Properties

Label 1575.2.m.d.1457.1
Level $1575$
Weight $2$
Character 1575.1457
Analytic conductor $12.576$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1575,2,Mod(1268,1575)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1575.1268"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1575, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1575.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5764383184\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 107x^{8} + 240x^{6} + 151x^{4} + 30x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 315)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1457.1
Root \(-0.556948i\) of defining polynomial
Character \(\chi\) \(=\) 1575.1457
Dual form 1575.2.m.d.1268.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.96418 + 1.96418i) q^{2} -5.71600i q^{4} +(-0.707107 - 0.707107i) q^{7} +(7.29890 + 7.29890i) q^{8} +0.248425i q^{11} +(3.37141 - 3.37141i) q^{13} +2.77777 q^{14} -17.2407 q^{16} +(-1.75881 + 1.75881i) q^{17} +3.91639i q^{19} +(-0.487951 - 0.487951i) q^{22} +(2.22082 + 2.22082i) q^{23} +13.2441i q^{26} +(-4.04182 + 4.04182i) q^{28} +2.65164 q^{29} -2.96443 q^{31} +(19.2660 - 19.2660i) q^{32} -6.90922i q^{34} +(-1.76257 - 1.76257i) q^{37} +(-7.69249 - 7.69249i) q^{38} -7.42003i q^{41} +(0.716003 - 0.716003i) q^{43} +1.42000 q^{44} -8.72418 q^{46} +(-3.34257 + 3.34257i) q^{47} +1.00000i q^{49} +(-19.2710 - 19.2710i) q^{52} +(-4.25628 - 4.25628i) q^{53} -10.3222i q^{56} +(-5.20830 + 5.20830i) q^{58} +4.88610 q^{59} +9.55025 q^{61} +(5.82267 - 5.82267i) q^{62} +41.2024i q^{64} +(5.98889 + 5.98889i) q^{67} +(10.0533 + 10.0533i) q^{68} -6.31723i q^{71} +(10.3263 - 10.3263i) q^{73} +6.92401 q^{74} +22.3861 q^{76} +(0.175663 - 0.175663i) q^{77} -11.2561i q^{79} +(14.5743 + 14.5743i) q^{82} +(10.1710 + 10.1710i) q^{83} +2.81272i q^{86} +(-1.81323 + 1.81323i) q^{88} -1.91884 q^{89} -4.76790 q^{91} +(12.6942 - 12.6942i) q^{92} -13.1308i q^{94} +(-1.07023 - 1.07023i) q^{97} +(-1.96418 - 1.96418i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 24 q^{8} + 4 q^{13} + 4 q^{14} - 20 q^{16} + 8 q^{17} + 8 q^{22} + 8 q^{23} + 32 q^{29} + 48 q^{32} - 4 q^{37} + 24 q^{38} - 40 q^{43} + 64 q^{44} + 16 q^{46} + 24 q^{47} - 36 q^{52} - 40 q^{53}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1575\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(1226\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.96418 + 1.96418i −1.38888 + 1.38888i −0.561214 + 0.827671i \(0.689666\pi\)
−0.827671 + 0.561214i \(0.810334\pi\)
\(3\) 0 0
\(4\) 5.71600i 2.85800i
\(5\) 0 0
\(6\) 0 0
\(7\) −0.707107 0.707107i −0.267261 0.267261i
\(8\) 7.29890 + 7.29890i 2.58055 + 2.58055i
\(9\) 0 0
\(10\) 0 0
\(11\) 0.248425i 0.0749029i 0.999298 + 0.0374515i \(0.0119240\pi\)
−0.999298 + 0.0374515i \(0.988076\pi\)
\(12\) 0 0
\(13\) 3.37141 3.37141i 0.935061 0.935061i −0.0629552 0.998016i \(-0.520053\pi\)
0.998016 + 0.0629552i \(0.0200525\pi\)
\(14\) 2.77777 0.742390
\(15\) 0 0
\(16\) −17.2407 −4.31017
\(17\) −1.75881 + 1.75881i −0.426573 + 0.426573i −0.887459 0.460886i \(-0.847532\pi\)
0.460886 + 0.887459i \(0.347532\pi\)
\(18\) 0 0
\(19\) 3.91639i 0.898481i 0.893411 + 0.449241i \(0.148305\pi\)
−0.893411 + 0.449241i \(0.851695\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −0.487951 0.487951i −0.104032 0.104032i
\(23\) 2.22082 + 2.22082i 0.463073 + 0.463073i 0.899661 0.436588i \(-0.143813\pi\)
−0.436588 + 0.899661i \(0.643813\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 13.2441i 2.59738i
\(27\) 0 0
\(28\) −4.04182 + 4.04182i −0.763833 + 0.763833i
\(29\) 2.65164 0.492398 0.246199 0.969219i \(-0.420818\pi\)
0.246199 + 0.969219i \(0.420818\pi\)
\(30\) 0 0
\(31\) −2.96443 −0.532427 −0.266213 0.963914i \(-0.585773\pi\)
−0.266213 + 0.963914i \(0.585773\pi\)
\(32\) 19.2660 19.2660i 3.40578 3.40578i
\(33\) 0 0
\(34\) 6.90922i 1.18492i
\(35\) 0 0
\(36\) 0 0
\(37\) −1.76257 1.76257i −0.289765 0.289765i 0.547222 0.836987i \(-0.315685\pi\)
−0.836987 + 0.547222i \(0.815685\pi\)
\(38\) −7.69249 7.69249i −1.24789 1.24789i
\(39\) 0 0
\(40\) 0 0
\(41\) 7.42003i 1.15881i −0.815038 0.579407i \(-0.803284\pi\)
0.815038 0.579407i \(-0.196716\pi\)
\(42\) 0 0
\(43\) 0.716003 0.716003i 0.109189 0.109189i −0.650401 0.759591i \(-0.725399\pi\)
0.759591 + 0.650401i \(0.225399\pi\)
\(44\) 1.42000 0.214073
\(45\) 0 0
\(46\) −8.72418 −1.28631
\(47\) −3.34257 + 3.34257i −0.487564 + 0.487564i −0.907537 0.419972i \(-0.862040\pi\)
0.419972 + 0.907537i \(0.362040\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 0 0
\(52\) −19.2710 19.2710i −2.67241 2.67241i
\(53\) −4.25628 4.25628i −0.584645 0.584645i 0.351531 0.936176i \(-0.385661\pi\)
−0.936176 + 0.351531i \(0.885661\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 10.3222i 1.37936i
\(57\) 0 0
\(58\) −5.20830 + 5.20830i −0.683884 + 0.683884i
\(59\) 4.88610 0.636116 0.318058 0.948071i \(-0.396969\pi\)
0.318058 + 0.948071i \(0.396969\pi\)
\(60\) 0 0
\(61\) 9.55025 1.22278 0.611392 0.791328i \(-0.290610\pi\)
0.611392 + 0.791328i \(0.290610\pi\)
\(62\) 5.82267 5.82267i 0.739480 0.739480i
\(63\) 0 0
\(64\) 41.2024i 5.15030i
\(65\) 0 0
\(66\) 0 0
\(67\) 5.98889 + 5.98889i 0.731660 + 0.731660i 0.970948 0.239289i \(-0.0769143\pi\)
−0.239289 + 0.970948i \(0.576914\pi\)
\(68\) 10.0533 + 10.0533i 1.21915 + 1.21915i
\(69\) 0 0
\(70\) 0 0
\(71\) 6.31723i 0.749717i −0.927082 0.374858i \(-0.877691\pi\)
0.927082 0.374858i \(-0.122309\pi\)
\(72\) 0 0
\(73\) 10.3263 10.3263i 1.20860 1.20860i 0.237125 0.971479i \(-0.423795\pi\)
0.971479 0.237125i \(-0.0762050\pi\)
\(74\) 6.92401 0.804900
\(75\) 0 0
\(76\) 22.3861 2.56786
\(77\) 0.175663 0.175663i 0.0200187 0.0200187i
\(78\) 0 0
\(79\) 11.2561i 1.26641i −0.773985 0.633204i \(-0.781739\pi\)
0.773985 0.633204i \(-0.218261\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 14.5743 + 14.5743i 1.60946 + 1.60946i
\(83\) 10.1710 + 10.1710i 1.11641 + 1.11641i 0.992264 + 0.124149i \(0.0396200\pi\)
0.124149 + 0.992264i \(0.460380\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 2.81272i 0.303303i
\(87\) 0 0
\(88\) −1.81323 + 1.81323i −0.193291 + 0.193291i
\(89\) −1.91884 −0.203396 −0.101698 0.994815i \(-0.532428\pi\)
−0.101698 + 0.994815i \(0.532428\pi\)
\(90\) 0 0
\(91\) −4.76790 −0.499811
\(92\) 12.6942 12.6942i 1.32346 1.32346i
\(93\) 0 0
\(94\) 13.1308i 1.35434i
\(95\) 0 0
\(96\) 0 0
\(97\) −1.07023 1.07023i −0.108666 0.108666i 0.650684 0.759349i \(-0.274482\pi\)
−0.759349 + 0.650684i \(0.774482\pi\)
\(98\) −1.96418 1.96418i −0.198412 0.198412i
\(99\) 0 0
\(100\) 0 0
\(101\) 8.86551i 0.882151i 0.897470 + 0.441076i \(0.145403\pi\)
−0.897470 + 0.441076i \(0.854597\pi\)
\(102\) 0 0
\(103\) 12.8870 12.8870i 1.26979 1.26979i 0.323600 0.946194i \(-0.395107\pi\)
0.946194 0.323600i \(-0.104893\pi\)
\(104\) 49.2152 4.82594
\(105\) 0 0
\(106\) 16.7202 1.62401
\(107\) −0.890257 + 0.890257i −0.0860644 + 0.0860644i −0.748828 0.662764i \(-0.769383\pi\)
0.662764 + 0.748828i \(0.269383\pi\)
\(108\) 0 0
\(109\) 0.924031i 0.0885061i −0.999020 0.0442531i \(-0.985909\pi\)
0.999020 0.0442531i \(-0.0140908\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 12.1910 + 12.1910i 1.15194 + 1.15194i
\(113\) 4.32422 + 4.32422i 0.406788 + 0.406788i 0.880617 0.473829i \(-0.157128\pi\)
−0.473829 + 0.880617i \(0.657128\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 15.1568i 1.40727i
\(117\) 0 0
\(118\) −9.59718 + 9.59718i −0.883492 + 0.883492i
\(119\) 2.48733 0.228013
\(120\) 0 0
\(121\) 10.9383 0.994390
\(122\) −18.7584 + 18.7584i −1.69831 + 1.69831i
\(123\) 0 0
\(124\) 16.9447i 1.52168i
\(125\) 0 0
\(126\) 0 0
\(127\) 9.90911 + 9.90911i 0.879291 + 0.879291i 0.993461 0.114170i \(-0.0364209\pi\)
−0.114170 + 0.993461i \(0.536421\pi\)
\(128\) −42.3969 42.3969i −3.74740 3.74740i
\(129\) 0 0
\(130\) 0 0
\(131\) 5.19668i 0.454036i 0.973891 + 0.227018i \(0.0728977\pi\)
−0.973891 + 0.227018i \(0.927102\pi\)
\(132\) 0 0
\(133\) 2.76930 2.76930i 0.240129 0.240129i
\(134\) −23.5265 −2.03238
\(135\) 0 0
\(136\) −25.6747 −2.20159
\(137\) 4.28754 4.28754i 0.366309 0.366309i −0.499820 0.866129i \(-0.666601\pi\)
0.866129 + 0.499820i \(0.166601\pi\)
\(138\) 0 0
\(139\) 10.5755i 0.897004i −0.893782 0.448502i \(-0.851958\pi\)
0.893782 0.448502i \(-0.148042\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 12.4082 + 12.4082i 1.04127 + 1.04127i
\(143\) 0.837543 + 0.837543i 0.0700388 + 0.0700388i
\(144\) 0 0
\(145\) 0 0
\(146\) 40.5655i 3.35722i
\(147\) 0 0
\(148\) −10.0749 + 10.0749i −0.828148 + 0.828148i
\(149\) −23.2814 −1.90728 −0.953641 0.300945i \(-0.902698\pi\)
−0.953641 + 0.300945i \(0.902698\pi\)
\(150\) 0 0
\(151\) 13.2865 1.08124 0.540619 0.841267i \(-0.318190\pi\)
0.540619 + 0.841267i \(0.318190\pi\)
\(152\) −28.5853 + 28.5853i −2.31858 + 2.31858i
\(153\) 0 0
\(154\) 0.690067i 0.0556072i
\(155\) 0 0
\(156\) 0 0
\(157\) 4.82641 + 4.82641i 0.385189 + 0.385189i 0.872968 0.487778i \(-0.162193\pi\)
−0.487778 + 0.872968i \(0.662193\pi\)
\(158\) 22.1090 + 22.1090i 1.75890 + 1.75890i
\(159\) 0 0
\(160\) 0 0
\(161\) 3.14072i 0.247523i
\(162\) 0 0
\(163\) −3.30623 + 3.30623i −0.258964 + 0.258964i −0.824633 0.565669i \(-0.808618\pi\)
0.565669 + 0.824633i \(0.308618\pi\)
\(164\) −42.4129 −3.31189
\(165\) 0 0
\(166\) −39.9553 −3.10114
\(167\) 3.97778 3.97778i 0.307810 0.307810i −0.536249 0.844060i \(-0.680159\pi\)
0.844060 + 0.536249i \(0.180159\pi\)
\(168\) 0 0
\(169\) 9.73282i 0.748679i
\(170\) 0 0
\(171\) 0 0
\(172\) −4.09268 4.09268i −0.312064 0.312064i
\(173\) −15.3803 15.3803i −1.16934 1.16934i −0.982364 0.186978i \(-0.940131\pi\)
−0.186978 0.982364i \(-0.559869\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 4.28302i 0.322845i
\(177\) 0 0
\(178\) 3.76894 3.76894i 0.282494 0.282494i
\(179\) 22.4863 1.68070 0.840352 0.542041i \(-0.182348\pi\)
0.840352 + 0.542041i \(0.182348\pi\)
\(180\) 0 0
\(181\) 5.56307 0.413500 0.206750 0.978394i \(-0.433711\pi\)
0.206750 + 0.978394i \(0.433711\pi\)
\(182\) 9.36500 9.36500i 0.694180 0.694180i
\(183\) 0 0
\(184\) 32.4191i 2.38997i
\(185\) 0 0
\(186\) 0 0
\(187\) −0.436931 0.436931i −0.0319516 0.0319516i
\(188\) 19.1062 + 19.1062i 1.39346 + 1.39346i
\(189\) 0 0
\(190\) 0 0
\(191\) 10.0091i 0.724230i −0.932133 0.362115i \(-0.882055\pi\)
0.932133 0.362115i \(-0.117945\pi\)
\(192\) 0 0
\(193\) −5.10673 + 5.10673i −0.367590 + 0.367590i −0.866598 0.499007i \(-0.833698\pi\)
0.499007 + 0.866598i \(0.333698\pi\)
\(194\) 4.20425 0.301848
\(195\) 0 0
\(196\) 5.71600 0.408286
\(197\) 4.32422 4.32422i 0.308088 0.308088i −0.536080 0.844167i \(-0.680095\pi\)
0.844167 + 0.536080i \(0.180095\pi\)
\(198\) 0 0
\(199\) 13.5542i 0.960831i 0.877041 + 0.480416i \(0.159514\pi\)
−0.877041 + 0.480416i \(0.840486\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −17.4135 17.4135i −1.22521 1.22521i
\(203\) −1.87499 1.87499i −0.131599 0.131599i
\(204\) 0 0
\(205\) 0 0
\(206\) 50.6248i 3.52720i
\(207\) 0 0
\(208\) −58.1254 + 58.1254i −4.03027 + 4.03027i
\(209\) −0.972929 −0.0672989
\(210\) 0 0
\(211\) −16.9166 −1.16459 −0.582294 0.812978i \(-0.697845\pi\)
−0.582294 + 0.812978i \(0.697845\pi\)
\(212\) −24.3289 + 24.3289i −1.67092 + 1.67092i
\(213\) 0 0
\(214\) 3.49725i 0.239067i
\(215\) 0 0
\(216\) 0 0
\(217\) 2.09617 + 2.09617i 0.142297 + 0.142297i
\(218\) 1.81496 + 1.81496i 0.122925 + 0.122925i
\(219\) 0 0
\(220\) 0 0
\(221\) 11.8593i 0.797744i
\(222\) 0 0
\(223\) −7.46128 + 7.46128i −0.499644 + 0.499644i −0.911327 0.411683i \(-0.864941\pi\)
0.411683 + 0.911327i \(0.364941\pi\)
\(224\) −27.2462 −1.82047
\(225\) 0 0
\(226\) −16.9871 −1.12996
\(227\) −7.75452 + 7.75452i −0.514686 + 0.514686i −0.915959 0.401273i \(-0.868568\pi\)
0.401273 + 0.915959i \(0.368568\pi\)
\(228\) 0 0
\(229\) 12.1905i 0.805573i −0.915294 0.402787i \(-0.868042\pi\)
0.915294 0.402787i \(-0.131958\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 19.3541 + 19.3541i 1.27066 + 1.27066i
\(233\) 17.0691 + 17.0691i 1.11824 + 1.11824i 0.992000 + 0.126235i \(0.0402894\pi\)
0.126235 + 0.992000i \(0.459711\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 27.9290i 1.81802i
\(237\) 0 0
\(238\) −4.88556 + 4.88556i −0.316684 + 0.316684i
\(239\) 15.6083 1.00962 0.504808 0.863231i \(-0.331563\pi\)
0.504808 + 0.863231i \(0.331563\pi\)
\(240\) 0 0
\(241\) 19.4210 1.25101 0.625507 0.780219i \(-0.284892\pi\)
0.625507 + 0.780219i \(0.284892\pi\)
\(242\) −21.4848 + 21.4848i −1.38109 + 1.38109i
\(243\) 0 0
\(244\) 54.5893i 3.49472i
\(245\) 0 0
\(246\) 0 0
\(247\) 13.2038 + 13.2038i 0.840135 + 0.840135i
\(248\) −21.6371 21.6371i −1.37395 1.37395i
\(249\) 0 0
\(250\) 0 0
\(251\) 21.7281i 1.37147i −0.727853 0.685734i \(-0.759482\pi\)
0.727853 0.685734i \(-0.240518\pi\)
\(252\) 0 0
\(253\) −0.551707 + 0.551707i −0.0346855 + 0.0346855i
\(254\) −38.9265 −2.44247
\(255\) 0 0
\(256\) 84.1456 5.25910
\(257\) 1.95493 1.95493i 0.121945 0.121945i −0.643500 0.765446i \(-0.722519\pi\)
0.765446 + 0.643500i \(0.222519\pi\)
\(258\) 0 0
\(259\) 2.49265i 0.154886i
\(260\) 0 0
\(261\) 0 0
\(262\) −10.2072 10.2072i −0.630604 0.630604i
\(263\) −5.40146 5.40146i −0.333068 0.333068i 0.520682 0.853750i \(-0.325678\pi\)
−0.853750 + 0.520682i \(0.825678\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 10.8788i 0.667023i
\(267\) 0 0
\(268\) 34.2325 34.2325i 2.09108 2.09108i
\(269\) 21.6690 1.32118 0.660590 0.750747i \(-0.270306\pi\)
0.660590 + 0.750747i \(0.270306\pi\)
\(270\) 0 0
\(271\) 4.91623 0.298640 0.149320 0.988789i \(-0.452292\pi\)
0.149320 + 0.988789i \(0.452292\pi\)
\(272\) 30.3230 30.3230i 1.83860 1.83860i
\(273\) 0 0
\(274\) 16.8430i 1.01752i
\(275\) 0 0
\(276\) 0 0
\(277\) −17.4586 17.4586i −1.04898 1.04898i −0.998737 0.0502482i \(-0.983999\pi\)
−0.0502482 0.998737i \(-0.516001\pi\)
\(278\) 20.7722 + 20.7722i 1.24584 + 1.24584i
\(279\) 0 0
\(280\) 0 0
\(281\) 14.4804i 0.863830i −0.901914 0.431915i \(-0.857838\pi\)
0.901914 0.431915i \(-0.142162\pi\)
\(282\) 0 0
\(283\) 18.5661 18.5661i 1.10364 1.10364i 0.109671 0.993968i \(-0.465020\pi\)
0.993968 0.109671i \(-0.0349796\pi\)
\(284\) −36.1093 −2.14269
\(285\) 0 0
\(286\) −3.29017 −0.194552
\(287\) −5.24676 + 5.24676i −0.309706 + 0.309706i
\(288\) 0 0
\(289\) 10.8132i 0.636071i
\(290\) 0 0
\(291\) 0 0
\(292\) −59.0253 59.0253i −3.45419 3.45419i
\(293\) −11.7184 11.7184i −0.684596 0.684596i 0.276437 0.961032i \(-0.410846\pi\)
−0.961032 + 0.276437i \(0.910846\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 25.7296i 1.49551i
\(297\) 0 0
\(298\) 45.7288 45.7288i 2.64900 2.64900i
\(299\) 14.9746 0.866004
\(300\) 0 0
\(301\) −1.01258 −0.0583642
\(302\) −26.0970 + 26.0970i −1.50172 + 1.50172i
\(303\) 0 0
\(304\) 67.5212i 3.87261i
\(305\) 0 0
\(306\) 0 0
\(307\) 20.9578 + 20.9578i 1.19612 + 1.19612i 0.975317 + 0.220807i \(0.0708692\pi\)
0.220807 + 0.975317i \(0.429131\pi\)
\(308\) −1.00409 1.00409i −0.0572133 0.0572133i
\(309\) 0 0
\(310\) 0 0
\(311\) 15.2031i 0.862090i 0.902330 + 0.431045i \(0.141855\pi\)
−0.902330 + 0.431045i \(0.858145\pi\)
\(312\) 0 0
\(313\) −0.179190 + 0.179190i −0.0101284 + 0.0101284i −0.712153 0.702024i \(-0.752280\pi\)
0.702024 + 0.712153i \(0.252280\pi\)
\(314\) −18.9599 −1.06997
\(315\) 0 0
\(316\) −64.3398 −3.61940
\(317\) −10.2500 + 10.2500i −0.575697 + 0.575697i −0.933715 0.358018i \(-0.883453\pi\)
0.358018 + 0.933715i \(0.383453\pi\)
\(318\) 0 0
\(319\) 0.658734i 0.0368820i
\(320\) 0 0
\(321\) 0 0
\(322\) 6.16893 + 6.16893i 0.343781 + 0.343781i
\(323\) −6.88817 6.88817i −0.383268 0.383268i
\(324\) 0 0
\(325\) 0 0
\(326\) 12.9881i 0.719342i
\(327\) 0 0
\(328\) 54.1581 54.1581i 2.99038 2.99038i
\(329\) 4.72711 0.260614
\(330\) 0 0
\(331\) 18.5908 1.02184 0.510920 0.859628i \(-0.329305\pi\)
0.510920 + 0.859628i \(0.329305\pi\)
\(332\) 58.1375 58.1375i 3.19071 3.19071i
\(333\) 0 0
\(334\) 15.6262i 0.855025i
\(335\) 0 0
\(336\) 0 0
\(337\) −12.2286 12.2286i −0.666132 0.666132i 0.290686 0.956818i \(-0.406116\pi\)
−0.956818 + 0.290686i \(0.906116\pi\)
\(338\) 19.1170 + 19.1170i 1.03983 + 1.03983i
\(339\) 0 0
\(340\) 0 0
\(341\) 0.736438i 0.0398803i
\(342\) 0 0
\(343\) 0.707107 0.707107i 0.0381802 0.0381802i
\(344\) 10.4521 0.563538
\(345\) 0 0
\(346\) 60.4193 3.24816
\(347\) 10.3260 10.3260i 0.554327 0.554327i −0.373360 0.927687i \(-0.621794\pi\)
0.927687 + 0.373360i \(0.121794\pi\)
\(348\) 0 0
\(349\) 2.62685i 0.140612i 0.997525 + 0.0703060i \(0.0223976\pi\)
−0.997525 + 0.0703060i \(0.977602\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4.78616 + 4.78616i 0.255103 + 0.255103i
\(353\) 1.84420 + 1.84420i 0.0981569 + 0.0981569i 0.754480 0.656323i \(-0.227889\pi\)
−0.656323 + 0.754480i \(0.727889\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 10.9681i 0.581307i
\(357\) 0 0
\(358\) −44.1671 + 44.1671i −2.33430 + 2.33430i
\(359\) 25.9440 1.36927 0.684637 0.728884i \(-0.259961\pi\)
0.684637 + 0.728884i \(0.259961\pi\)
\(360\) 0 0
\(361\) 3.66191 0.192732
\(362\) −10.9269 + 10.9269i −0.574303 + 0.574303i
\(363\) 0 0
\(364\) 27.2533i 1.42846i
\(365\) 0 0
\(366\) 0 0
\(367\) 13.5250 + 13.5250i 0.706000 + 0.706000i 0.965692 0.259691i \(-0.0836209\pi\)
−0.259691 + 0.965692i \(0.583621\pi\)
\(368\) −38.2885 38.2885i −1.99592 1.99592i
\(369\) 0 0
\(370\) 0 0
\(371\) 6.01929i 0.312506i
\(372\) 0 0
\(373\) −2.02011 + 2.02011i −0.104597 + 0.104597i −0.757469 0.652871i \(-0.773564\pi\)
0.652871 + 0.757469i \(0.273564\pi\)
\(374\) 1.71642 0.0887541
\(375\) 0 0
\(376\) −48.7942 −2.51637
\(377\) 8.93978 8.93978i 0.460422 0.460422i
\(378\) 0 0
\(379\) 4.11882i 0.211570i 0.994389 + 0.105785i \(0.0337355\pi\)
−0.994389 + 0.105785i \(0.966265\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 19.6596 + 19.6596i 1.00587 + 1.00587i
\(383\) −18.0158 18.0158i −0.920566 0.920566i 0.0765031 0.997069i \(-0.475624\pi\)
−0.997069 + 0.0765031i \(0.975624\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 20.0611i 1.02108i
\(387\) 0 0
\(388\) −6.11745 + 6.11745i −0.310566 + 0.310566i
\(389\) 19.1306 0.969960 0.484980 0.874525i \(-0.338827\pi\)
0.484980 + 0.874525i \(0.338827\pi\)
\(390\) 0 0
\(391\) −7.81199 −0.395069
\(392\) −7.29890 + 7.29890i −0.368650 + 0.368650i
\(393\) 0 0
\(394\) 16.9871i 0.855797i
\(395\) 0 0
\(396\) 0 0
\(397\) −0.442442 0.442442i −0.0222055 0.0222055i 0.695917 0.718122i \(-0.254998\pi\)
−0.718122 + 0.695917i \(0.754998\pi\)
\(398\) −26.6229 26.6229i −1.33448 1.33448i
\(399\) 0 0
\(400\) 0 0
\(401\) 14.9814i 0.748137i 0.927401 + 0.374068i \(0.122037\pi\)
−0.927401 + 0.374068i \(0.877963\pi\)
\(402\) 0 0
\(403\) −9.99430 + 9.99430i −0.497852 + 0.497852i
\(404\) 50.6753 2.52119
\(405\) 0 0
\(406\) 7.36565 0.365551
\(407\) 0.437867 0.437867i 0.0217042 0.0217042i
\(408\) 0 0
\(409\) 33.1093i 1.63715i 0.574401 + 0.818574i \(0.305235\pi\)
−0.574401 + 0.818574i \(0.694765\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −73.6621 73.6621i −3.62907 3.62907i
\(413\) −3.45500 3.45500i −0.170009 0.170009i
\(414\) 0 0
\(415\) 0 0
\(416\) 129.907i 6.36923i
\(417\) 0 0
\(418\) 1.91101 1.91101i 0.0934704 0.0934704i
\(419\) 5.14936 0.251562 0.125781 0.992058i \(-0.459856\pi\)
0.125781 + 0.992058i \(0.459856\pi\)
\(420\) 0 0
\(421\) −2.85311 −0.139052 −0.0695261 0.997580i \(-0.522149\pi\)
−0.0695261 + 0.997580i \(0.522149\pi\)
\(422\) 33.2273 33.2273i 1.61748 1.61748i
\(423\) 0 0
\(424\) 62.1323i 3.01741i
\(425\) 0 0
\(426\) 0 0
\(427\) −6.75305 6.75305i −0.326803 0.326803i
\(428\) 5.08871 + 5.08871i 0.245972 + 0.245972i
\(429\) 0 0
\(430\) 0 0
\(431\) 22.0594i 1.06256i −0.847196 0.531281i \(-0.821711\pi\)
0.847196 0.531281i \(-0.178289\pi\)
\(432\) 0 0
\(433\) 10.9563 10.9563i 0.526528 0.526528i −0.393007 0.919535i \(-0.628565\pi\)
0.919535 + 0.393007i \(0.128565\pi\)
\(434\) −8.23450 −0.395269
\(435\) 0 0
\(436\) −5.28176 −0.252951
\(437\) −8.69760 + 8.69760i −0.416062 + 0.416062i
\(438\) 0 0
\(439\) 7.45413i 0.355766i 0.984052 + 0.177883i \(0.0569249\pi\)
−0.984052 + 0.177883i \(0.943075\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −23.2938 23.2938i −1.10797 1.10797i
\(443\) −4.02408 4.02408i −0.191190 0.191190i 0.605020 0.796210i \(-0.293165\pi\)
−0.796210 + 0.605020i \(0.793165\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 29.3106i 1.38790i
\(447\) 0 0
\(448\) 29.1345 29.1345i 1.37648 1.37648i
\(449\) −22.8230 −1.07708 −0.538542 0.842599i \(-0.681025\pi\)
−0.538542 + 0.842599i \(0.681025\pi\)
\(450\) 0 0
\(451\) 1.84332 0.0867986
\(452\) 24.7172 24.7172i 1.16260 1.16260i
\(453\) 0 0
\(454\) 30.4625i 1.42968i
\(455\) 0 0
\(456\) 0 0
\(457\) −21.3136 21.3136i −0.997009 0.997009i 0.00298687 0.999996i \(-0.499049\pi\)
−0.999996 + 0.00298687i \(0.999049\pi\)
\(458\) 23.9444 + 23.9444i 1.11885 + 1.11885i
\(459\) 0 0
\(460\) 0 0
\(461\) 19.3297i 0.900275i −0.892959 0.450137i \(-0.851375\pi\)
0.892959 0.450137i \(-0.148625\pi\)
\(462\) 0 0
\(463\) −7.95996 + 7.95996i −0.369931 + 0.369931i −0.867452 0.497521i \(-0.834244\pi\)
0.497521 + 0.867452i \(0.334244\pi\)
\(464\) −45.7161 −2.12232
\(465\) 0 0
\(466\) −67.0536 −3.10620
\(467\) 24.9349 24.9349i 1.15385 1.15385i 0.168076 0.985774i \(-0.446244\pi\)
0.985774 0.168076i \(-0.0537555\pi\)
\(468\) 0 0
\(469\) 8.46957i 0.391088i
\(470\) 0 0
\(471\) 0 0
\(472\) 35.6632 + 35.6632i 1.64153 + 1.64153i
\(473\) 0.177873 + 0.177873i 0.00817861 + 0.00817861i
\(474\) 0 0
\(475\) 0 0
\(476\) 14.2176i 0.651661i
\(477\) 0 0
\(478\) −30.6575 + 30.6575i −1.40224 + 1.40224i
\(479\) −40.2495 −1.83905 −0.919524 0.393034i \(-0.871426\pi\)
−0.919524 + 0.393034i \(0.871426\pi\)
\(480\) 0 0
\(481\) −11.8847 −0.541896
\(482\) −38.1462 + 38.1462i −1.73751 + 1.73751i
\(483\) 0 0
\(484\) 62.5233i 2.84197i
\(485\) 0 0
\(486\) 0 0
\(487\) −24.9159 24.9159i −1.12905 1.12905i −0.990332 0.138717i \(-0.955702\pi\)
−0.138717 0.990332i \(-0.544298\pi\)
\(488\) 69.7063 + 69.7063i 3.15546 + 3.15546i
\(489\) 0 0
\(490\) 0 0
\(491\) 7.29487i 0.329213i 0.986359 + 0.164607i \(0.0526354\pi\)
−0.986359 + 0.164607i \(0.947365\pi\)
\(492\) 0 0
\(493\) −4.66372 + 4.66372i −0.210044 + 0.210044i
\(494\) −51.8691 −2.33370
\(495\) 0 0
\(496\) 51.1088 2.29485
\(497\) −4.46695 + 4.46695i −0.200370 + 0.200370i
\(498\) 0 0
\(499\) 8.99153i 0.402516i 0.979538 + 0.201258i \(0.0645030\pi\)
−0.979538 + 0.201258i \(0.935497\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 42.6779 + 42.6779i 1.90481 + 1.90481i
\(503\) 14.4521 + 14.4521i 0.644386 + 0.644386i 0.951631 0.307245i \(-0.0994070\pi\)
−0.307245 + 0.951631i \(0.599407\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 2.16730i 0.0963485i
\(507\) 0 0
\(508\) 56.6405 56.6405i 2.51302 2.51302i
\(509\) −20.2009 −0.895391 −0.447695 0.894186i \(-0.647755\pi\)
−0.447695 + 0.894186i \(0.647755\pi\)
\(510\) 0 0
\(511\) −14.6036 −0.646026
\(512\) −80.4832 + 80.4832i −3.55689 + 3.55689i
\(513\) 0 0
\(514\) 7.67967i 0.338736i
\(515\) 0 0
\(516\) 0 0
\(517\) −0.830379 0.830379i −0.0365200 0.0365200i
\(518\) −4.89601 4.89601i −0.215119 0.215119i
\(519\) 0 0
\(520\) 0 0
\(521\) 21.7026i 0.950810i −0.879767 0.475405i \(-0.842302\pi\)
0.879767 0.475405i \(-0.157698\pi\)
\(522\) 0 0
\(523\) −3.17763 + 3.17763i −0.138948 + 0.138948i −0.773160 0.634211i \(-0.781325\pi\)
0.634211 + 0.773160i \(0.281325\pi\)
\(524\) 29.7043 1.29764
\(525\) 0 0
\(526\) 21.2189 0.925186
\(527\) 5.21385 5.21385i 0.227119 0.227119i
\(528\) 0 0
\(529\) 13.1359i 0.571126i
\(530\) 0 0
\(531\) 0 0
\(532\) −15.8294 15.8294i −0.686289 0.686289i
\(533\) −25.0160 25.0160i −1.08356 1.08356i
\(534\) 0 0
\(535\) 0 0
\(536\) 87.4246i 3.77617i
\(537\) 0 0
\(538\) −42.5617 + 42.5617i −1.83497 + 1.83497i
\(539\) −0.248425 −0.0107004
\(540\) 0 0
\(541\) 17.9333 0.771012 0.385506 0.922705i \(-0.374027\pi\)
0.385506 + 0.922705i \(0.374027\pi\)
\(542\) −9.65636 + 9.65636i −0.414776 + 0.414776i
\(543\) 0 0
\(544\) 67.7703i 2.90563i
\(545\) 0 0
\(546\) 0 0
\(547\) −3.40977 3.40977i −0.145791 0.145791i 0.630444 0.776235i \(-0.282873\pi\)
−0.776235 + 0.630444i \(0.782873\pi\)
\(548\) −24.5076 24.5076i −1.04691 1.04691i
\(549\) 0 0
\(550\) 0 0
\(551\) 10.3849i 0.442410i
\(552\) 0 0
\(553\) −7.95925 + 7.95925i −0.338462 + 0.338462i
\(554\) 68.5836 2.91384
\(555\) 0 0
\(556\) −60.4497 −2.56364
\(557\) −0.275161 + 0.275161i −0.0116590 + 0.0116590i −0.712912 0.701253i \(-0.752624\pi\)
0.701253 + 0.712912i \(0.252624\pi\)
\(558\) 0 0
\(559\) 4.82788i 0.204198i
\(560\) 0 0
\(561\) 0 0
\(562\) 28.4422 + 28.4422i 1.19976 + 1.19976i
\(563\) 25.1442 + 25.1442i 1.05970 + 1.05970i 0.998101 + 0.0616005i \(0.0196205\pi\)
0.0616005 + 0.998101i \(0.480380\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 72.9342i 3.06565i
\(567\) 0 0
\(568\) 46.1088 46.1088i 1.93468 1.93468i
\(569\) −26.6023 −1.11523 −0.557614 0.830101i \(-0.688283\pi\)
−0.557614 + 0.830101i \(0.688283\pi\)
\(570\) 0 0
\(571\) −33.9064 −1.41894 −0.709469 0.704736i \(-0.751065\pi\)
−0.709469 + 0.704736i \(0.751065\pi\)
\(572\) 4.78740 4.78740i 0.200171 0.200171i
\(573\) 0 0
\(574\) 20.6111i 0.860293i
\(575\) 0 0
\(576\) 0 0
\(577\) 16.6238 + 16.6238i 0.692057 + 0.692057i 0.962684 0.270627i \(-0.0872311\pi\)
−0.270627 + 0.962684i \(0.587231\pi\)
\(578\) −21.2391 21.2391i −0.883429 0.883429i
\(579\) 0 0
\(580\) 0 0
\(581\) 14.3840i 0.596747i
\(582\) 0 0
\(583\) 1.05737 1.05737i 0.0437916 0.0437916i
\(584\) 150.741 6.23773
\(585\) 0 0
\(586\) 46.0340 1.90165
\(587\) 4.60012 4.60012i 0.189867 0.189867i −0.605772 0.795639i \(-0.707135\pi\)
0.795639 + 0.605772i \(0.207135\pi\)
\(588\) 0 0
\(589\) 11.6098i 0.478376i
\(590\) 0 0
\(591\) 0 0
\(592\) 30.3879 + 30.3879i 1.24894 + 1.24894i
\(593\) 17.6196 + 17.6196i 0.723551 + 0.723551i 0.969327 0.245775i \(-0.0790426\pi\)
−0.245775 + 0.969327i \(0.579043\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 133.076i 5.45102i
\(597\) 0 0
\(598\) −29.4128 + 29.4128i −1.20278 + 1.20278i
\(599\) −1.79409 −0.0733046 −0.0366523 0.999328i \(-0.511669\pi\)
−0.0366523 + 0.999328i \(0.511669\pi\)
\(600\) 0 0
\(601\) −27.6926 −1.12960 −0.564802 0.825227i \(-0.691047\pi\)
−0.564802 + 0.825227i \(0.691047\pi\)
\(602\) 1.98889 1.98889i 0.0810612 0.0810612i
\(603\) 0 0
\(604\) 75.9456i 3.09018i
\(605\) 0 0
\(606\) 0 0
\(607\) 9.55102 + 9.55102i 0.387664 + 0.387664i 0.873853 0.486189i \(-0.161613\pi\)
−0.486189 + 0.873853i \(0.661613\pi\)
\(608\) 75.4532 + 75.4532i 3.06003 + 3.06003i
\(609\) 0 0
\(610\) 0 0
\(611\) 22.5384i 0.911805i
\(612\) 0 0
\(613\) −32.8779 + 32.8779i −1.32793 + 1.32793i −0.420750 + 0.907177i \(0.638233\pi\)
−0.907177 + 0.420750i \(0.861767\pi\)
\(614\) −82.3298 −3.32256
\(615\) 0 0
\(616\) 2.56429 0.103318
\(617\) 1.11112 1.11112i 0.0447319 0.0447319i −0.684387 0.729119i \(-0.739930\pi\)
0.729119 + 0.684387i \(0.239930\pi\)
\(618\) 0 0
\(619\) 28.3646i 1.14007i 0.821621 + 0.570035i \(0.193070\pi\)
−0.821621 + 0.570035i \(0.806930\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −29.8617 29.8617i −1.19734 1.19734i
\(623\) 1.35682 + 1.35682i 0.0543599 + 0.0543599i
\(624\) 0 0
\(625\) 0 0
\(626\) 0.703922i 0.0281344i
\(627\) 0 0
\(628\) 27.5878 27.5878i 1.10087 1.10087i
\(629\) 6.20004 0.247212
\(630\) 0 0
\(631\) −21.8241 −0.868803 −0.434401 0.900719i \(-0.643040\pi\)
−0.434401 + 0.900719i \(0.643040\pi\)
\(632\) 82.1570 82.1570i 3.26803 3.26803i
\(633\) 0 0
\(634\) 40.2657i 1.59915i
\(635\) 0 0
\(636\) 0 0
\(637\) 3.37141 + 3.37141i 0.133580 + 0.133580i
\(638\) −1.29387 1.29387i −0.0512249 0.0512249i
\(639\) 0 0
\(640\) 0 0
\(641\) 1.91757i 0.0757395i 0.999283 + 0.0378697i \(0.0120572\pi\)
−0.999283 + 0.0378697i \(0.987943\pi\)
\(642\) 0 0
\(643\) −20.2152 + 20.2152i −0.797209 + 0.797209i −0.982654 0.185446i \(-0.940627\pi\)
0.185446 + 0.982654i \(0.440627\pi\)
\(644\) −17.9523 −0.707421
\(645\) 0 0
\(646\) 27.0592 1.06463
\(647\) 24.4807 24.4807i 0.962435 0.962435i −0.0368841 0.999320i \(-0.511743\pi\)
0.999320 + 0.0368841i \(0.0117432\pi\)
\(648\) 0 0
\(649\) 1.21383i 0.0476470i
\(650\) 0 0
\(651\) 0 0
\(652\) 18.8984 + 18.8984i 0.740119 + 0.740119i
\(653\) −17.3242 17.3242i −0.677950 0.677950i 0.281586 0.959536i \(-0.409140\pi\)
−0.959536 + 0.281586i \(0.909140\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 127.926i 4.99469i
\(657\) 0 0
\(658\) −9.28490 + 9.28490i −0.361963 + 0.361963i
\(659\) −29.9820 −1.16793 −0.583967 0.811777i \(-0.698500\pi\)
−0.583967 + 0.811777i \(0.698500\pi\)
\(660\) 0 0
\(661\) 36.5460 1.42147 0.710737 0.703458i \(-0.248362\pi\)
0.710737 + 0.703458i \(0.248362\pi\)
\(662\) −36.5156 + 36.5156i −1.41922 + 1.41922i
\(663\) 0 0
\(664\) 148.474i 5.76192i
\(665\) 0 0
\(666\) 0 0
\(667\) 5.88882 + 5.88882i 0.228016 + 0.228016i
\(668\) −22.7370 22.7370i −0.879722 0.879722i
\(669\) 0 0
\(670\) 0 0
\(671\) 2.37252i 0.0915902i
\(672\) 0 0
\(673\) 27.4562 27.4562i 1.05836 1.05836i 0.0601718 0.998188i \(-0.480835\pi\)
0.998188 0.0601718i \(-0.0191649\pi\)
\(674\) 48.0382 1.85036
\(675\) 0 0
\(676\) −55.6328 −2.13972
\(677\) −18.4107 + 18.4107i −0.707582 + 0.707582i −0.966026 0.258444i \(-0.916790\pi\)
0.258444 + 0.966026i \(0.416790\pi\)
\(678\) 0 0
\(679\) 1.51354i 0.0580842i
\(680\) 0 0
\(681\) 0 0
\(682\) 1.44650 + 1.44650i 0.0553892 + 0.0553892i
\(683\) −6.18268 6.18268i −0.236574 0.236574i 0.578856 0.815430i \(-0.303499\pi\)
−0.815430 + 0.578856i \(0.803499\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 2.77777i 0.106056i
\(687\) 0 0
\(688\) −12.3444 + 12.3444i −0.470625 + 0.470625i
\(689\) −28.6993 −1.09336
\(690\) 0 0
\(691\) 39.0569 1.48579 0.742897 0.669406i \(-0.233451\pi\)
0.742897 + 0.669406i \(0.233451\pi\)
\(692\) −87.9138 + 87.9138i −3.34198 + 3.34198i
\(693\) 0 0
\(694\) 40.5641i 1.53979i
\(695\) 0 0
\(696\) 0 0
\(697\) 13.0504 + 13.0504i 0.494319 + 0.494319i
\(698\) −5.15960 5.15960i −0.195294 0.195294i
\(699\) 0 0
\(700\) 0 0
\(701\) 41.7309i 1.57615i −0.615577 0.788077i \(-0.711077\pi\)
0.615577 0.788077i \(-0.288923\pi\)
\(702\) 0 0
\(703\) 6.90291 6.90291i 0.260348 0.260348i
\(704\) −10.2357 −0.385773
\(705\) 0 0
\(706\) −7.24468 −0.272657
\(707\) 6.26886 6.26886i 0.235765 0.235765i
\(708\) 0 0
\(709\) 20.9505i 0.786812i 0.919365 + 0.393406i \(0.128703\pi\)
−0.919365 + 0.393406i \(0.871297\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −14.0054 14.0054i −0.524874 0.524874i
\(713\) −6.58346 6.58346i −0.246553 0.246553i
\(714\) 0 0
\(715\) 0 0
\(716\) 128.532i 4.80346i
\(717\) 0 0
\(718\) −50.9587 + 50.9587i −1.90176 + 1.90176i
\(719\) −26.9899 −1.00655 −0.503277 0.864125i \(-0.667872\pi\)
−0.503277 + 0.864125i \(0.667872\pi\)
\(720\) 0 0
\(721\) −18.2250 −0.678734
\(722\) −7.19264 + 7.19264i −0.267682 + 0.267682i
\(723\) 0 0
\(724\) 31.7985i 1.18178i
\(725\) 0 0
\(726\) 0 0
\(727\) −9.84200 9.84200i −0.365020 0.365020i 0.500637 0.865657i \(-0.333099\pi\)
−0.865657 + 0.500637i \(0.833099\pi\)
\(728\) −34.8004 34.8004i −1.28979 1.28979i
\(729\) 0 0
\(730\) 0 0
\(731\) 2.51862i 0.0931545i
\(732\) 0 0
\(733\) −12.9130 + 12.9130i −0.476951 + 0.476951i −0.904155 0.427204i \(-0.859499\pi\)
0.427204 + 0.904155i \(0.359499\pi\)
\(734\) −53.1311 −1.96111
\(735\) 0 0
\(736\) 85.5727 3.15425
\(737\) −1.48779 + 1.48779i −0.0548035 + 0.0548035i
\(738\) 0 0
\(739\) 27.4269i 1.00891i 0.863437 + 0.504457i \(0.168307\pi\)
−0.863437 + 0.504457i \(0.831693\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −11.8230 11.8230i −0.434035 0.434035i
\(743\) −9.43704 9.43704i −0.346212 0.346212i 0.512485 0.858696i \(-0.328725\pi\)
−0.858696 + 0.512485i \(0.828725\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 7.93572i 0.290547i
\(747\) 0 0
\(748\) −2.49750 + 2.49750i −0.0913177 + 0.0913177i
\(749\) 1.25901 0.0460033
\(750\) 0 0
\(751\) −43.6512 −1.59286 −0.796428 0.604734i \(-0.793279\pi\)
−0.796428 + 0.604734i \(0.793279\pi\)
\(752\) 57.6282 57.6282i 2.10149 2.10149i
\(753\) 0 0
\(754\) 35.1187i 1.27895i
\(755\) 0 0
\(756\) 0 0
\(757\) −15.2034 15.2034i −0.552579 0.552579i 0.374606 0.927184i \(-0.377778\pi\)
−0.927184 + 0.374606i \(0.877778\pi\)
\(758\) −8.09011 8.09011i −0.293846 0.293846i
\(759\) 0 0
\(760\) 0 0
\(761\) 6.27530i 0.227479i −0.993511 0.113740i \(-0.963717\pi\)
0.993511 0.113740i \(-0.0362830\pi\)
\(762\) 0 0
\(763\) −0.653389 + 0.653389i −0.0236543 + 0.0236543i
\(764\) −57.2118 −2.06985
\(765\) 0 0
\(766\) 70.7727 2.55712
\(767\) 16.4731 16.4731i 0.594808 0.594808i
\(768\) 0 0
\(769\) 36.5294i 1.31728i 0.752456 + 0.658642i \(0.228869\pi\)
−0.752456 + 0.658642i \(0.771131\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 29.1901 + 29.1901i 1.05057 + 1.05057i
\(773\) 17.5844 + 17.5844i 0.632468 + 0.632468i 0.948686 0.316219i \(-0.102413\pi\)
−0.316219 + 0.948686i \(0.602413\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 15.6230i 0.560834i
\(777\) 0 0
\(778\) −37.5759 + 37.5759i −1.34716 + 1.34716i
\(779\) 29.0597 1.04117
\(780\) 0 0
\(781\) 1.56936 0.0561560
\(782\) 15.3441 15.3441i 0.548705 0.548705i
\(783\) 0 0
\(784\) 17.2407i 0.615739i
\(785\) 0 0
\(786\) 0 0
\(787\) −16.9793 16.9793i −0.605246 0.605246i 0.336454 0.941700i \(-0.390772\pi\)
−0.941700 + 0.336454i \(0.890772\pi\)
\(788\) −24.7172 24.7172i −0.880516 0.880516i
\(789\) 0 0
\(790\) 0 0
\(791\) 6.11537i 0.217437i
\(792\) 0 0
\(793\) 32.1978 32.1978i 1.14338 1.14338i
\(794\) 1.73807 0.0616818
\(795\) 0 0
\(796\) 77.4758 2.74606
\(797\) 19.7309 19.7309i 0.698903 0.698903i −0.265271 0.964174i \(-0.585461\pi\)
0.964174 + 0.265271i \(0.0854614\pi\)
\(798\) 0 0
\(799\) 11.7579i 0.415964i
\(800\) 0 0
\(801\) 0 0
\(802\) −29.4262 29.4262i −1.03908 1.03908i
\(803\) 2.56531 + 2.56531i 0.0905280 + 0.0905280i
\(804\) 0 0
\(805\) 0 0
\(806\) 39.2612i 1.38292i
\(807\) 0 0
\(808\) −64.7084 + 64.7084i −2.27643 + 2.27643i
\(809\) −31.7336 −1.11569 −0.557846 0.829944i \(-0.688372\pi\)
−0.557846 + 0.829944i \(0.688372\pi\)
\(810\) 0 0
\(811\) −14.7328 −0.517338 −0.258669 0.965966i \(-0.583284\pi\)
−0.258669 + 0.965966i \(0.583284\pi\)
\(812\) −10.7175 + 10.7175i −0.376110 + 0.376110i
\(813\) 0 0
\(814\) 1.72010i 0.0602894i
\(815\) 0 0
\(816\) 0 0
\(817\) 2.80415 + 2.80415i 0.0981046 + 0.0981046i
\(818\) −65.0326 65.0326i −2.27381 2.27381i
\(819\) 0 0
\(820\) 0 0
\(821\) 24.0674i 0.839959i 0.907534 + 0.419980i \(0.137963\pi\)
−0.907534 + 0.419980i \(0.862037\pi\)
\(822\) 0 0
\(823\) −27.6196 + 27.6196i −0.962759 + 0.962759i −0.999331 0.0365723i \(-0.988356\pi\)
0.0365723 + 0.999331i \(0.488356\pi\)
\(824\) 188.122 6.55353
\(825\) 0 0
\(826\) 13.5725 0.472247
\(827\) −16.3828 + 16.3828i −0.569687 + 0.569687i −0.932041 0.362354i \(-0.881973\pi\)
0.362354 + 0.932041i \(0.381973\pi\)
\(828\) 0 0
\(829\) 30.5709i 1.06177i −0.847443 0.530886i \(-0.821859\pi\)
0.847443 0.530886i \(-0.178141\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 138.910 + 138.910i 4.81585 + 4.81585i
\(833\) −1.75881 1.75881i −0.0609390 0.0609390i
\(834\) 0 0
\(835\) 0 0
\(836\) 5.56126i 0.192340i
\(837\) 0 0
\(838\) −10.1143 + 10.1143i −0.349391 + 0.349391i
\(839\) 51.9468 1.79340 0.896701 0.442638i \(-0.145957\pi\)
0.896701 + 0.442638i \(0.145957\pi\)
\(840\) 0 0
\(841\) −21.9688 −0.757544
\(842\) 5.60403 5.60403i 0.193128 0.193128i
\(843\) 0 0
\(844\) 96.6955i 3.32840i
\(845\) 0 0
\(846\) 0 0
\(847\) −7.73454 7.73454i −0.265762 0.265762i
\(848\) 73.3812 + 73.3812i 2.51992 + 2.51992i
\(849\) 0 0
\(850\) 0 0
\(851\) 7.82871i 0.268365i
\(852\) 0 0
\(853\) 4.07950 4.07950i 0.139679 0.139679i −0.633810 0.773489i \(-0.718510\pi\)
0.773489 + 0.633810i \(0.218510\pi\)
\(854\) 26.5284 0.907783
\(855\) 0 0
\(856\) −12.9958 −0.444187
\(857\) −10.5745 + 10.5745i −0.361217 + 0.361217i −0.864261 0.503044i \(-0.832214\pi\)
0.503044 + 0.864261i \(0.332214\pi\)
\(858\) 0 0
\(859\) 33.2826i 1.13559i 0.823171 + 0.567794i \(0.192203\pi\)
−0.823171 + 0.567794i \(0.807797\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 43.3286 + 43.3286i 1.47578 + 1.47578i
\(863\) −11.6428 11.6428i −0.396326 0.396326i 0.480609 0.876935i \(-0.340416\pi\)
−0.876935 + 0.480609i \(0.840416\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 43.0405i 1.46257i
\(867\) 0 0
\(868\) 11.9817 11.9817i 0.406685 0.406685i
\(869\) 2.79629 0.0948577
\(870\) 0 0
\(871\) 40.3820 1.36829
\(872\) 6.74441 6.74441i 0.228394 0.228394i
\(873\) 0 0
\(874\) 34.1673i 1.15573i
\(875\) 0 0
\(876\) 0 0
\(877\) −16.0669 16.0669i −0.542541 0.542541i 0.381732 0.924273i \(-0.375328\pi\)
−0.924273 + 0.381732i \(0.875328\pi\)
\(878\) −14.6412 14.6412i −0.494118 0.494118i
\(879\) 0 0
\(880\) 0 0
\(881\) 33.9802i 1.14482i −0.819967 0.572411i \(-0.806008\pi\)
0.819967 0.572411i \(-0.193992\pi\)
\(882\) 0 0
\(883\) −12.8883 + 12.8883i −0.433726 + 0.433726i −0.889894 0.456168i \(-0.849222\pi\)
0.456168 + 0.889894i \(0.349222\pi\)
\(884\) 67.7879 2.27995
\(885\) 0 0
\(886\) 15.8080 0.531082
\(887\) −8.51813 + 8.51813i −0.286011 + 0.286011i −0.835501 0.549490i \(-0.814822\pi\)
0.549490 + 0.835501i \(0.314822\pi\)
\(888\) 0 0
\(889\) 14.0136i 0.470001i
\(890\) 0 0
\(891\) 0 0
\(892\) 42.6487 + 42.6487i 1.42798 + 1.42798i
\(893\) −13.0908 13.0908i −0.438067 0.438067i
\(894\) 0 0
\(895\) 0 0
\(896\) 59.9583i 2.00307i
\(897\) 0 0
\(898\) 44.8285 44.8285i 1.49595 1.49595i
\(899\) −7.86060 −0.262166
\(900\) 0 0
\(901\) 14.9719 0.498788
\(902\) −3.62062 + 3.62062i −0.120553 + 0.120553i
\(903\) 0 0
\(904\) 63.1241i 2.09947i
\(905\) 0 0
\(906\) 0 0
\(907\) −1.99425 1.99425i −0.0662179 0.0662179i 0.673222 0.739440i \(-0.264910\pi\)
−0.739440 + 0.673222i \(0.764910\pi\)
\(908\) 44.3249 + 44.3249i 1.47097 + 1.47097i
\(909\) 0 0
\(910\) 0 0
\(911\) 5.34768i 0.177176i 0.996068 + 0.0885882i \(0.0282355\pi\)
−0.996068 + 0.0885882i \(0.971764\pi\)
\(912\) 0 0
\(913\) −2.52673 + 2.52673i −0.0836226 + 0.0836226i
\(914\) 83.7275 2.76946
\(915\) 0 0
\(916\) −69.6812 −2.30233
\(917\) 3.67461 3.67461i 0.121346 0.121346i
\(918\) 0 0
\(919\) 35.0647i 1.15668i 0.815796 + 0.578339i \(0.196299\pi\)
−0.815796 + 0.578339i \(0.803701\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 37.9670 + 37.9670i 1.25038 + 1.25038i
\(923\) −21.2980 21.2980i −0.701031 0.701031i
\(924\) 0 0
\(925\) 0 0
\(926\) 31.2696i 1.02758i
\(927\) 0 0
\(928\) 51.0866 51.0866i 1.67700 1.67700i
\(929\) −11.2129 −0.367883 −0.183941 0.982937i \(-0.558886\pi\)
−0.183941 + 0.982937i \(0.558886\pi\)
\(930\) 0 0
\(931\) −3.91639 −0.128354
\(932\) 97.5672 97.5672i 3.19592 3.19592i
\(933\) 0 0
\(934\) 97.9533i 3.20513i
\(935\) 0 0
\(936\) 0 0
\(937\) −1.24982 1.24982i −0.0408298 0.0408298i 0.686397 0.727227i \(-0.259191\pi\)
−0.727227 + 0.686397i \(0.759191\pi\)
\(938\) 16.6358 + 16.6358i 0.543177 + 0.543177i
\(939\) 0 0
\(940\) 0 0
\(941\) 2.58136i 0.0841499i −0.999114 0.0420750i \(-0.986603\pi\)
0.999114 0.0420750i \(-0.0133968\pi\)
\(942\) 0 0
\(943\) 16.4786 16.4786i 0.536616 0.536616i
\(944\) −84.2398 −2.74177
\(945\) 0 0
\(946\) −0.698749 −0.0227183
\(947\) −40.6372 + 40.6372i −1.32053 + 1.32053i −0.407184 + 0.913346i \(0.633489\pi\)
−0.913346 + 0.407184i \(0.866511\pi\)
\(948\) 0 0
\(949\) 69.6285i 2.26024i
\(950\) 0 0
\(951\) 0 0
\(952\) 18.1547 + 18.1547i 0.588399 + 0.588399i
\(953\) −31.8867 31.8867i −1.03291 1.03291i −0.999440 0.0334725i \(-0.989343\pi\)
−0.0334725 0.999440i \(-0.510657\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 89.2171i 2.88549i
\(957\) 0 0
\(958\) 79.0573 79.0573i 2.55423 2.55423i
\(959\) −6.06350 −0.195801
\(960\) 0 0
\(961\) −22.2122 −0.716522
\(962\) 23.3437 23.3437i 0.752631 0.752631i
\(963\) 0 0
\(964\) 111.010i 3.57540i
\(965\) 0 0
\(966\) 0 0
\(967\) −41.0973 41.0973i −1.32160 1.32160i −0.912482 0.409118i \(-0.865837\pi\)
−0.409118 0.912482i \(-0.634163\pi\)
\(968\) 79.8374 + 79.8374i 2.56607 + 2.56607i
\(969\) 0 0
\(970\) 0 0
\(971\) 8.55398i 0.274510i 0.990536 + 0.137255i \(0.0438280\pi\)
−0.990536 + 0.137255i \(0.956172\pi\)
\(972\) 0 0
\(973\) −7.47803 + 7.47803i −0.239735 + 0.239735i
\(974\) 97.8788 3.13624
\(975\) 0 0
\(976\) −164.653 −5.27041
\(977\) −19.2987 + 19.2987i −0.617420 + 0.617420i −0.944869 0.327449i \(-0.893811\pi\)
0.327449 + 0.944869i \(0.393811\pi\)
\(978\) 0 0
\(979\) 0.476687i 0.0152350i
\(980\) 0 0
\(981\) 0 0
\(982\) −14.3284 14.3284i −0.457239 0.457239i
\(983\) 11.4633 + 11.4633i 0.365624 + 0.365624i 0.865878 0.500255i \(-0.166760\pi\)
−0.500255 + 0.865878i \(0.666760\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 18.3208i 0.583453i
\(987\) 0 0
\(988\) 75.4727 75.4727i 2.40111 2.40111i
\(989\) 3.18023 0.101125
\(990\) 0 0
\(991\) 42.4919 1.34980 0.674899 0.737910i \(-0.264187\pi\)
0.674899 + 0.737910i \(0.264187\pi\)
\(992\) −57.1127 + 57.1127i −1.81333 + 1.81333i
\(993\) 0 0
\(994\) 17.5478i 0.556582i
\(995\) 0 0
\(996\) 0 0
\(997\) 16.2954 + 16.2954i 0.516082 + 0.516082i 0.916383 0.400302i \(-0.131095\pi\)
−0.400302 + 0.916383i \(0.631095\pi\)
\(998\) −17.6610 17.6610i −0.559049 0.559049i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.2.m.d.1457.1 12
3.2 odd 2 1575.2.m.c.1457.6 12
5.2 odd 4 315.2.m.a.8.1 12
5.3 odd 4 1575.2.m.c.1268.6 12
5.4 even 2 315.2.m.b.197.6 yes 12
15.2 even 4 315.2.m.b.8.6 yes 12
15.8 even 4 inner 1575.2.m.d.1268.1 12
15.14 odd 2 315.2.m.a.197.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.m.a.8.1 12 5.2 odd 4
315.2.m.a.197.1 yes 12 15.14 odd 2
315.2.m.b.8.6 yes 12 15.2 even 4
315.2.m.b.197.6 yes 12 5.4 even 2
1575.2.m.c.1268.6 12 5.3 odd 4
1575.2.m.c.1457.6 12 3.2 odd 2
1575.2.m.d.1268.1 12 15.8 even 4 inner
1575.2.m.d.1457.1 12 1.1 even 1 trivial