Properties

Label 1584.3.i.d.881.4
Level $1584$
Weight $3$
Character 1584.881
Analytic conductor $43.161$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1584,3,Mod(881,1584)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1584, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1584.881"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1584 = 2^{4} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1584.i (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,16,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(43.1608738747\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.765751005184.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 7x^{6} - 38x^{5} - 3x^{4} + 212x^{3} - 140x^{2} - 352x + 396 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 792)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.4
Root \(-0.817659 + 3.72320i\) of defining polynomial
Character \(\chi\) \(=\) 1584.881
Dual form 1584.3.i.d.881.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.898476i q^{5} +5.84039 q^{7} +3.31662i q^{11} -10.9410 q^{13} +5.82749i q^{17} -27.0227 q^{19} -15.9738i q^{23} +24.1927 q^{25} +47.6224i q^{29} -14.6305 q^{31} -5.24745i q^{35} -37.4148 q^{37} +9.20811i q^{41} -73.0471 q^{43} +8.20831i q^{47} -14.8898 q^{49} +39.1670i q^{53} +2.97991 q^{55} -60.4173i q^{59} +94.3077 q^{61} +9.83019i q^{65} +4.58065 q^{67} -94.4174i q^{71} +2.60239 q^{73} +19.3704i q^{77} -21.1802 q^{79} +95.0013i q^{83} +5.23586 q^{85} +58.0557i q^{89} -63.8995 q^{91} +24.2792i q^{95} -11.5304 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{7} + 8 q^{13} - 8 q^{19} + 16 q^{25} - 8 q^{31} + 8 q^{37} + 40 q^{43} - 160 q^{49} + 72 q^{61} + 16 q^{67} - 64 q^{79} + 240 q^{85} - 416 q^{91} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1584\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(353\) \(991\) \(1189\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 0.898476i − 0.179695i −0.995956 0.0898476i \(-0.971362\pi\)
0.995956 0.0898476i \(-0.0286380\pi\)
\(6\) 0 0
\(7\) 5.84039 0.834342 0.417171 0.908828i \(-0.363022\pi\)
0.417171 + 0.908828i \(0.363022\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.31662i 0.301511i
\(12\) 0 0
\(13\) −10.9410 −0.841612 −0.420806 0.907151i \(-0.638253\pi\)
−0.420806 + 0.907151i \(0.638253\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.82749i 0.342794i 0.985202 + 0.171397i \(0.0548280\pi\)
−0.985202 + 0.171397i \(0.945172\pi\)
\(18\) 0 0
\(19\) −27.0227 −1.42225 −0.711123 0.703068i \(-0.751813\pi\)
−0.711123 + 0.703068i \(0.751813\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 15.9738i − 0.694513i −0.937770 0.347256i \(-0.887113\pi\)
0.937770 0.347256i \(-0.112887\pi\)
\(24\) 0 0
\(25\) 24.1927 0.967710
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 47.6224i 1.64215i 0.570818 + 0.821076i \(0.306626\pi\)
−0.570818 + 0.821076i \(0.693374\pi\)
\(30\) 0 0
\(31\) −14.6305 −0.471953 −0.235976 0.971759i \(-0.575829\pi\)
−0.235976 + 0.971759i \(0.575829\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 5.24745i − 0.149927i
\(36\) 0 0
\(37\) −37.4148 −1.01121 −0.505605 0.862765i \(-0.668731\pi\)
−0.505605 + 0.862765i \(0.668731\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9.20811i 0.224588i 0.993675 + 0.112294i \(0.0358199\pi\)
−0.993675 + 0.112294i \(0.964180\pi\)
\(42\) 0 0
\(43\) −73.0471 −1.69877 −0.849385 0.527774i \(-0.823027\pi\)
−0.849385 + 0.527774i \(0.823027\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.20831i 0.174645i 0.996180 + 0.0873224i \(0.0278310\pi\)
−0.996180 + 0.0873224i \(0.972169\pi\)
\(48\) 0 0
\(49\) −14.8898 −0.303874
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 39.1670i 0.739000i 0.929231 + 0.369500i \(0.120471\pi\)
−0.929231 + 0.369500i \(0.879529\pi\)
\(54\) 0 0
\(55\) 2.97991 0.0541801
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 60.4173i − 1.02402i −0.858979 0.512011i \(-0.828901\pi\)
0.858979 0.512011i \(-0.171099\pi\)
\(60\) 0 0
\(61\) 94.3077 1.54603 0.773014 0.634389i \(-0.218748\pi\)
0.773014 + 0.634389i \(0.218748\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 9.83019i 0.151234i
\(66\) 0 0
\(67\) 4.58065 0.0683679 0.0341840 0.999416i \(-0.489117\pi\)
0.0341840 + 0.999416i \(0.489117\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 94.4174i − 1.32982i −0.746922 0.664911i \(-0.768469\pi\)
0.746922 0.664911i \(-0.231531\pi\)
\(72\) 0 0
\(73\) 2.60239 0.0356491 0.0178246 0.999841i \(-0.494326\pi\)
0.0178246 + 0.999841i \(0.494326\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 19.3704i 0.251564i
\(78\) 0 0
\(79\) −21.1802 −0.268103 −0.134052 0.990974i \(-0.542799\pi\)
−0.134052 + 0.990974i \(0.542799\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 95.0013i 1.14459i 0.820046 + 0.572297i \(0.193948\pi\)
−0.820046 + 0.572297i \(0.806052\pi\)
\(84\) 0 0
\(85\) 5.23586 0.0615984
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 58.0557i 0.652311i 0.945316 + 0.326155i \(0.105753\pi\)
−0.945316 + 0.326155i \(0.894247\pi\)
\(90\) 0 0
\(91\) −63.8995 −0.702192
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 24.2792i 0.255571i
\(96\) 0 0
\(97\) −11.5304 −0.118870 −0.0594351 0.998232i \(-0.518930\pi\)
−0.0594351 + 0.998232i \(0.518930\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 157.413i 1.55854i 0.626686 + 0.779272i \(0.284411\pi\)
−0.626686 + 0.779272i \(0.715589\pi\)
\(102\) 0 0
\(103\) −81.8179 −0.794348 −0.397174 0.917743i \(-0.630009\pi\)
−0.397174 + 0.917743i \(0.630009\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 61.9228i 0.578717i 0.957221 + 0.289359i \(0.0934420\pi\)
−0.957221 + 0.289359i \(0.906558\pi\)
\(108\) 0 0
\(109\) −131.444 −1.20591 −0.602953 0.797776i \(-0.706010\pi\)
−0.602953 + 0.797776i \(0.706010\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 25.0028i 0.221263i 0.993861 + 0.110632i \(0.0352874\pi\)
−0.993861 + 0.110632i \(0.964713\pi\)
\(114\) 0 0
\(115\) −14.3521 −0.124801
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 34.0348i 0.286007i
\(120\) 0 0
\(121\) −11.0000 −0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 44.1985i − 0.353588i
\(126\) 0 0
\(127\) −41.5597 −0.327242 −0.163621 0.986523i \(-0.552317\pi\)
−0.163621 + 0.986523i \(0.552317\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 135.626i − 1.03531i −0.855588 0.517657i \(-0.826804\pi\)
0.855588 0.517657i \(-0.173196\pi\)
\(132\) 0 0
\(133\) −157.823 −1.18664
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 132.459i 0.966852i 0.875385 + 0.483426i \(0.160608\pi\)
−0.875385 + 0.483426i \(0.839392\pi\)
\(138\) 0 0
\(139\) −189.749 −1.36510 −0.682549 0.730840i \(-0.739129\pi\)
−0.682549 + 0.730840i \(0.739129\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 36.2871i − 0.253756i
\(144\) 0 0
\(145\) 42.7876 0.295087
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 161.453i 1.08358i 0.840515 + 0.541789i \(0.182253\pi\)
−0.840515 + 0.541789i \(0.817747\pi\)
\(150\) 0 0
\(151\) −213.279 −1.41245 −0.706223 0.707989i \(-0.749602\pi\)
−0.706223 + 0.707989i \(0.749602\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 13.1452i 0.0848076i
\(156\) 0 0
\(157\) 49.2024 0.313391 0.156695 0.987647i \(-0.449916\pi\)
0.156695 + 0.987647i \(0.449916\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 93.2932i − 0.579461i
\(162\) 0 0
\(163\) 121.597 0.745994 0.372997 0.927832i \(-0.378330\pi\)
0.372997 + 0.927832i \(0.378330\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 297.610i 1.78210i 0.453907 + 0.891049i \(0.350030\pi\)
−0.453907 + 0.891049i \(0.649970\pi\)
\(168\) 0 0
\(169\) −49.2954 −0.291689
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 90.9506i − 0.525726i −0.964833 0.262863i \(-0.915333\pi\)
0.964833 0.262863i \(-0.0846667\pi\)
\(174\) 0 0
\(175\) 141.295 0.807401
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 168.760i 0.942791i 0.881922 + 0.471396i \(0.156250\pi\)
−0.881922 + 0.471396i \(0.843750\pi\)
\(180\) 0 0
\(181\) −264.143 −1.45936 −0.729678 0.683791i \(-0.760330\pi\)
−0.729678 + 0.683791i \(0.760330\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 33.6163i 0.181710i
\(186\) 0 0
\(187\) −19.3276 −0.103356
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 31.0641i 0.162639i 0.996688 + 0.0813197i \(0.0259135\pi\)
−0.996688 + 0.0813197i \(0.974087\pi\)
\(192\) 0 0
\(193\) −130.552 −0.676434 −0.338217 0.941068i \(-0.609824\pi\)
−0.338217 + 0.941068i \(0.609824\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 85.6037i − 0.434537i −0.976112 0.217268i \(-0.930285\pi\)
0.976112 0.217268i \(-0.0697147\pi\)
\(198\) 0 0
\(199\) −75.3159 −0.378472 −0.189236 0.981932i \(-0.560601\pi\)
−0.189236 + 0.981932i \(0.560601\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 278.134i 1.37012i
\(204\) 0 0
\(205\) 8.27327 0.0403574
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 89.6241i − 0.428823i
\(210\) 0 0
\(211\) 22.2069 0.105246 0.0526229 0.998614i \(-0.483242\pi\)
0.0526229 + 0.998614i \(0.483242\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 65.6310i 0.305261i
\(216\) 0 0
\(217\) −85.4481 −0.393770
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 63.7584i − 0.288499i
\(222\) 0 0
\(223\) −23.8473 −0.106939 −0.0534694 0.998569i \(-0.517028\pi\)
−0.0534694 + 0.998569i \(0.517028\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 33.6882i 0.148406i 0.997243 + 0.0742032i \(0.0236413\pi\)
−0.997243 + 0.0742032i \(0.976359\pi\)
\(228\) 0 0
\(229\) −334.146 −1.45915 −0.729577 0.683899i \(-0.760283\pi\)
−0.729577 + 0.683899i \(0.760283\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 300.099i − 1.28798i −0.765034 0.643990i \(-0.777278\pi\)
0.765034 0.643990i \(-0.222722\pi\)
\(234\) 0 0
\(235\) 7.37497 0.0313828
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 123.358i − 0.516142i −0.966126 0.258071i \(-0.916913\pi\)
0.966126 0.258071i \(-0.0830869\pi\)
\(240\) 0 0
\(241\) 24.6002 0.102076 0.0510378 0.998697i \(-0.483747\pi\)
0.0510378 + 0.998697i \(0.483747\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 13.3781i 0.0546046i
\(246\) 0 0
\(247\) 295.654 1.19698
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 119.450i − 0.475895i −0.971278 0.237947i \(-0.923525\pi\)
0.971278 0.237947i \(-0.0764746\pi\)
\(252\) 0 0
\(253\) 52.9791 0.209403
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 173.980i − 0.676967i −0.940972 0.338483i \(-0.890086\pi\)
0.940972 0.338483i \(-0.109914\pi\)
\(258\) 0 0
\(259\) −218.517 −0.843696
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 51.4972i − 0.195807i −0.995196 0.0979034i \(-0.968786\pi\)
0.995196 0.0979034i \(-0.0312136\pi\)
\(264\) 0 0
\(265\) 35.1906 0.132795
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 373.895i 1.38995i 0.719036 + 0.694973i \(0.244584\pi\)
−0.719036 + 0.694973i \(0.755416\pi\)
\(270\) 0 0
\(271\) 280.242 1.03410 0.517052 0.855954i \(-0.327029\pi\)
0.517052 + 0.855954i \(0.327029\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 80.2382i 0.291775i
\(276\) 0 0
\(277\) 242.334 0.874852 0.437426 0.899254i \(-0.355890\pi\)
0.437426 + 0.899254i \(0.355890\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 469.811i − 1.67192i −0.548787 0.835962i \(-0.684910\pi\)
0.548787 0.835962i \(-0.315090\pi\)
\(282\) 0 0
\(283\) 334.888 1.18335 0.591676 0.806176i \(-0.298467\pi\)
0.591676 + 0.806176i \(0.298467\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 53.7790i 0.187383i
\(288\) 0 0
\(289\) 255.040 0.882493
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 197.787i 0.675040i 0.941318 + 0.337520i \(0.109588\pi\)
−0.941318 + 0.337520i \(0.890412\pi\)
\(294\) 0 0
\(295\) −54.2835 −0.184012
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 174.769i 0.584510i
\(300\) 0 0
\(301\) −426.624 −1.41735
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 84.7332i − 0.277814i
\(306\) 0 0
\(307\) 132.940 0.433029 0.216514 0.976279i \(-0.430531\pi\)
0.216514 + 0.976279i \(0.430531\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 472.346i 1.51880i 0.650626 + 0.759398i \(0.274507\pi\)
−0.650626 + 0.759398i \(0.725493\pi\)
\(312\) 0 0
\(313\) 423.461 1.35291 0.676455 0.736484i \(-0.263515\pi\)
0.676455 + 0.736484i \(0.263515\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 218.805i − 0.690238i −0.938559 0.345119i \(-0.887839\pi\)
0.938559 0.345119i \(-0.112161\pi\)
\(318\) 0 0
\(319\) −157.946 −0.495128
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 157.474i − 0.487537i
\(324\) 0 0
\(325\) −264.692 −0.814436
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 47.9398i 0.145714i
\(330\) 0 0
\(331\) 534.088 1.61356 0.806779 0.590853i \(-0.201209\pi\)
0.806779 + 0.590853i \(0.201209\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 4.11561i − 0.0122854i
\(336\) 0 0
\(337\) −273.875 −0.812685 −0.406343 0.913721i \(-0.633196\pi\)
−0.406343 + 0.913721i \(0.633196\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 48.5240i − 0.142299i
\(342\) 0 0
\(343\) −373.142 −1.08788
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 312.657i − 0.901028i −0.892769 0.450514i \(-0.851241\pi\)
0.892769 0.450514i \(-0.148759\pi\)
\(348\) 0 0
\(349\) −150.069 −0.429997 −0.214998 0.976614i \(-0.568975\pi\)
−0.214998 + 0.976614i \(0.568975\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 440.145i 1.24687i 0.781875 + 0.623435i \(0.214263\pi\)
−0.781875 + 0.623435i \(0.785737\pi\)
\(354\) 0 0
\(355\) −84.8318 −0.238963
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 27.7541i 0.0773094i 0.999253 + 0.0386547i \(0.0123072\pi\)
−0.999253 + 0.0386547i \(0.987693\pi\)
\(360\) 0 0
\(361\) 369.225 1.02278
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 2.33818i − 0.00640598i
\(366\) 0 0
\(367\) −327.242 −0.891668 −0.445834 0.895116i \(-0.647093\pi\)
−0.445834 + 0.895116i \(0.647093\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 228.751i 0.616579i
\(372\) 0 0
\(373\) −284.490 −0.762709 −0.381354 0.924429i \(-0.624542\pi\)
−0.381354 + 0.924429i \(0.624542\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 521.035i − 1.38206i
\(378\) 0 0
\(379\) 42.2823 0.111563 0.0557814 0.998443i \(-0.482235\pi\)
0.0557814 + 0.998443i \(0.482235\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 1.87506i − 0.00489572i −0.999997 0.00244786i \(-0.999221\pi\)
0.999997 0.00244786i \(-0.000779179\pi\)
\(384\) 0 0
\(385\) 17.4038 0.0452048
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 73.3524i − 0.188566i −0.995545 0.0942832i \(-0.969944\pi\)
0.995545 0.0942832i \(-0.0300559\pi\)
\(390\) 0 0
\(391\) 93.0871 0.238075
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 19.0299i 0.0481769i
\(396\) 0 0
\(397\) −569.032 −1.43333 −0.716665 0.697417i \(-0.754332\pi\)
−0.716665 + 0.697417i \(0.754332\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 507.615i − 1.26587i −0.774204 0.632936i \(-0.781850\pi\)
0.774204 0.632936i \(-0.218150\pi\)
\(402\) 0 0
\(403\) 160.072 0.397201
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 124.091i − 0.304892i
\(408\) 0 0
\(409\) 704.194 1.72175 0.860873 0.508820i \(-0.169918\pi\)
0.860873 + 0.508820i \(0.169918\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 352.861i − 0.854384i
\(414\) 0 0
\(415\) 85.3564 0.205678
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 429.788i − 1.02575i −0.858464 0.512874i \(-0.828581\pi\)
0.858464 0.512874i \(-0.171419\pi\)
\(420\) 0 0
\(421\) 581.393 1.38098 0.690490 0.723342i \(-0.257395\pi\)
0.690490 + 0.723342i \(0.257395\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 140.983i 0.331725i
\(426\) 0 0
\(427\) 550.794 1.28992
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 45.0355i − 0.104491i −0.998634 0.0522454i \(-0.983362\pi\)
0.998634 0.0522454i \(-0.0166378\pi\)
\(432\) 0 0
\(433\) 417.303 0.963749 0.481874 0.876240i \(-0.339956\pi\)
0.481874 + 0.876240i \(0.339956\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 431.655i 0.987768i
\(438\) 0 0
\(439\) −20.8288 −0.0474461 −0.0237231 0.999719i \(-0.507552\pi\)
−0.0237231 + 0.999719i \(0.507552\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 508.881i − 1.14872i −0.818604 0.574358i \(-0.805252\pi\)
0.818604 0.574358i \(-0.194748\pi\)
\(444\) 0 0
\(445\) 52.1616 0.117217
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 863.715i 1.92364i 0.273678 + 0.961821i \(0.411760\pi\)
−0.273678 + 0.961821i \(0.588240\pi\)
\(450\) 0 0
\(451\) −30.5399 −0.0677159
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 57.4122i 0.126181i
\(456\) 0 0
\(457\) 748.309 1.63744 0.818719 0.574194i \(-0.194685\pi\)
0.818719 + 0.574194i \(0.194685\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 458.330i 0.994209i 0.867691 + 0.497105i \(0.165603\pi\)
−0.867691 + 0.497105i \(0.834397\pi\)
\(462\) 0 0
\(463\) 809.594 1.74858 0.874292 0.485400i \(-0.161326\pi\)
0.874292 + 0.485400i \(0.161326\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 389.616i − 0.834295i −0.908839 0.417148i \(-0.863030\pi\)
0.908839 0.417148i \(-0.136970\pi\)
\(468\) 0 0
\(469\) 26.7528 0.0570422
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 242.270i − 0.512198i
\(474\) 0 0
\(475\) −653.752 −1.37632
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 156.159i − 0.326010i −0.986625 0.163005i \(-0.947881\pi\)
0.986625 0.163005i \(-0.0521187\pi\)
\(480\) 0 0
\(481\) 409.354 0.851047
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 10.3598i 0.0213604i
\(486\) 0 0
\(487\) 5.57999 0.0114579 0.00572895 0.999984i \(-0.498176\pi\)
0.00572895 + 0.999984i \(0.498176\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 152.437i − 0.310462i −0.987878 0.155231i \(-0.950388\pi\)
0.987878 0.155231i \(-0.0496121\pi\)
\(492\) 0 0
\(493\) −277.519 −0.562919
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 551.435i − 1.10953i
\(498\) 0 0
\(499\) −404.485 −0.810591 −0.405295 0.914186i \(-0.632831\pi\)
−0.405295 + 0.914186i \(0.632831\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 466.860i − 0.928150i −0.885796 0.464075i \(-0.846387\pi\)
0.885796 0.464075i \(-0.153613\pi\)
\(504\) 0 0
\(505\) 141.432 0.280063
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 483.517i 0.949935i 0.880003 + 0.474968i \(0.157540\pi\)
−0.880003 + 0.474968i \(0.842460\pi\)
\(510\) 0 0
\(511\) 15.1990 0.0297436
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 73.5114i 0.142741i
\(516\) 0 0
\(517\) −27.2239 −0.0526574
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 473.958i − 0.909707i −0.890566 0.454854i \(-0.849692\pi\)
0.890566 0.454854i \(-0.150308\pi\)
\(522\) 0 0
\(523\) −472.250 −0.902964 −0.451482 0.892280i \(-0.649105\pi\)
−0.451482 + 0.892280i \(0.649105\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 85.2594i − 0.161782i
\(528\) 0 0
\(529\) 273.838 0.517652
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 100.746i − 0.189016i
\(534\) 0 0
\(535\) 55.6361 0.103993
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 49.3839i − 0.0916213i
\(540\) 0 0
\(541\) 630.810 1.16601 0.583004 0.812469i \(-0.301877\pi\)
0.583004 + 0.812469i \(0.301877\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 118.099i 0.216696i
\(546\) 0 0
\(547\) −495.637 −0.906101 −0.453051 0.891485i \(-0.649664\pi\)
−0.453051 + 0.891485i \(0.649664\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 1286.89i − 2.33554i
\(552\) 0 0
\(553\) −123.701 −0.223690
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 430.245i 0.772433i 0.922408 + 0.386217i \(0.126218\pi\)
−0.922408 + 0.386217i \(0.873782\pi\)
\(558\) 0 0
\(559\) 799.205 1.42971
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1087.63i 1.93185i 0.258827 + 0.965924i \(0.416664\pi\)
−0.258827 + 0.965924i \(0.583336\pi\)
\(564\) 0 0
\(565\) 22.4644 0.0397600
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 363.864i − 0.639480i −0.947505 0.319740i \(-0.896404\pi\)
0.947505 0.319740i \(-0.103596\pi\)
\(570\) 0 0
\(571\) 1061.89 1.85970 0.929850 0.367940i \(-0.119937\pi\)
0.929850 + 0.367940i \(0.119937\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 386.450i − 0.672087i
\(576\) 0 0
\(577\) −694.738 −1.20405 −0.602026 0.798476i \(-0.705640\pi\)
−0.602026 + 0.798476i \(0.705640\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 554.845i 0.954983i
\(582\) 0 0
\(583\) −129.902 −0.222817
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 1116.55i − 1.90213i −0.308994 0.951064i \(-0.599992\pi\)
0.308994 0.951064i \(-0.400008\pi\)
\(588\) 0 0
\(589\) 395.356 0.671233
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 420.459i 0.709037i 0.935049 + 0.354519i \(0.115355\pi\)
−0.935049 + 0.354519i \(0.884645\pi\)
\(594\) 0 0
\(595\) 30.5795 0.0513941
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 537.195i − 0.896820i −0.893828 0.448410i \(-0.851991\pi\)
0.893828 0.448410i \(-0.148009\pi\)
\(600\) 0 0
\(601\) 838.213 1.39470 0.697349 0.716732i \(-0.254363\pi\)
0.697349 + 0.716732i \(0.254363\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9.88323i 0.0163359i
\(606\) 0 0
\(607\) −410.665 −0.676548 −0.338274 0.941048i \(-0.609843\pi\)
−0.338274 + 0.941048i \(0.609843\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 89.8068i − 0.146983i
\(612\) 0 0
\(613\) 316.930 0.517014 0.258507 0.966009i \(-0.416769\pi\)
0.258507 + 0.966009i \(0.416769\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 213.310i 0.345721i 0.984946 + 0.172861i \(0.0553010\pi\)
−0.984946 + 0.172861i \(0.944699\pi\)
\(618\) 0 0
\(619\) −767.257 −1.23951 −0.619755 0.784795i \(-0.712768\pi\)
−0.619755 + 0.784795i \(0.712768\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 339.068i 0.544250i
\(624\) 0 0
\(625\) 565.107 0.904172
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 218.034i − 0.346637i
\(630\) 0 0
\(631\) 661.533 1.04839 0.524194 0.851599i \(-0.324367\pi\)
0.524194 + 0.851599i \(0.324367\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 37.3404i 0.0588037i
\(636\) 0 0
\(637\) 162.909 0.255744
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 1124.47i − 1.75424i −0.480275 0.877118i \(-0.659463\pi\)
0.480275 0.877118i \(-0.340537\pi\)
\(642\) 0 0
\(643\) 324.300 0.504354 0.252177 0.967681i \(-0.418853\pi\)
0.252177 + 0.967681i \(0.418853\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 282.516i − 0.436655i −0.975876 0.218327i \(-0.929940\pi\)
0.975876 0.218327i \(-0.0700601\pi\)
\(648\) 0 0
\(649\) 200.381 0.308754
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 405.245i − 0.620590i −0.950640 0.310295i \(-0.899572\pi\)
0.950640 0.310295i \(-0.100428\pi\)
\(654\) 0 0
\(655\) −121.857 −0.186041
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 120.502i − 0.182856i −0.995812 0.0914280i \(-0.970857\pi\)
0.995812 0.0914280i \(-0.0291431\pi\)
\(660\) 0 0
\(661\) −1036.48 −1.56805 −0.784025 0.620729i \(-0.786837\pi\)
−0.784025 + 0.620729i \(0.786837\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 141.800i 0.213233i
\(666\) 0 0
\(667\) 760.711 1.14050
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 312.783i 0.466145i
\(672\) 0 0
\(673\) 1132.60 1.68291 0.841457 0.540325i \(-0.181699\pi\)
0.841457 + 0.540325i \(0.181699\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 400.478i − 0.591548i −0.955258 0.295774i \(-0.904423\pi\)
0.955258 0.295774i \(-0.0955775\pi\)
\(678\) 0 0
\(679\) −67.3421 −0.0991784
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 67.1523i 0.0983196i 0.998791 + 0.0491598i \(0.0156544\pi\)
−0.998791 + 0.0491598i \(0.984346\pi\)
\(684\) 0 0
\(685\) 119.011 0.173739
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 428.525i − 0.621952i
\(690\) 0 0
\(691\) −350.058 −0.506596 −0.253298 0.967388i \(-0.581515\pi\)
−0.253298 + 0.967388i \(0.581515\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 170.485i 0.245302i
\(696\) 0 0
\(697\) −53.6602 −0.0769874
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 405.947i − 0.579097i −0.957163 0.289549i \(-0.906495\pi\)
0.957163 0.289549i \(-0.0935052\pi\)
\(702\) 0 0
\(703\) 1011.05 1.43819
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 919.354i 1.30036i
\(708\) 0 0
\(709\) −387.273 −0.546224 −0.273112 0.961982i \(-0.588053\pi\)
−0.273112 + 0.961982i \(0.588053\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 233.705i 0.327777i
\(714\) 0 0
\(715\) −32.6030 −0.0455987
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 803.931i − 1.11812i −0.829126 0.559062i \(-0.811161\pi\)
0.829126 0.559062i \(-0.188839\pi\)
\(720\) 0 0
\(721\) −477.849 −0.662758
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1152.12i 1.58913i
\(726\) 0 0
\(727\) −831.125 −1.14323 −0.571613 0.820524i \(-0.693682\pi\)
−0.571613 + 0.820524i \(0.693682\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 425.681i − 0.582327i
\(732\) 0 0
\(733\) −141.098 −0.192494 −0.0962471 0.995357i \(-0.530684\pi\)
−0.0962471 + 0.995357i \(0.530684\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 15.1923i 0.0206137i
\(738\) 0 0
\(739\) 458.947 0.621038 0.310519 0.950567i \(-0.399497\pi\)
0.310519 + 0.950567i \(0.399497\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 220.803i 0.297177i 0.988899 + 0.148589i \(0.0474730\pi\)
−0.988899 + 0.148589i \(0.952527\pi\)
\(744\) 0 0
\(745\) 145.062 0.194714
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 361.653i 0.482848i
\(750\) 0 0
\(751\) −1027.04 −1.36757 −0.683783 0.729685i \(-0.739667\pi\)
−0.683783 + 0.729685i \(0.739667\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 191.626i 0.253810i
\(756\) 0 0
\(757\) −869.131 −1.14813 −0.574063 0.818811i \(-0.694633\pi\)
−0.574063 + 0.818811i \(0.694633\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1270.01i 1.66887i 0.551107 + 0.834435i \(0.314206\pi\)
−0.551107 + 0.834435i \(0.685794\pi\)
\(762\) 0 0
\(763\) −767.684 −1.00614
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 661.023i 0.861829i
\(768\) 0 0
\(769\) 134.675 0.175130 0.0875649 0.996159i \(-0.472091\pi\)
0.0875649 + 0.996159i \(0.472091\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 1123.01i − 1.45280i −0.687272 0.726400i \(-0.741192\pi\)
0.687272 0.726400i \(-0.258808\pi\)
\(774\) 0 0
\(775\) −353.953 −0.456713
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 248.828i − 0.319420i
\(780\) 0 0
\(781\) 313.147 0.400957
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 44.2071i − 0.0563148i
\(786\) 0 0
\(787\) −607.426 −0.771824 −0.385912 0.922536i \(-0.626113\pi\)
−0.385912 + 0.922536i \(0.626113\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 146.026i 0.184609i
\(792\) 0 0
\(793\) −1031.82 −1.30116
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1216.12i 1.52588i 0.646472 + 0.762938i \(0.276244\pi\)
−0.646472 + 0.762938i \(0.723756\pi\)
\(798\) 0 0
\(799\) −47.8338 −0.0598671
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8.63114i 0.0107486i
\(804\) 0 0
\(805\) −83.8217 −0.104126
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 1238.74i − 1.53120i −0.643320 0.765598i \(-0.722443\pi\)
0.643320 0.765598i \(-0.277557\pi\)
\(810\) 0 0
\(811\) 319.770 0.394292 0.197146 0.980374i \(-0.436833\pi\)
0.197146 + 0.980374i \(0.436833\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 109.252i − 0.134052i
\(816\) 0 0
\(817\) 1973.93 2.41607
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1300.21i 1.58369i 0.610725 + 0.791843i \(0.290878\pi\)
−0.610725 + 0.791843i \(0.709122\pi\)
\(822\) 0 0
\(823\) 1465.67 1.78088 0.890441 0.455099i \(-0.150396\pi\)
0.890441 + 0.455099i \(0.150396\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1485.76i 1.79656i 0.439424 + 0.898280i \(0.355183\pi\)
−0.439424 + 0.898280i \(0.644817\pi\)
\(828\) 0 0
\(829\) −714.538 −0.861928 −0.430964 0.902369i \(-0.641826\pi\)
−0.430964 + 0.902369i \(0.641826\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 86.7702i − 0.104166i
\(834\) 0 0
\(835\) 267.396 0.320234
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1399.41i 1.66794i 0.551807 + 0.833972i \(0.313939\pi\)
−0.551807 + 0.833972i \(0.686061\pi\)
\(840\) 0 0
\(841\) −1426.90 −1.69666
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 44.2907i 0.0524151i
\(846\) 0 0
\(847\) −64.2443 −0.0758493
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 597.656i 0.702299i
\(852\) 0 0
\(853\) −937.783 −1.09939 −0.549697 0.835364i \(-0.685257\pi\)
−0.549697 + 0.835364i \(0.685257\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 764.800i − 0.892415i −0.894929 0.446208i \(-0.852774\pi\)
0.894929 0.446208i \(-0.147226\pi\)
\(858\) 0 0
\(859\) 565.571 0.658407 0.329203 0.944259i \(-0.393220\pi\)
0.329203 + 0.944259i \(0.393220\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 828.368i − 0.959870i −0.877304 0.479935i \(-0.840660\pi\)
0.877304 0.479935i \(-0.159340\pi\)
\(864\) 0 0
\(865\) −81.7169 −0.0944704
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 70.2467i − 0.0808362i
\(870\) 0 0
\(871\) −50.1167 −0.0575393
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 258.137i − 0.295013i
\(876\) 0 0
\(877\) −1168.62 −1.33252 −0.666259 0.745721i \(-0.732105\pi\)
−0.666259 + 0.745721i \(0.732105\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 1134.19i − 1.28738i −0.765284 0.643692i \(-0.777402\pi\)
0.765284 0.643692i \(-0.222598\pi\)
\(882\) 0 0
\(883\) −891.474 −1.00960 −0.504798 0.863237i \(-0.668433\pi\)
−0.504798 + 0.863237i \(0.668433\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1720.89i 1.94012i 0.242863 + 0.970061i \(0.421913\pi\)
−0.242863 + 0.970061i \(0.578087\pi\)
\(888\) 0 0
\(889\) −242.725 −0.273031
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 221.810i − 0.248388i
\(894\) 0 0
\(895\) 151.626 0.169415
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 696.742i − 0.775019i
\(900\) 0 0
\(901\) −228.245 −0.253325
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 237.326i 0.262239i
\(906\) 0 0
\(907\) 1704.81 1.87961 0.939806 0.341709i \(-0.111006\pi\)
0.939806 + 0.341709i \(0.111006\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 457.753i 0.502473i 0.967926 + 0.251237i \(0.0808372\pi\)
−0.967926 + 0.251237i \(0.919163\pi\)
\(912\) 0 0
\(913\) −315.084 −0.345108
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 792.110i − 0.863805i
\(918\) 0 0
\(919\) −1689.93 −1.83888 −0.919440 0.393231i \(-0.871357\pi\)
−0.919440 + 0.393231i \(0.871357\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1033.02i 1.11920i
\(924\) 0 0
\(925\) −905.167 −0.978558
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 1093.30i − 1.17686i −0.808548 0.588430i \(-0.799746\pi\)
0.808548 0.588430i \(-0.200254\pi\)
\(930\) 0 0
\(931\) 402.362 0.432183
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 17.3654i 0.0185726i
\(936\) 0 0
\(937\) 1615.41 1.72402 0.862010 0.506891i \(-0.169205\pi\)
0.862010 + 0.506891i \(0.169205\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 646.356i − 0.686883i −0.939174 0.343441i \(-0.888407\pi\)
0.939174 0.343441i \(-0.111593\pi\)
\(942\) 0 0
\(943\) 147.088 0.155979
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 1036.68i − 1.09470i −0.836904 0.547350i \(-0.815637\pi\)
0.836904 0.547350i \(-0.184363\pi\)
\(948\) 0 0
\(949\) −28.4726 −0.0300028
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 868.771i − 0.911617i −0.890078 0.455808i \(-0.849350\pi\)
0.890078 0.455808i \(-0.150650\pi\)
\(954\) 0 0
\(955\) 27.9104 0.0292255
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 773.611i 0.806685i
\(960\) 0 0
\(961\) −746.947 −0.777260
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 117.298i 0.121552i
\(966\) 0 0
\(967\) −230.718 −0.238591 −0.119296 0.992859i \(-0.538064\pi\)
−0.119296 + 0.992859i \(0.538064\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 233.399i 0.240369i 0.992752 + 0.120185i \(0.0383487\pi\)
−0.992752 + 0.120185i \(0.961651\pi\)
\(972\) 0 0
\(973\) −1108.21 −1.13896
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 533.116i 0.545666i 0.962061 + 0.272833i \(0.0879606\pi\)
−0.962061 + 0.272833i \(0.912039\pi\)
\(978\) 0 0
\(979\) −192.549 −0.196679
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 879.218i 0.894423i 0.894428 + 0.447211i \(0.147583\pi\)
−0.894428 + 0.447211i \(0.852417\pi\)
\(984\) 0 0
\(985\) −76.9129 −0.0780841
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1166.84i 1.17982i
\(990\) 0 0
\(991\) 771.452 0.778458 0.389229 0.921141i \(-0.372741\pi\)
0.389229 + 0.921141i \(0.372741\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 67.6695i 0.0680096i
\(996\) 0 0
\(997\) 864.654 0.867256 0.433628 0.901092i \(-0.357233\pi\)
0.433628 + 0.901092i \(0.357233\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1584.3.i.d.881.4 8
3.2 odd 2 inner 1584.3.i.d.881.5 8
4.3 odd 2 792.3.i.a.89.4 8
12.11 even 2 792.3.i.a.89.5 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
792.3.i.a.89.4 8 4.3 odd 2
792.3.i.a.89.5 yes 8 12.11 even 2
1584.3.i.d.881.4 8 1.1 even 1 trivial
1584.3.i.d.881.5 8 3.2 odd 2 inner