Properties

Label 1584.2.b.e
Level $1584$
Weight $2$
Character orbit 1584.b
Analytic conductor $12.648$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1584,2,Mod(593,1584)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1584, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1584.593");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1584 = 2^{4} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1584.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.6483036802\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{5} + \beta_{3} q^{7} + ( - \beta_{2} + 2 \beta_1) q^{11} - 2 \beta_{3} q^{13} - 3 \beta_{3} q^{19} - 2 \beta_1 q^{23} + 3 q^{25} - 4 \beta_{2} q^{29} + 4 q^{31} + 2 \beta_{2} q^{35} + 8 q^{37}+ \cdots - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{25} + 16 q^{31} + 32 q^{37} + 4 q^{49} + 16 q^{55} + 16 q^{67} + 48 q^{91} - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 4x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{3} + 3\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 5\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -3\beta_{3} + 5\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1584\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(353\) \(991\) \(1189\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
593.1
1.93185i
0.517638i
0.517638i
1.93185i
0 0 0 1.41421i 0 2.44949i 0 0 0
593.2 0 0 0 1.41421i 0 2.44949i 0 0 0
593.3 0 0 0 1.41421i 0 2.44949i 0 0 0
593.4 0 0 0 1.41421i 0 2.44949i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
11.b odd 2 1 inner
33.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1584.2.b.e 4
3.b odd 2 1 inner 1584.2.b.e 4
4.b odd 2 1 99.2.d.a 4
8.b even 2 1 6336.2.b.t 4
8.d odd 2 1 6336.2.b.s 4
11.b odd 2 1 inner 1584.2.b.e 4
12.b even 2 1 99.2.d.a 4
20.d odd 2 1 2475.2.f.e 4
20.e even 4 2 2475.2.d.a 8
24.f even 2 1 6336.2.b.s 4
24.h odd 2 1 6336.2.b.t 4
33.d even 2 1 inner 1584.2.b.e 4
36.f odd 6 2 891.2.g.c 8
36.h even 6 2 891.2.g.c 8
44.c even 2 1 99.2.d.a 4
60.h even 2 1 2475.2.f.e 4
60.l odd 4 2 2475.2.d.a 8
88.b odd 2 1 6336.2.b.t 4
88.g even 2 1 6336.2.b.s 4
132.d odd 2 1 99.2.d.a 4
220.g even 2 1 2475.2.f.e 4
220.i odd 4 2 2475.2.d.a 8
264.m even 2 1 6336.2.b.t 4
264.p odd 2 1 6336.2.b.s 4
396.k even 6 2 891.2.g.c 8
396.o odd 6 2 891.2.g.c 8
660.g odd 2 1 2475.2.f.e 4
660.q even 4 2 2475.2.d.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
99.2.d.a 4 4.b odd 2 1
99.2.d.a 4 12.b even 2 1
99.2.d.a 4 44.c even 2 1
99.2.d.a 4 132.d odd 2 1
891.2.g.c 8 36.f odd 6 2
891.2.g.c 8 36.h even 6 2
891.2.g.c 8 396.k even 6 2
891.2.g.c 8 396.o odd 6 2
1584.2.b.e 4 1.a even 1 1 trivial
1584.2.b.e 4 3.b odd 2 1 inner
1584.2.b.e 4 11.b odd 2 1 inner
1584.2.b.e 4 33.d even 2 1 inner
2475.2.d.a 8 20.e even 4 2
2475.2.d.a 8 60.l odd 4 2
2475.2.d.a 8 220.i odd 4 2
2475.2.d.a 8 660.q even 4 2
2475.2.f.e 4 20.d odd 2 1
2475.2.f.e 4 60.h even 2 1
2475.2.f.e 4 220.g even 2 1
2475.2.f.e 4 660.g odd 2 1
6336.2.b.s 4 8.d odd 2 1
6336.2.b.s 4 24.f even 2 1
6336.2.b.s 4 88.g even 2 1
6336.2.b.s 4 264.p odd 2 1
6336.2.b.t 4 8.b even 2 1
6336.2.b.t 4 24.h odd 2 1
6336.2.b.t 4 88.b odd 2 1
6336.2.b.t 4 264.m even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1584, [\chi])\):

\( T_{5}^{2} + 2 \) Copy content Toggle raw display
\( T_{7}^{2} + 6 \) Copy content Toggle raw display
\( T_{17} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 6)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 10T^{2} + 121 \) Copy content Toggle raw display
$13$ \( (T^{2} + 24)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 54)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 8)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 48)^{2} \) Copy content Toggle raw display
$31$ \( (T - 4)^{4} \) Copy content Toggle raw display
$37$ \( (T - 8)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} - 48)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 6)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 8)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 98)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 128)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 24)^{2} \) Copy content Toggle raw display
$67$ \( (T - 4)^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} + 8)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 150)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 192)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 50)^{2} \) Copy content Toggle raw display
$97$ \( (T + 10)^{4} \) Copy content Toggle raw display
show more
show less