 0.795743i −0.917441 0.397872i \(-0.869749\pi\)
0.917441 0.397872i \(-0.130251\pi\)
\(774\) 0 0
\(775\) 22.1988 0.0286436
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 310.643i 0.398772i
\(780\) 0 0
\(781\) −179.361 −0.229655
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 1488.51i − 1.89620i
\(786\) 0 0
\(787\) −55.7686 −0.0708622 −0.0354311 0.999372i \(-0.511280\pi\)
−0.0354311 + 0.999372i \(0.511280\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 32.6688i 0.0413006i
\(792\) 0 0
\(793\) −1593.50 −2.00946
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 510.236i − 0.640196i −0.947385 0.320098i \(-0.896284\pi\)
0.947385 0.320098i \(-0.103716\pi\)
\(798\) 0 0
\(799\) 355.033 0.444347
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 53.5943i 0.0667425i
\(804\) 0 0
\(805\) 393.881 0.489293
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 583.538i − 0.721307i −0.932700 0.360654i \(-0.882554\pi\)
0.932700 0.360654i \(-0.117446\pi\)
\(810\) 0 0
\(811\) 398.888 0.491847 0.245923 0.969289i \(-0.420909\pi\)
0.245923 + 0.969289i \(0.420909\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 349.975i − 0.429417i
\(816\) 0 0
\(817\) 108.824 0.133200
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 792.594i − 0.965400i −0.875786 0.482700i \(-0.839656\pi\)
0.875786 0.482700i \(-0.160344\pi\)
\(822\) 0 0
\(823\) 51.7597 0.0628915 0.0314457 0.999505i \(-0.489989\pi\)
0.0314457 + 0.999505i \(0.489989\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 629.335i 0.760986i 0.924784 + 0.380493i \(0.124246\pi\)
−0.924784 + 0.380493i \(0.875754\pi\)
\(828\) 0 0
\(829\) −475.928 −0.574099 −0.287050 0.957916i \(-0.592674\pi\)
−0.287050 + 0.957916i \(0.592674\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 71.3818i − 0.0856925i
\(834\) 0 0
\(835\) −198.093 −0.237237
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 453.978i − 0.541094i −0.962707 0.270547i \(-0.912795\pi\)
0.962707 0.270547i \(-0.0872045\pi\)
\(840\) 0 0
\(841\) 708.129 0.842008
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 729.346i 0.863132i
\(846\) 0 0
\(847\) 71.8389 0.0848157
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 352.333i 0.414022i
\(852\) 0 0
\(853\) −118.608 −0.139048 −0.0695238 0.997580i \(-0.522148\pi\)
−0.0695238 + 0.997580i \(0.522148\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 578.704i 0.675268i 0.941278 + 0.337634i \(0.109627\pi\)
−0.941278 + 0.337634i \(0.890373\pi\)
\(858\) 0 0
\(859\) −178.338 −0.207611 −0.103806 0.994598i \(-0.533102\pi\)
−0.103806 + 0.994598i \(0.533102\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 852.256i 0.987550i 0.869590 + 0.493775i \(0.164383\pi\)
−0.869590 + 0.493775i \(0.835617\pi\)
\(864\) 0 0
\(865\) −363.369 −0.420080
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 496.179i − 0.570977i
\(870\) 0 0
\(871\) −1664.21 −1.91069
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 791.342i − 0.904391i
\(876\) 0 0
\(877\) −348.288 −0.397136 −0.198568 0.980087i \(-0.563629\pi\)
−0.198568 + 0.980087i \(0.563629\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 557.938i 0.633301i 0.948542 + 0.316650i \(0.102558\pi\)
−0.948542 + 0.316650i \(0.897442\pi\)
\(882\) 0 0
\(883\) −721.194 −0.816755 −0.408377 0.912813i \(-0.633905\pi\)
−0.408377 + 0.912813i \(0.633905\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 979.843i 1.10467i 0.833622 + 0.552335i \(0.186263\pi\)
−0.833622 + 0.552335i \(0.813737\pi\)
\(888\) 0 0
\(889\) 675.388 0.759717
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 197.696i − 0.221385i
\(894\) 0 0
\(895\) −651.253 −0.727657
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 178.806i 0.198894i
\(900\) 0 0
\(901\) −915.744 −1.01636
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 674.934i − 0.745783i
\(906\) 0 0
\(907\) −181.575 −0.200193 −0.100096 0.994978i \(-0.531915\pi\)
−0.100096 + 0.994978i \(0.531915\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 331.415i − 0.363793i −0.983318 0.181896i \(-0.941776\pi\)
0.983318 0.181896i \(-0.0582236\pi\)
\(912\) 0 0
\(913\) 287.275 0.314650
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 1467.39i − 1.60020i
\(918\) 0 0
\(919\) −565.851 −0.615725 −0.307862 0.951431i \(-0.599614\pi\)
−0.307862 + 0.951431i \(0.599614\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 953.493i 1.03304i
\(924\) 0 0
\(925\) −42.9810 −0.0464659
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1673.87i 1.80180i 0.434032 + 0.900898i \(0.357091\pi\)
−0.434032 + 0.900898i \(0.642909\pi\)
\(930\) 0 0
\(931\) −39.7482 −0.0426941
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 191.720i − 0.205048i
\(936\) 0 0
\(937\) −161.303 −0.172149 −0.0860744 0.996289i \(-0.527432\pi\)
−0.0860744 + 0.996289i \(0.527432\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 1263.86i − 1.34311i −0.740956 0.671553i \(-0.765627\pi\)
0.740956 0.671553i \(-0.234373\pi\)
\(942\) 0 0
\(943\) −582.047 −0.617229
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1051.95i 1.11082i 0.831576 + 0.555411i \(0.187439\pi\)
−0.831576 + 0.555411i \(0.812561\pi\)
\(948\) 0 0
\(949\) 284.910 0.300222
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1367.82i 1.43528i 0.696414 + 0.717640i \(0.254778\pi\)
−0.696414 + 0.717640i \(0.745222\pi\)
\(954\) 0 0
\(955\) 355.333 0.372076
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 704.534i 0.734655i
\(960\) 0 0
\(961\) −720.379 −0.749614
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 152.675i 0.158212i
\(966\) 0 0
\(967\) 879.133 0.909135 0.454567 0.890712i \(-0.349794\pi\)
0.454567 + 0.890712i \(0.349794\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 347.738i − 0.358123i −0.983838 0.179062i \(-0.942694\pi\)
0.983838 0.179062i \(-0.0573061\pi\)
\(972\) 0 0
\(973\) −1598.10 −1.64245
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1338.30i 1.36980i 0.728637 + 0.684900i \(0.240154\pi\)
−0.728637 + 0.684900i \(0.759846\pi\)
\(978\) 0 0
\(979\) −384.591 −0.392841
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 266.954i − 0.271571i −0.990738 0.135785i \(-0.956644\pi\)
0.990738 0.135785i \(-0.0433558\pi\)
\(984\) 0 0
\(985\) −977.608 −0.992495
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 203.902i 0.206170i
\(990\) 0 0
\(991\) 1705.91 1.72141 0.860703 0.509107i \(-0.170024\pi\)
0.860703 + 0.509107i \(0.170024\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1669.30i 1.67769i
\(996\) 0 0
\(997\) −1760.53 −1.76583 −0.882913 0.469537i \(-0.844421\pi\)
−0.882913 + 0.469537i \(0.844421\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1584.3.i.d.881.7 8
3.2 odd 2 inner 1584.3.i.d.881.2 8
4.3 odd 2 792.3.i.a.89.7 yes 8
12.11 even 2 792.3.i.a.89.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
792.3.i.a.89.2 8 12.11 even 2
792.3.i.a.89.7 yes 8 4.3 odd 2
1584.3.i.d.881.2 8 3.2 odd 2 inner
1584.3.i.d.881.7 8 1.1 even 1 trivial