Properties

Label 1575.2.m.c.1457.5
Level $1575$
Weight $2$
Character 1575.1457
Analytic conductor $12.576$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1575,2,Mod(1268,1575)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1575.1268"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1575, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1575.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5764383184\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 107x^{8} + 240x^{6} + 151x^{4} + 30x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 315)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1457.5
Root \(0.699479i\) of defining polynomial
Character \(\chi\) \(=\) 1575.1457
Dual form 1575.2.m.c.1268.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.62044 - 1.62044i) q^{2} -3.25168i q^{4} +(0.707107 + 0.707107i) q^{7} +(-2.02827 - 2.02827i) q^{8} -3.03260i q^{11} +(2.54141 - 2.54141i) q^{13} +2.29165 q^{14} -0.0700407 q^{16} +(-2.70395 + 2.70395i) q^{17} -6.63081i q^{19} +(-4.91416 - 4.91416i) q^{22} +(2.99113 + 2.99113i) q^{23} -8.23642i q^{26} +(2.29928 - 2.29928i) q^{28} +5.10191 q^{29} -3.28427 q^{31} +(3.94304 - 3.94304i) q^{32} +8.76319i q^{34} +(-6.68770 - 6.68770i) q^{37} +(-10.7449 - 10.7449i) q^{38} -7.36835i q^{41} +(-1.74832 + 1.74832i) q^{43} -9.86103 q^{44} +9.69392 q^{46} +(-0.173326 + 0.173326i) q^{47} +1.00000i q^{49} +(-8.26384 - 8.26384i) q^{52} +(8.45145 + 8.45145i) q^{53} -2.86841i q^{56} +(8.26736 - 8.26736i) q^{58} -4.60104 q^{59} -10.5309 q^{61} +(-5.32198 + 5.32198i) q^{62} -12.9190i q^{64} +(8.00655 + 8.00655i) q^{67} +(8.79236 + 8.79236i) q^{68} +5.47459i q^{71} +(5.58444 - 5.58444i) q^{73} -21.6741 q^{74} -21.5612 q^{76} +(2.14437 - 2.14437i) q^{77} -16.1081i q^{79} +(-11.9400 - 11.9400i) q^{82} +(-0.998247 - 0.998247i) q^{83} +5.66612i q^{86} +(-6.15093 + 6.15093i) q^{88} -3.00035 q^{89} +3.59409 q^{91} +(9.72619 - 9.72619i) q^{92} +0.561731i q^{94} +(8.52367 + 8.52367i) q^{97} +(1.62044 + 1.62044i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 24 q^{8} + 4 q^{13} - 4 q^{14} - 20 q^{16} - 8 q^{17} + 8 q^{22} - 8 q^{23} - 32 q^{29} - 48 q^{32} - 4 q^{37} - 24 q^{38} - 40 q^{43} - 64 q^{44} + 16 q^{46} - 24 q^{47} - 36 q^{52} + 40 q^{53}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1575\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(1226\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.62044 1.62044i 1.14583 1.14583i 0.158462 0.987365i \(-0.449347\pi\)
0.987365 0.158462i \(-0.0506534\pi\)
\(3\) 0 0
\(4\) 3.25168i 1.62584i
\(5\) 0 0
\(6\) 0 0
\(7\) 0.707107 + 0.707107i 0.267261 + 0.267261i
\(8\) −2.02827 2.02827i −0.717101 0.717101i
\(9\) 0 0
\(10\) 0 0
\(11\) 3.03260i 0.914363i −0.889373 0.457181i \(-0.848859\pi\)
0.889373 0.457181i \(-0.151141\pi\)
\(12\) 0 0
\(13\) 2.54141 2.54141i 0.704860 0.704860i −0.260590 0.965450i \(-0.583917\pi\)
0.965450 + 0.260590i \(0.0839170\pi\)
\(14\) 2.29165 0.612470
\(15\) 0 0
\(16\) −0.0700407 −0.0175102
\(17\) −2.70395 + 2.70395i −0.655803 + 0.655803i −0.954384 0.298581i \(-0.903487\pi\)
0.298581 + 0.954384i \(0.403487\pi\)
\(18\) 0 0
\(19\) 6.63081i 1.52121i −0.649214 0.760606i \(-0.724902\pi\)
0.649214 0.760606i \(-0.275098\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.91416 4.91416i −1.04770 1.04770i
\(23\) 2.99113 + 2.99113i 0.623694 + 0.623694i 0.946474 0.322780i \(-0.104617\pi\)
−0.322780 + 0.946474i \(0.604617\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 8.23642i 1.61529i
\(27\) 0 0
\(28\) 2.29928 2.29928i 0.434523 0.434523i
\(29\) 5.10191 0.947401 0.473701 0.880686i \(-0.342918\pi\)
0.473701 + 0.880686i \(0.342918\pi\)
\(30\) 0 0
\(31\) −3.28427 −0.589873 −0.294937 0.955517i \(-0.595298\pi\)
−0.294937 + 0.955517i \(0.595298\pi\)
\(32\) 3.94304 3.94304i 0.697038 0.697038i
\(33\) 0 0
\(34\) 8.76319i 1.50287i
\(35\) 0 0
\(36\) 0 0
\(37\) −6.68770 6.68770i −1.09945 1.09945i −0.994475 0.104976i \(-0.966523\pi\)
−0.104976 0.994475i \(-0.533477\pi\)
\(38\) −10.7449 10.7449i −1.74305 1.74305i
\(39\) 0 0
\(40\) 0 0
\(41\) 7.36835i 1.15074i −0.817892 0.575371i \(-0.804858\pi\)
0.817892 0.575371i \(-0.195142\pi\)
\(42\) 0 0
\(43\) −1.74832 + 1.74832i −0.266617 + 0.266617i −0.827736 0.561118i \(-0.810371\pi\)
0.561118 + 0.827736i \(0.310371\pi\)
\(44\) −9.86103 −1.48661
\(45\) 0 0
\(46\) 9.69392 1.42929
\(47\) −0.173326 + 0.173326i −0.0252822 + 0.0252822i −0.719635 0.694353i \(-0.755691\pi\)
0.694353 + 0.719635i \(0.255691\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 0 0
\(52\) −8.26384 8.26384i −1.14599 1.14599i
\(53\) 8.45145 + 8.45145i 1.16090 + 1.16090i 0.984280 + 0.176616i \(0.0565150\pi\)
0.176616 + 0.984280i \(0.443485\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 2.86841i 0.383307i
\(57\) 0 0
\(58\) 8.26736 8.26736i 1.08556 1.08556i
\(59\) −4.60104 −0.599005 −0.299502 0.954096i \(-0.596821\pi\)
−0.299502 + 0.954096i \(0.596821\pi\)
\(60\) 0 0
\(61\) −10.5309 −1.34834 −0.674171 0.738575i \(-0.735499\pi\)
−0.674171 + 0.738575i \(0.735499\pi\)
\(62\) −5.32198 + 5.32198i −0.675892 + 0.675892i
\(63\) 0 0
\(64\) 12.9190i 1.61488i
\(65\) 0 0
\(66\) 0 0
\(67\) 8.00655 + 8.00655i 0.978156 + 0.978156i 0.999766 0.0216101i \(-0.00687926\pi\)
−0.0216101 + 0.999766i \(0.506879\pi\)
\(68\) 8.79236 + 8.79236i 1.06623 + 1.06623i
\(69\) 0 0
\(70\) 0 0
\(71\) 5.47459i 0.649714i 0.945763 + 0.324857i \(0.105316\pi\)
−0.945763 + 0.324857i \(0.894684\pi\)
\(72\) 0 0
\(73\) 5.58444 5.58444i 0.653610 0.653610i −0.300251 0.953860i \(-0.597070\pi\)
0.953860 + 0.300251i \(0.0970703\pi\)
\(74\) −21.6741 −2.51956
\(75\) 0 0
\(76\) −21.5612 −2.47324
\(77\) 2.14437 2.14437i 0.244374 0.244374i
\(78\) 0 0
\(79\) 16.1081i 1.81230i −0.422951 0.906152i \(-0.639006\pi\)
0.422951 0.906152i \(-0.360994\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −11.9400 11.9400i −1.31855 1.31855i
\(83\) −0.998247 0.998247i −0.109572 0.109572i 0.650195 0.759767i \(-0.274687\pi\)
−0.759767 + 0.650195i \(0.774687\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 5.66612i 0.610994i
\(87\) 0 0
\(88\) −6.15093 + 6.15093i −0.655691 + 0.655691i
\(89\) −3.00035 −0.318037 −0.159018 0.987276i \(-0.550833\pi\)
−0.159018 + 0.987276i \(0.550833\pi\)
\(90\) 0 0
\(91\) 3.59409 0.376763
\(92\) 9.72619 9.72619i 1.01403 1.01403i
\(93\) 0 0
\(94\) 0.561731i 0.0579381i
\(95\) 0 0
\(96\) 0 0
\(97\) 8.52367 + 8.52367i 0.865448 + 0.865448i 0.991964 0.126517i \(-0.0403797\pi\)
−0.126517 + 0.991964i \(0.540380\pi\)
\(98\) 1.62044 + 1.62044i 0.163690 + 0.163690i
\(99\) 0 0
\(100\) 0 0
\(101\) 16.8630i 1.67793i 0.544183 + 0.838966i \(0.316840\pi\)
−0.544183 + 0.838966i \(0.683160\pi\)
\(102\) 0 0
\(103\) 1.24992 1.24992i 0.123158 0.123158i −0.642841 0.766000i \(-0.722244\pi\)
0.766000 + 0.642841i \(0.222244\pi\)
\(104\) −10.3093 −1.01091
\(105\) 0 0
\(106\) 27.3902 2.66037
\(107\) −14.1755 + 14.1755i −1.37040 + 1.37040i −0.510544 + 0.859852i \(0.670556\pi\)
−0.859852 + 0.510544i \(0.829444\pi\)
\(108\) 0 0
\(109\) 0.574370i 0.0550146i 0.999622 + 0.0275073i \(0.00875696\pi\)
−0.999622 + 0.0275073i \(0.991243\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.0495262 0.0495262i −0.00467979 0.00467979i
\(113\) 6.98481 + 6.98481i 0.657076 + 0.657076i 0.954687 0.297611i \(-0.0961899\pi\)
−0.297611 + 0.954687i \(0.596190\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 16.5898i 1.54032i
\(117\) 0 0
\(118\) −7.45573 + 7.45573i −0.686356 + 0.686356i
\(119\) −3.82396 −0.350542
\(120\) 0 0
\(121\) 1.80334 0.163940
\(122\) −17.0647 + 17.0647i −1.54497 + 1.54497i
\(123\) 0 0
\(124\) 10.6794i 0.959038i
\(125\) 0 0
\(126\) 0 0
\(127\) 3.96367 + 3.96367i 0.351718 + 0.351718i 0.860749 0.509030i \(-0.169996\pi\)
−0.509030 + 0.860749i \(0.669996\pi\)
\(128\) −13.0485 13.0485i −1.15333 1.15333i
\(129\) 0 0
\(130\) 0 0
\(131\) 19.0779i 1.66684i 0.552640 + 0.833420i \(0.313620\pi\)
−0.552640 + 0.833420i \(0.686380\pi\)
\(132\) 0 0
\(133\) 4.68869 4.68869i 0.406561 0.406561i
\(134\) 25.9483 2.24160
\(135\) 0 0
\(136\) 10.9687 0.940555
\(137\) −0.370993 + 0.370993i −0.0316961 + 0.0316961i −0.722777 0.691081i \(-0.757135\pi\)
0.691081 + 0.722777i \(0.257135\pi\)
\(138\) 0 0
\(139\) 16.3127i 1.38363i 0.722076 + 0.691814i \(0.243188\pi\)
−0.722076 + 0.691814i \(0.756812\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 8.87127 + 8.87127i 0.744460 + 0.744460i
\(143\) −7.70707 7.70707i −0.644498 0.644498i
\(144\) 0 0
\(145\) 0 0
\(146\) 18.0986i 1.49785i
\(147\) 0 0
\(148\) −21.7462 + 21.7462i −1.78753 + 1.78753i
\(149\) 11.9577 0.979611 0.489806 0.871832i \(-0.337068\pi\)
0.489806 + 0.871832i \(0.337068\pi\)
\(150\) 0 0
\(151\) −1.85059 −0.150599 −0.0752994 0.997161i \(-0.523991\pi\)
−0.0752994 + 0.997161i \(0.523991\pi\)
\(152\) −13.4491 + 13.4491i −1.09086 + 1.09086i
\(153\) 0 0
\(154\) 6.94967i 0.560020i
\(155\) 0 0
\(156\) 0 0
\(157\) −2.71202 2.71202i −0.216443 0.216443i 0.590555 0.806998i \(-0.298909\pi\)
−0.806998 + 0.590555i \(0.798909\pi\)
\(158\) −26.1023 26.1023i −2.07659 2.07659i
\(159\) 0 0
\(160\) 0 0
\(161\) 4.23010i 0.333379i
\(162\) 0 0
\(163\) 5.24571 5.24571i 0.410876 0.410876i −0.471168 0.882043i \(-0.656167\pi\)
0.882043 + 0.471168i \(0.156167\pi\)
\(164\) −23.9595 −1.87092
\(165\) 0 0
\(166\) −3.23520 −0.251101
\(167\) −8.01311 + 8.01311i −0.620073 + 0.620073i −0.945550 0.325477i \(-0.894475\pi\)
0.325477 + 0.945550i \(0.394475\pi\)
\(168\) 0 0
\(169\) 0.0824845i 0.00634496i
\(170\) 0 0
\(171\) 0 0
\(172\) 5.68498 + 5.68498i 0.433476 + 0.433476i
\(173\) −0.181459 0.181459i −0.0137961 0.0137961i 0.700175 0.713971i \(-0.253105\pi\)
−0.713971 + 0.700175i \(0.753105\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.212405i 0.0160106i
\(177\) 0 0
\(178\) −4.86190 + 4.86190i −0.364415 + 0.364415i
\(179\) 12.4629 0.931523 0.465762 0.884910i \(-0.345780\pi\)
0.465762 + 0.884910i \(0.345780\pi\)
\(180\) 0 0
\(181\) 14.2000 1.05548 0.527738 0.849407i \(-0.323040\pi\)
0.527738 + 0.849407i \(0.323040\pi\)
\(182\) 5.82403 5.82403i 0.431706 0.431706i
\(183\) 0 0
\(184\) 12.1336i 0.894504i
\(185\) 0 0
\(186\) 0 0
\(187\) 8.19999 + 8.19999i 0.599642 + 0.599642i
\(188\) 0.563601 + 0.563601i 0.0411048 + 0.0411048i
\(189\) 0 0
\(190\) 0 0
\(191\) 10.3158i 0.746425i −0.927746 0.373212i \(-0.878256\pi\)
0.927746 0.373212i \(-0.121744\pi\)
\(192\) 0 0
\(193\) −0.266580 + 0.266580i −0.0191888 + 0.0191888i −0.716636 0.697447i \(-0.754319\pi\)
0.697447 + 0.716636i \(0.254319\pi\)
\(194\) 27.6243 1.98331
\(195\) 0 0
\(196\) 3.25168 0.232263
\(197\) 6.98481 6.98481i 0.497647 0.497647i −0.413058 0.910705i \(-0.635539\pi\)
0.910705 + 0.413058i \(0.135539\pi\)
\(198\) 0 0
\(199\) 16.7701i 1.18880i −0.804168 0.594402i \(-0.797389\pi\)
0.804168 0.594402i \(-0.202611\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 27.3256 + 27.3256i 1.92262 + 1.92262i
\(203\) 3.60760 + 3.60760i 0.253204 + 0.253204i
\(204\) 0 0
\(205\) 0 0
\(206\) 4.05086i 0.282236i
\(207\) 0 0
\(208\) −0.178002 + 0.178002i −0.0123422 + 0.0123422i
\(209\) −20.1086 −1.39094
\(210\) 0 0
\(211\) 16.9651 1.16793 0.583963 0.811780i \(-0.301501\pi\)
0.583963 + 0.811780i \(0.301501\pi\)
\(212\) 27.4814 27.4814i 1.88743 1.88743i
\(213\) 0 0
\(214\) 45.9411i 3.14047i
\(215\) 0 0
\(216\) 0 0
\(217\) −2.32233 2.32233i −0.157650 0.157650i
\(218\) 0.930734 + 0.930734i 0.0630372 + 0.0630372i
\(219\) 0 0
\(220\) 0 0
\(221\) 13.7437i 0.924499i
\(222\) 0 0
\(223\) −13.3495 + 13.3495i −0.893947 + 0.893947i −0.994892 0.100945i \(-0.967813\pi\)
0.100945 + 0.994892i \(0.467813\pi\)
\(224\) 5.57630 0.372582
\(225\) 0 0
\(226\) 22.6370 1.50579
\(227\) 11.9255 11.9255i 0.791525 0.791525i −0.190217 0.981742i \(-0.560919\pi\)
0.981742 + 0.190217i \(0.0609193\pi\)
\(228\) 0 0
\(229\) 8.42386i 0.556665i −0.960485 0.278332i \(-0.910218\pi\)
0.960485 0.278332i \(-0.0897816\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −10.3481 10.3481i −0.679383 0.679383i
\(233\) 0.822128 + 0.822128i 0.0538594 + 0.0538594i 0.733524 0.679664i \(-0.237874\pi\)
−0.679664 + 0.733524i \(0.737874\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 14.9611i 0.973884i
\(237\) 0 0
\(238\) −6.19651 + 6.19651i −0.401660 + 0.401660i
\(239\) −11.4492 −0.740586 −0.370293 0.928915i \(-0.620743\pi\)
−0.370293 + 0.928915i \(0.620743\pi\)
\(240\) 0 0
\(241\) −22.9679 −1.47949 −0.739747 0.672885i \(-0.765055\pi\)
−0.739747 + 0.672885i \(0.765055\pi\)
\(242\) 2.92222 2.92222i 0.187847 0.187847i
\(243\) 0 0
\(244\) 34.2430i 2.19218i
\(245\) 0 0
\(246\) 0 0
\(247\) −16.8516 16.8516i −1.07224 1.07224i
\(248\) 6.66139 + 6.66139i 0.422999 + 0.422999i
\(249\) 0 0
\(250\) 0 0
\(251\) 3.83285i 0.241928i −0.992657 0.120964i \(-0.961402\pi\)
0.992657 0.120964i \(-0.0385985\pi\)
\(252\) 0 0
\(253\) 9.07090 9.07090i 0.570283 0.570283i
\(254\) 12.8458 0.806017
\(255\) 0 0
\(256\) −16.4506 −1.02816
\(257\) −14.4687 + 14.4687i −0.902532 + 0.902532i −0.995655 0.0931230i \(-0.970315\pi\)
0.0931230 + 0.995655i \(0.470315\pi\)
\(258\) 0 0
\(259\) 9.45784i 0.587681i
\(260\) 0 0
\(261\) 0 0
\(262\) 30.9146 + 30.9146i 1.90991 + 1.90991i
\(263\) −14.4785 14.4785i −0.892783 0.892783i 0.102002 0.994784i \(-0.467475\pi\)
−0.994784 + 0.102002i \(0.967475\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 15.1955i 0.931697i
\(267\) 0 0
\(268\) 26.0347 26.0347i 1.59032 1.59032i
\(269\) −6.60739 −0.402860 −0.201430 0.979503i \(-0.564559\pi\)
−0.201430 + 0.979503i \(0.564559\pi\)
\(270\) 0 0
\(271\) 22.9409 1.39356 0.696780 0.717285i \(-0.254615\pi\)
0.696780 + 0.717285i \(0.254615\pi\)
\(272\) 0.189386 0.189386i 0.0114832 0.0114832i
\(273\) 0 0
\(274\) 1.20235i 0.0726365i
\(275\) 0 0
\(276\) 0 0
\(277\) 13.9239 + 13.9239i 0.836605 + 0.836605i 0.988410 0.151806i \(-0.0485088\pi\)
−0.151806 + 0.988410i \(0.548509\pi\)
\(278\) 26.4339 + 26.4339i 1.58540 + 1.58540i
\(279\) 0 0
\(280\) 0 0
\(281\) 14.7206i 0.878156i 0.898449 + 0.439078i \(0.144695\pi\)
−0.898449 + 0.439078i \(0.855305\pi\)
\(282\) 0 0
\(283\) −8.42004 + 8.42004i −0.500520 + 0.500520i −0.911599 0.411080i \(-0.865152\pi\)
0.411080 + 0.911599i \(0.365152\pi\)
\(284\) 17.8016 1.05633
\(285\) 0 0
\(286\) −24.9778 −1.47697
\(287\) 5.21021 5.21021i 0.307549 0.307549i
\(288\) 0 0
\(289\) 2.37734i 0.139844i
\(290\) 0 0
\(291\) 0 0
\(292\) −18.1588 18.1588i −1.06266 1.06266i
\(293\) 21.6859 + 21.6859i 1.26690 + 1.26690i 0.947680 + 0.319221i \(0.103421\pi\)
0.319221 + 0.947680i \(0.396579\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 27.1289i 1.57684i
\(297\) 0 0
\(298\) 19.3767 19.3767i 1.12246 1.12246i
\(299\) 15.2034 0.879234
\(300\) 0 0
\(301\) −2.47250 −0.142513
\(302\) −2.99878 + 2.99878i −0.172560 + 0.172560i
\(303\) 0 0
\(304\) 0.464426i 0.0266367i
\(305\) 0 0
\(306\) 0 0
\(307\) −8.85014 8.85014i −0.505104 0.505104i 0.407915 0.913020i \(-0.366256\pi\)
−0.913020 + 0.407915i \(0.866256\pi\)
\(308\) −6.97280 6.97280i −0.397312 0.397312i
\(309\) 0 0
\(310\) 0 0
\(311\) 12.8964i 0.731286i −0.930755 0.365643i \(-0.880849\pi\)
0.930755 0.365643i \(-0.119151\pi\)
\(312\) 0 0
\(313\) 1.54078 1.54078i 0.0870900 0.0870900i −0.662220 0.749310i \(-0.730385\pi\)
0.749310 + 0.662220i \(0.230385\pi\)
\(314\) −8.78935 −0.496012
\(315\) 0 0
\(316\) −52.3784 −2.94651
\(317\) 1.84855 1.84855i 0.103825 0.103825i −0.653286 0.757111i \(-0.726610\pi\)
0.757111 + 0.653286i \(0.226610\pi\)
\(318\) 0 0
\(319\) 15.4721i 0.866269i
\(320\) 0 0
\(321\) 0 0
\(322\) 6.85464 + 6.85464i 0.381994 + 0.381994i
\(323\) 17.9294 + 17.9294i 0.997616 + 0.997616i
\(324\) 0 0
\(325\) 0 0
\(326\) 17.0007i 0.941584i
\(327\) 0 0
\(328\) −14.9450 + 14.9450i −0.825199 + 0.825199i
\(329\) −0.245120 −0.0135139
\(330\) 0 0
\(331\) −9.39910 −0.516621 −0.258310 0.966062i \(-0.583166\pi\)
−0.258310 + 0.966062i \(0.583166\pi\)
\(332\) −3.24597 + 3.24597i −0.178146 + 0.178146i
\(333\) 0 0
\(334\) 25.9696i 1.42099i
\(335\) 0 0
\(336\) 0 0
\(337\) −18.1546 18.1546i −0.988942 0.988942i 0.0109971 0.999940i \(-0.496499\pi\)
−0.999940 + 0.0109971i \(0.996499\pi\)
\(338\) 0.133661 + 0.133661i 0.00727022 + 0.00727022i
\(339\) 0 0
\(340\) 0 0
\(341\) 9.95988i 0.539358i
\(342\) 0 0
\(343\) −0.707107 + 0.707107i −0.0381802 + 0.0381802i
\(344\) 7.09215 0.382383
\(345\) 0 0
\(346\) −0.588089 −0.0316158
\(347\) −6.52324 + 6.52324i −0.350186 + 0.350186i −0.860179 0.509993i \(-0.829648\pi\)
0.509993 + 0.860179i \(0.329648\pi\)
\(348\) 0 0
\(349\) 28.6246i 1.53224i 0.642697 + 0.766121i \(0.277816\pi\)
−0.642697 + 0.766121i \(0.722184\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −11.9577 11.9577i −0.637345 0.637345i
\(353\) 7.79446 + 7.79446i 0.414857 + 0.414857i 0.883427 0.468570i \(-0.155230\pi\)
−0.468570 + 0.883427i \(0.655230\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 9.75617i 0.517076i
\(357\) 0 0
\(358\) 20.1955 20.1955i 1.06736 1.06736i
\(359\) −0.715285 −0.0377513 −0.0188756 0.999822i \(-0.506009\pi\)
−0.0188756 + 0.999822i \(0.506009\pi\)
\(360\) 0 0
\(361\) −24.9676 −1.31409
\(362\) 23.0103 23.0103i 1.20939 1.20939i
\(363\) 0 0
\(364\) 11.6868i 0.612556i
\(365\) 0 0
\(366\) 0 0
\(367\) −13.6098 13.6098i −0.710427 0.710427i 0.256198 0.966624i \(-0.417530\pi\)
−0.966624 + 0.256198i \(0.917530\pi\)
\(368\) −0.209501 0.209501i −0.0109210 0.0109210i
\(369\) 0 0
\(370\) 0 0
\(371\) 11.9522i 0.620525i
\(372\) 0 0
\(373\) −22.2558 + 22.2558i −1.15236 + 1.15236i −0.166284 + 0.986078i \(0.553177\pi\)
−0.986078 + 0.166284i \(0.946823\pi\)
\(374\) 26.5752 1.37417
\(375\) 0 0
\(376\) 0.703105 0.0362599
\(377\) 12.9660 12.9660i 0.667785 0.667785i
\(378\) 0 0
\(379\) 0.695620i 0.0357316i 0.999840 + 0.0178658i \(0.00568717\pi\)
−0.999840 + 0.0178658i \(0.994313\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −16.7162 16.7162i −0.855273 0.855273i
\(383\) 7.23025 + 7.23025i 0.369448 + 0.369448i 0.867276 0.497828i \(-0.165869\pi\)
−0.497828 + 0.867276i \(0.665869\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0.863955i 0.0439741i
\(387\) 0 0
\(388\) 27.7162 27.7162i 1.40708 1.40708i
\(389\) −20.5075 −1.03977 −0.519885 0.854236i \(-0.674025\pi\)
−0.519885 + 0.854236i \(0.674025\pi\)
\(390\) 0 0
\(391\) −16.1757 −0.818042
\(392\) 2.02827 2.02827i 0.102443 0.102443i
\(393\) 0 0
\(394\) 22.6370i 1.14044i
\(395\) 0 0
\(396\) 0 0
\(397\) −8.69971 8.69971i −0.436626 0.436626i 0.454249 0.890875i \(-0.349908\pi\)
−0.890875 + 0.454249i \(0.849908\pi\)
\(398\) −27.1751 27.1751i −1.36216 1.36216i
\(399\) 0 0
\(400\) 0 0
\(401\) 1.07299i 0.0535826i −0.999641 0.0267913i \(-0.991471\pi\)
0.999641 0.0267913i \(-0.00852896\pi\)
\(402\) 0 0
\(403\) −8.34668 + 8.34668i −0.415778 + 0.415778i
\(404\) 54.8330 2.72805
\(405\) 0 0
\(406\) 11.6918 0.580255
\(407\) −20.2811 + 20.2811i −1.00530 + 1.00530i
\(408\) 0 0
\(409\) 17.9019i 0.885193i 0.896721 + 0.442596i \(0.145943\pi\)
−0.896721 + 0.442596i \(0.854057\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −4.06434 4.06434i −0.200236 0.200236i
\(413\) −3.25343 3.25343i −0.160091 0.160091i
\(414\) 0 0
\(415\) 0 0
\(416\) 20.0418i 0.982628i
\(417\) 0 0
\(418\) −32.5848 + 32.5848i −1.59378 + 1.59378i
\(419\) −14.8415 −0.725057 −0.362528 0.931973i \(-0.618086\pi\)
−0.362528 + 0.931973i \(0.618086\pi\)
\(420\) 0 0
\(421\) 17.4595 0.850925 0.425463 0.904976i \(-0.360111\pi\)
0.425463 + 0.904976i \(0.360111\pi\)
\(422\) 27.4910 27.4910i 1.33824 1.33824i
\(423\) 0 0
\(424\) 34.2836i 1.66496i
\(425\) 0 0
\(426\) 0 0
\(427\) −7.44646 7.44646i −0.360359 0.360359i
\(428\) 46.0941 + 46.0941i 2.22804 + 2.22804i
\(429\) 0 0
\(430\) 0 0
\(431\) 2.29829i 0.110705i −0.998467 0.0553524i \(-0.982372\pi\)
0.998467 0.0553524i \(-0.0176282\pi\)
\(432\) 0 0
\(433\) −2.80323 + 2.80323i −0.134715 + 0.134715i −0.771249 0.636534i \(-0.780367\pi\)
0.636534 + 0.771249i \(0.280367\pi\)
\(434\) −7.52642 −0.361280
\(435\) 0 0
\(436\) 1.86766 0.0894449
\(437\) 19.8336 19.8336i 0.948771 0.948771i
\(438\) 0 0
\(439\) 15.5162i 0.740548i −0.928923 0.370274i \(-0.879264\pi\)
0.928923 0.370274i \(-0.120736\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 22.2708 + 22.2708i 1.05932 + 1.05932i
\(443\) −6.66424 6.66424i −0.316628 0.316628i 0.530843 0.847470i \(-0.321876\pi\)
−0.847470 + 0.530843i \(0.821876\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 43.2641i 2.04862i
\(447\) 0 0
\(448\) 9.13514 9.13514i 0.431595 0.431595i
\(449\) 16.4469 0.776178 0.388089 0.921622i \(-0.373135\pi\)
0.388089 + 0.921622i \(0.373135\pi\)
\(450\) 0 0
\(451\) −22.3452 −1.05220
\(452\) 22.7123 22.7123i 1.06830 1.06830i
\(453\) 0 0
\(454\) 38.6493i 1.81390i
\(455\) 0 0
\(456\) 0 0
\(457\) 12.2198 + 12.2198i 0.571619 + 0.571619i 0.932581 0.360961i \(-0.117551\pi\)
−0.360961 + 0.932581i \(0.617551\pi\)
\(458\) −13.6504 13.6504i −0.637841 0.637841i
\(459\) 0 0
\(460\) 0 0
\(461\) 10.3252i 0.480891i 0.970663 + 0.240446i \(0.0772936\pi\)
−0.970663 + 0.240446i \(0.922706\pi\)
\(462\) 0 0
\(463\) 13.2678 13.2678i 0.616605 0.616605i −0.328054 0.944659i \(-0.606393\pi\)
0.944659 + 0.328054i \(0.106393\pi\)
\(464\) −0.357341 −0.0165892
\(465\) 0 0
\(466\) 2.66443 0.123427
\(467\) 9.71989 9.71989i 0.449783 0.449783i −0.445499 0.895282i \(-0.646974\pi\)
0.895282 + 0.445499i \(0.146974\pi\)
\(468\) 0 0
\(469\) 11.3230i 0.522847i
\(470\) 0 0
\(471\) 0 0
\(472\) 9.33215 + 9.33215i 0.429547 + 0.429547i
\(473\) 5.30197 + 5.30197i 0.243785 + 0.243785i
\(474\) 0 0
\(475\) 0 0
\(476\) 12.4343i 0.569924i
\(477\) 0 0
\(478\) −18.5527 + 18.5527i −0.848583 + 0.848583i
\(479\) 1.57498 0.0719627 0.0359814 0.999352i \(-0.488544\pi\)
0.0359814 + 0.999352i \(0.488544\pi\)
\(480\) 0 0
\(481\) −33.9924 −1.54992
\(482\) −37.2182 + 37.2182i −1.69524 + 1.69524i
\(483\) 0 0
\(484\) 5.86389i 0.266540i
\(485\) 0 0
\(486\) 0 0
\(487\) 14.0684 + 14.0684i 0.637502 + 0.637502i 0.949939 0.312437i \(-0.101145\pi\)
−0.312437 + 0.949939i \(0.601145\pi\)
\(488\) 21.3595 + 21.3595i 0.966898 + 0.966898i
\(489\) 0 0
\(490\) 0 0
\(491\) 22.6169i 1.02069i 0.859971 + 0.510344i \(0.170482\pi\)
−0.859971 + 0.510344i \(0.829518\pi\)
\(492\) 0 0
\(493\) −13.7953 + 13.7953i −0.621309 + 0.621309i
\(494\) −54.6141 −2.45721
\(495\) 0 0
\(496\) 0.230033 0.0103288
\(497\) −3.87112 + 3.87112i −0.173643 + 0.173643i
\(498\) 0 0
\(499\) 35.1641i 1.57416i −0.616851 0.787080i \(-0.711592\pi\)
0.616851 0.787080i \(-0.288408\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −6.21092 6.21092i −0.277207 0.277207i
\(503\) 3.09215 + 3.09215i 0.137872 + 0.137872i 0.772674 0.634802i \(-0.218919\pi\)
−0.634802 + 0.772674i \(0.718919\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 29.3978i 1.30689i
\(507\) 0 0
\(508\) 12.8886 12.8886i 0.571837 0.571837i
\(509\) −7.39653 −0.327845 −0.163923 0.986473i \(-0.552415\pi\)
−0.163923 + 0.986473i \(0.552415\pi\)
\(510\) 0 0
\(511\) 7.89760 0.349369
\(512\) −0.560296 + 0.560296i −0.0247618 + 0.0247618i
\(513\) 0 0
\(514\) 46.8914i 2.06829i
\(515\) 0 0
\(516\) 0 0
\(517\) 0.525629 + 0.525629i 0.0231171 + 0.0231171i
\(518\) −15.3259 15.3259i −0.673381 0.673381i
\(519\) 0 0
\(520\) 0 0
\(521\) 40.5578i 1.77687i −0.459002 0.888435i \(-0.651793\pi\)
0.459002 0.888435i \(-0.348207\pi\)
\(522\) 0 0
\(523\) −21.0323 + 21.0323i −0.919680 + 0.919680i −0.997006 0.0773260i \(-0.975362\pi\)
0.0773260 + 0.997006i \(0.475362\pi\)
\(524\) 62.0350 2.71001
\(525\) 0 0
\(526\) −46.9232 −2.04595
\(527\) 8.88050 8.88050i 0.386841 0.386841i
\(528\) 0 0
\(529\) 5.10626i 0.222011i
\(530\) 0 0
\(531\) 0 0
\(532\) −15.2461 15.2461i −0.661002 0.661002i
\(533\) −18.7260 18.7260i −0.811112 0.811112i
\(534\) 0 0
\(535\) 0 0
\(536\) 32.4789i 1.40287i
\(537\) 0 0
\(538\) −10.7069 + 10.7069i −0.461607 + 0.461607i
\(539\) 3.03260 0.130623
\(540\) 0 0
\(541\) 12.2534 0.526813 0.263406 0.964685i \(-0.415154\pi\)
0.263406 + 0.964685i \(0.415154\pi\)
\(542\) 37.1744 37.1744i 1.59678 1.59678i
\(543\) 0 0
\(544\) 21.3235i 0.914240i
\(545\) 0 0
\(546\) 0 0
\(547\) −9.49738 9.49738i −0.406079 0.406079i 0.474290 0.880369i \(-0.342705\pi\)
−0.880369 + 0.474290i \(0.842705\pi\)
\(548\) 1.20635 + 1.20635i 0.0515327 + 0.0515327i
\(549\) 0 0
\(550\) 0 0
\(551\) 33.8298i 1.44120i
\(552\) 0 0
\(553\) 11.3902 11.3902i 0.484359 0.484359i
\(554\) 45.1257 1.91721
\(555\) 0 0
\(556\) 53.0437 2.24955
\(557\) −5.20644 + 5.20644i −0.220604 + 0.220604i −0.808753 0.588149i \(-0.799857\pi\)
0.588149 + 0.808753i \(0.299857\pi\)
\(558\) 0 0
\(559\) 8.88642i 0.375855i
\(560\) 0 0
\(561\) 0 0
\(562\) 23.8539 + 23.8539i 1.00621 + 1.00621i
\(563\) −11.2865 11.2865i −0.475670 0.475670i 0.428074 0.903744i \(-0.359192\pi\)
−0.903744 + 0.428074i \(0.859192\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 27.2884i 1.14702i
\(567\) 0 0
\(568\) 11.1039 11.1039i 0.465911 0.465911i
\(569\) 16.7669 0.702903 0.351452 0.936206i \(-0.385688\pi\)
0.351452 + 0.936206i \(0.385688\pi\)
\(570\) 0 0
\(571\) 35.3888 1.48097 0.740487 0.672070i \(-0.234595\pi\)
0.740487 + 0.672070i \(0.234595\pi\)
\(572\) −25.0609 + 25.0609i −1.04785 + 1.04785i
\(573\) 0 0
\(574\) 16.8857i 0.704795i
\(575\) 0 0
\(576\) 0 0
\(577\) 11.4351 + 11.4351i 0.476048 + 0.476048i 0.903865 0.427817i \(-0.140717\pi\)
−0.427817 + 0.903865i \(0.640717\pi\)
\(578\) 3.85235 + 3.85235i 0.160236 + 0.160236i
\(579\) 0 0
\(580\) 0 0
\(581\) 1.41173i 0.0585686i
\(582\) 0 0
\(583\) 25.6298 25.6298i 1.06148 1.06148i
\(584\) −22.6535 −0.937409
\(585\) 0 0
\(586\) 70.2814 2.90330
\(587\) −13.2944 + 13.2944i −0.548721 + 0.548721i −0.926071 0.377350i \(-0.876835\pi\)
0.377350 + 0.926071i \(0.376835\pi\)
\(588\) 0 0
\(589\) 21.7774i 0.897322i
\(590\) 0 0
\(591\) 0 0
\(592\) 0.468411 + 0.468411i 0.0192516 + 0.0192516i
\(593\) −15.2944 15.2944i −0.628066 0.628066i 0.319515 0.947581i \(-0.396480\pi\)
−0.947581 + 0.319515i \(0.896480\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 38.8825i 1.59269i
\(597\) 0 0
\(598\) 24.6362 24.6362i 1.00745 1.00745i
\(599\) −27.3235 −1.11641 −0.558203 0.829704i \(-0.688509\pi\)
−0.558203 + 0.829704i \(0.688509\pi\)
\(600\) 0 0
\(601\) 1.42918 0.0582974 0.0291487 0.999575i \(-0.490720\pi\)
0.0291487 + 0.999575i \(0.490720\pi\)
\(602\) −4.00655 + 4.00655i −0.163295 + 0.163295i
\(603\) 0 0
\(604\) 6.01752i 0.244849i
\(605\) 0 0
\(606\) 0 0
\(607\) −8.27456 8.27456i −0.335854 0.335854i 0.518950 0.854804i \(-0.326323\pi\)
−0.854804 + 0.518950i \(0.826323\pi\)
\(608\) −26.1456 26.1456i −1.06034 1.06034i
\(609\) 0 0
\(610\) 0 0
\(611\) 0.880986i 0.0356409i
\(612\) 0 0
\(613\) 15.7991 15.7991i 0.638122 0.638122i −0.311970 0.950092i \(-0.600989\pi\)
0.950092 + 0.311970i \(0.100989\pi\)
\(614\) −28.6823 −1.15752
\(615\) 0 0
\(616\) −8.69872 −0.350482
\(617\) −8.74842 + 8.74842i −0.352198 + 0.352198i −0.860927 0.508729i \(-0.830116\pi\)
0.508729 + 0.860927i \(0.330116\pi\)
\(618\) 0 0
\(619\) 15.7537i 0.633195i 0.948560 + 0.316597i \(0.102540\pi\)
−0.948560 + 0.316597i \(0.897460\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −20.8978 20.8978i −0.837927 0.837927i
\(623\) −2.12157 2.12157i −0.0849989 0.0849989i
\(624\) 0 0
\(625\) 0 0
\(626\) 4.99349i 0.199580i
\(627\) 0 0
\(628\) −8.81861 + 8.81861i −0.351901 + 0.351901i
\(629\) 36.1664 1.44205
\(630\) 0 0
\(631\) −31.6048 −1.25817 −0.629083 0.777338i \(-0.716569\pi\)
−0.629083 + 0.777338i \(0.716569\pi\)
\(632\) −32.6716 + 32.6716i −1.29961 + 1.29961i
\(633\) 0 0
\(634\) 5.99093i 0.237930i
\(635\) 0 0
\(636\) 0 0
\(637\) 2.54141 + 2.54141i 0.100694 + 0.100694i
\(638\) −25.0716 25.0716i −0.992594 0.992594i
\(639\) 0 0
\(640\) 0 0
\(641\) 2.19982i 0.0868877i 0.999056 + 0.0434439i \(0.0138330\pi\)
−0.999056 + 0.0434439i \(0.986167\pi\)
\(642\) 0 0
\(643\) 31.0585 31.0585i 1.22483 1.22483i 0.258934 0.965895i \(-0.416629\pi\)
0.965895 0.258934i \(-0.0833712\pi\)
\(644\) 13.7549 0.542019
\(645\) 0 0
\(646\) 58.1070 2.28619
\(647\) 4.31046 4.31046i 0.169462 0.169462i −0.617281 0.786743i \(-0.711766\pi\)
0.786743 + 0.617281i \(0.211766\pi\)
\(648\) 0 0
\(649\) 13.9531i 0.547708i
\(650\) 0 0
\(651\) 0 0
\(652\) −17.0573 17.0573i −0.668017 0.668017i
\(653\) −13.3336 13.3336i −0.521784 0.521784i 0.396326 0.918110i \(-0.370285\pi\)
−0.918110 + 0.396326i \(0.870285\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.516084i 0.0201497i
\(657\) 0 0
\(658\) −0.397204 + 0.397204i −0.0154846 + 0.0154846i
\(659\) −42.9189 −1.67188 −0.835941 0.548819i \(-0.815077\pi\)
−0.835941 + 0.548819i \(0.815077\pi\)
\(660\) 0 0
\(661\) −14.5564 −0.566180 −0.283090 0.959093i \(-0.591359\pi\)
−0.283090 + 0.959093i \(0.591359\pi\)
\(662\) −15.2307 + 15.2307i −0.591958 + 0.591958i
\(663\) 0 0
\(664\) 4.04942i 0.157148i
\(665\) 0 0
\(666\) 0 0
\(667\) 15.2605 + 15.2605i 0.590889 + 0.590889i
\(668\) 26.0560 + 26.0560i 1.00814 + 1.00814i
\(669\) 0 0
\(670\) 0 0
\(671\) 31.9360i 1.23287i
\(672\) 0 0
\(673\) 0.0675877 0.0675877i 0.00260531 0.00260531i −0.705803 0.708408i \(-0.749414\pi\)
0.708408 + 0.705803i \(0.249414\pi\)
\(674\) −58.8369 −2.26631
\(675\) 0 0
\(676\) 0.268213 0.0103159
\(677\) 6.34254 6.34254i 0.243763 0.243763i −0.574642 0.818405i \(-0.694859\pi\)
0.818405 + 0.574642i \(0.194859\pi\)
\(678\) 0 0
\(679\) 12.0543i 0.462601i
\(680\) 0 0
\(681\) 0 0
\(682\) 16.1394 + 16.1394i 0.618011 + 0.618011i
\(683\) 1.00502 + 1.00502i 0.0384559 + 0.0384559i 0.726073 0.687617i \(-0.241343\pi\)
−0.687617 + 0.726073i \(0.741343\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 2.29165i 0.0874957i
\(687\) 0 0
\(688\) 0.122454 0.122454i 0.00466851 0.00466851i
\(689\) 42.9572 1.63654
\(690\) 0 0
\(691\) −22.1726 −0.843487 −0.421744 0.906715i \(-0.638582\pi\)
−0.421744 + 0.906715i \(0.638582\pi\)
\(692\) −0.590046 + 0.590046i −0.0224302 + 0.0224302i
\(693\) 0 0
\(694\) 21.1411i 0.802505i
\(695\) 0 0
\(696\) 0 0
\(697\) 19.9236 + 19.9236i 0.754661 + 0.754661i
\(698\) 46.3846 + 46.3846i 1.75568 + 1.75568i
\(699\) 0 0
\(700\) 0 0
\(701\) 5.69755i 0.215194i 0.994195 + 0.107597i \(0.0343155\pi\)
−0.994195 + 0.107597i \(0.965684\pi\)
\(702\) 0 0
\(703\) −44.3449 + 44.3449i −1.67250 + 1.67250i
\(704\) −39.1782 −1.47659
\(705\) 0 0
\(706\) 25.2610 0.950709
\(707\) −11.9240 + 11.9240i −0.448446 + 0.448446i
\(708\) 0 0
\(709\) 14.5892i 0.547908i 0.961743 + 0.273954i \(0.0883317\pi\)
−0.961743 + 0.273954i \(0.911668\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 6.08552 + 6.08552i 0.228065 + 0.228065i
\(713\) −9.82370 9.82370i −0.367900 0.367900i
\(714\) 0 0
\(715\) 0 0
\(716\) 40.5254i 1.51451i
\(717\) 0 0
\(718\) −1.15908 + 1.15908i −0.0432564 + 0.0432564i
\(719\) 7.14831 0.266587 0.133293 0.991077i \(-0.457445\pi\)
0.133293 + 0.991077i \(0.457445\pi\)
\(720\) 0 0
\(721\) 1.76766 0.0658310
\(722\) −40.4587 + 40.4587i −1.50572 + 1.50572i
\(723\) 0 0
\(724\) 46.1737i 1.71603i
\(725\) 0 0
\(726\) 0 0
\(727\) −8.29940 8.29940i −0.307808 0.307808i 0.536251 0.844059i \(-0.319840\pi\)
−0.844059 + 0.536251i \(0.819840\pi\)
\(728\) −7.28979 7.28979i −0.270178 0.270178i
\(729\) 0 0
\(730\) 0 0
\(731\) 9.45476i 0.349697i
\(732\) 0 0
\(733\) −22.8769 + 22.8769i −0.844978 + 0.844978i −0.989501 0.144523i \(-0.953835\pi\)
0.144523 + 0.989501i \(0.453835\pi\)
\(734\) −44.1079 −1.62805
\(735\) 0 0
\(736\) 23.5883 0.869477
\(737\) 24.2807 24.2807i 0.894390 0.894390i
\(738\) 0 0
\(739\) 21.9271i 0.806601i 0.915068 + 0.403301i \(0.132137\pi\)
−0.915068 + 0.403301i \(0.867863\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 19.3678 + 19.3678i 0.711014 + 0.711014i
\(743\) −14.6434 14.6434i −0.537213 0.537213i 0.385496 0.922709i \(-0.374030\pi\)
−0.922709 + 0.385496i \(0.874030\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 72.1285i 2.64081i
\(747\) 0 0
\(748\) 26.6637 26.6637i 0.974921 0.974921i
\(749\) −20.0472 −0.732507
\(750\) 0 0
\(751\) −46.6877 −1.70366 −0.851829 0.523820i \(-0.824506\pi\)
−0.851829 + 0.523820i \(0.824506\pi\)
\(752\) 0.0121399 0.0121399i 0.000442696 0.000442696i
\(753\) 0 0
\(754\) 42.0215i 1.53033i
\(755\) 0 0
\(756\) 0 0
\(757\) −4.34878 4.34878i −0.158059 0.158059i 0.623647 0.781706i \(-0.285650\pi\)
−0.781706 + 0.623647i \(0.785650\pi\)
\(758\) 1.12721 + 1.12721i 0.0409422 + 0.0409422i
\(759\) 0 0
\(760\) 0 0
\(761\) 20.3466i 0.737562i −0.929516 0.368781i \(-0.879775\pi\)
0.929516 0.368781i \(-0.120225\pi\)
\(762\) 0 0
\(763\) −0.406141 + 0.406141i −0.0147033 + 0.0147033i
\(764\) −33.5436 −1.21357
\(765\) 0 0
\(766\) 23.4324 0.846647
\(767\) −11.6931 + 11.6931i −0.422214 + 0.422214i
\(768\) 0 0
\(769\) 10.6781i 0.385063i −0.981291 0.192532i \(-0.938330\pi\)
0.981291 0.192532i \(-0.0616698\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0.866831 + 0.866831i 0.0311979 + 0.0311979i
\(773\) 16.1983 + 16.1983i 0.582611 + 0.582611i 0.935620 0.353009i \(-0.114841\pi\)
−0.353009 + 0.935620i \(0.614841\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 34.5766i 1.24123i
\(777\) 0 0
\(778\) −33.2312 + 33.2312i −1.19140 + 1.19140i
\(779\) −48.8581 −1.75052
\(780\) 0 0
\(781\) 16.6022 0.594075
\(782\) −26.2119 + 26.2119i −0.937334 + 0.937334i
\(783\) 0 0
\(784\) 0.0700407i 0.00250145i
\(785\) 0 0
\(786\) 0 0
\(787\) −3.85920 3.85920i −0.137566 0.137566i 0.634971 0.772536i \(-0.281012\pi\)
−0.772536 + 0.634971i \(0.781012\pi\)
\(788\) −22.7123 22.7123i −0.809094 0.809094i
\(789\) 0 0
\(790\) 0 0
\(791\) 9.87802i 0.351222i
\(792\) 0 0
\(793\) −26.7633 + 26.7633i −0.950392 + 0.950392i
\(794\) −28.1948 −1.00060
\(795\) 0 0
\(796\) −54.5311 −1.93280
\(797\) 31.4439 31.4439i 1.11380 1.11380i 0.121168 0.992632i \(-0.461336\pi\)
0.992632 0.121168i \(-0.0386640\pi\)
\(798\) 0 0
\(799\) 0.937330i 0.0331604i
\(800\) 0 0
\(801\) 0 0
\(802\) −1.73872 1.73872i −0.0613964 0.0613964i
\(803\) −16.9354 16.9354i −0.597636 0.597636i
\(804\) 0 0
\(805\) 0 0
\(806\) 27.0507i 0.952819i
\(807\) 0 0
\(808\) 34.2027 34.2027i 1.20325 1.20325i
\(809\) 29.8706 1.05019 0.525097 0.851043i \(-0.324029\pi\)
0.525097 + 0.851043i \(0.324029\pi\)
\(810\) 0 0
\(811\) 41.5858 1.46028 0.730138 0.683300i \(-0.239456\pi\)
0.730138 + 0.683300i \(0.239456\pi\)
\(812\) 11.7307 11.7307i 0.411668 0.411668i
\(813\) 0 0
\(814\) 65.7288i 2.30379i
\(815\) 0 0
\(816\) 0 0
\(817\) 11.5928 + 11.5928i 0.405581 + 0.405581i
\(818\) 29.0090 + 29.0090i 1.01428 + 1.01428i
\(819\) 0 0
\(820\) 0 0
\(821\) 49.6249i 1.73192i 0.500114 + 0.865960i \(0.333292\pi\)
−0.500114 + 0.865960i \(0.666708\pi\)
\(822\) 0 0
\(823\) −11.9691 + 11.9691i −0.417216 + 0.417216i −0.884243 0.467027i \(-0.845325\pi\)
0.467027 + 0.884243i \(0.345325\pi\)
\(824\) −5.07035 −0.176634
\(825\) 0 0
\(826\) −10.5440 −0.366873
\(827\) −24.1358 + 24.1358i −0.839285 + 0.839285i −0.988765 0.149480i \(-0.952240\pi\)
0.149480 + 0.988765i \(0.452240\pi\)
\(828\) 0 0
\(829\) 24.8211i 0.862071i −0.902335 0.431035i \(-0.858148\pi\)
0.902335 0.431035i \(-0.141852\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −32.8325 32.8325i −1.13826 1.13826i
\(833\) −2.70395 2.70395i −0.0936862 0.0936862i
\(834\) 0 0
\(835\) 0 0
\(836\) 65.3866i 2.26144i
\(837\) 0 0
\(838\) −24.0499 + 24.0499i −0.830789 + 0.830789i
\(839\) −31.3907 −1.08373 −0.541863 0.840467i \(-0.682281\pi\)
−0.541863 + 0.840467i \(0.682281\pi\)
\(840\) 0 0
\(841\) −2.97048 −0.102430
\(842\) 28.2922 28.2922i 0.975013 0.975013i
\(843\) 0 0
\(844\) 55.1650i 1.89886i
\(845\) 0 0
\(846\) 0 0
\(847\) 1.27516 + 1.27516i 0.0438149 + 0.0438149i
\(848\) −0.591945 0.591945i −0.0203275 0.0203275i
\(849\) 0 0
\(850\) 0 0
\(851\) 40.0076i 1.37144i
\(852\) 0 0
\(853\) −38.4133 + 38.4133i −1.31525 + 1.31525i −0.397755 + 0.917491i \(0.630211\pi\)
−0.917491 + 0.397755i \(0.869789\pi\)
\(854\) −24.1331 −0.825819
\(855\) 0 0
\(856\) 57.5034 1.96542
\(857\) −16.0449 + 16.0449i −0.548084 + 0.548084i −0.925886 0.377802i \(-0.876680\pi\)
0.377802 + 0.925886i \(0.376680\pi\)
\(858\) 0 0
\(859\) 27.9426i 0.953389i −0.879069 0.476695i \(-0.841835\pi\)
0.879069 0.476695i \(-0.158165\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −3.72425 3.72425i −0.126849 0.126849i
\(863\) −6.65308 6.65308i −0.226474 0.226474i 0.584744 0.811218i \(-0.301195\pi\)
−0.811218 + 0.584744i \(0.801195\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 9.08495i 0.308719i
\(867\) 0 0
\(868\) −7.55147 + 7.55147i −0.256314 + 0.256314i
\(869\) −48.8495 −1.65710
\(870\) 0 0
\(871\) 40.6959 1.37893
\(872\) 1.16498 1.16498i 0.0394511 0.0394511i
\(873\) 0 0
\(874\) 64.2786i 2.17425i
\(875\) 0 0
\(876\) 0 0
\(877\) −17.2572 17.2572i −0.582734 0.582734i 0.352920 0.935654i \(-0.385189\pi\)
−0.935654 + 0.352920i \(0.885189\pi\)
\(878\) −25.1431 25.1431i −0.848540 0.848540i
\(879\) 0 0
\(880\) 0 0
\(881\) 10.6210i 0.357830i −0.983865 0.178915i \(-0.942741\pi\)
0.983865 0.178915i \(-0.0572587\pi\)
\(882\) 0 0
\(883\) 11.4145 11.4145i 0.384130 0.384130i −0.488458 0.872588i \(-0.662440\pi\)
0.872588 + 0.488458i \(0.162440\pi\)
\(884\) 44.6899 1.50309
\(885\) 0 0
\(886\) −21.5981 −0.725601
\(887\) −18.4290 + 18.4290i −0.618786 + 0.618786i −0.945220 0.326434i \(-0.894153\pi\)
0.326434 + 0.945220i \(0.394153\pi\)
\(888\) 0 0
\(889\) 5.60547i 0.188001i
\(890\) 0 0
\(891\) 0 0
\(892\) 43.4081 + 43.4081i 1.45341 + 1.45341i
\(893\) 1.14929 + 1.14929i 0.0384597 + 0.0384597i
\(894\) 0 0
\(895\) 0 0
\(896\) 18.4533i 0.616483i
\(897\) 0 0
\(898\) 26.6513 26.6513i 0.889366 0.889366i
\(899\) −16.7561 −0.558847
\(900\) 0 0
\(901\) −45.7045 −1.52264
\(902\) −36.2092 + 36.2092i −1.20563 + 1.20563i
\(903\) 0 0
\(904\) 28.3342i 0.942380i
\(905\) 0 0
\(906\) 0 0
\(907\) −39.8245 39.8245i −1.32235 1.32235i −0.911868 0.410483i \(-0.865360\pi\)
−0.410483 0.911868i \(-0.634640\pi\)
\(908\) −38.7779 38.7779i −1.28689 1.28689i
\(909\) 0 0
\(910\) 0 0
\(911\) 1.26894i 0.0420419i 0.999779 + 0.0210210i \(0.00669167\pi\)
−0.999779 + 0.0210210i \(0.993308\pi\)
\(912\) 0 0
\(913\) −3.02728 + 3.02728i −0.100188 + 0.100188i
\(914\) 39.6031 1.30995
\(915\) 0 0
\(916\) −27.3917 −0.905046
\(917\) −13.4901 + 13.4901i −0.445482 + 0.445482i
\(918\) 0 0
\(919\) 41.5356i 1.37013i 0.728481 + 0.685066i \(0.240227\pi\)
−0.728481 + 0.685066i \(0.759773\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 16.7314 + 16.7314i 0.551018 + 0.551018i
\(923\) 13.9132 + 13.9132i 0.457958 + 0.457958i
\(924\) 0 0
\(925\) 0 0
\(926\) 42.9993i 1.41304i
\(927\) 0 0
\(928\) 20.1171 20.1171i 0.660375 0.660375i
\(929\) 41.6802 1.36748 0.683741 0.729725i \(-0.260352\pi\)
0.683741 + 0.729725i \(0.260352\pi\)
\(930\) 0 0
\(931\) 6.63081 0.217316
\(932\) 2.67329 2.67329i 0.0875667 0.0875667i
\(933\) 0 0
\(934\) 31.5011i 1.03075i
\(935\) 0 0
\(936\) 0 0
\(937\) 41.7653 + 41.7653i 1.36441 + 1.36441i 0.868203 + 0.496210i \(0.165275\pi\)
0.496210 + 0.868203i \(0.334725\pi\)
\(938\) 18.3482 + 18.3482i 0.599092 + 0.599092i
\(939\) 0 0
\(940\) 0 0
\(941\) 51.7350i 1.68651i −0.537511 0.843257i \(-0.680635\pi\)
0.537511 0.843257i \(-0.319365\pi\)
\(942\) 0 0
\(943\) 22.0397 22.0397i 0.717711 0.717711i
\(944\) 0.322260 0.0104887
\(945\) 0 0
\(946\) 17.1831 0.558670
\(947\) −25.5564 + 25.5564i −0.830472 + 0.830472i −0.987581 0.157109i \(-0.949783\pi\)
0.157109 + 0.987581i \(0.449783\pi\)
\(948\) 0 0
\(949\) 28.3847i 0.921407i
\(950\) 0 0
\(951\) 0 0
\(952\) 7.75602 + 7.75602i 0.251374 + 0.251374i
\(953\) 11.2847 + 11.2847i 0.365546 + 0.365546i 0.865850 0.500304i \(-0.166778\pi\)
−0.500304 + 0.865850i \(0.666778\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 37.2290i 1.20407i
\(957\) 0 0
\(958\) 2.55217 2.55217i 0.0824568 0.0824568i
\(959\) −0.524664 −0.0169423
\(960\) 0 0
\(961\) −20.2135 −0.652050
\(962\) −55.0827 + 55.0827i −1.77594 + 1.77594i
\(963\) 0 0
\(964\) 74.6842i 2.40542i
\(965\) 0 0
\(966\) 0 0
\(967\) 11.3331 + 11.3331i 0.364447 + 0.364447i 0.865447 0.501000i \(-0.167034\pi\)
−0.501000 + 0.865447i \(0.667034\pi\)
\(968\) −3.65767 3.65767i −0.117562 0.117562i
\(969\) 0 0
\(970\) 0 0
\(971\) 30.7436i 0.986609i −0.869857 0.493304i \(-0.835789\pi\)
0.869857 0.493304i \(-0.164211\pi\)
\(972\) 0 0
\(973\) −11.5348 + 11.5348i −0.369790 + 0.369790i
\(974\) 45.5942 1.46093
\(975\) 0 0
\(976\) 0.737590 0.0236097
\(977\) −6.76461 + 6.76461i −0.216419 + 0.216419i −0.806988 0.590568i \(-0.798904\pi\)
0.590568 + 0.806988i \(0.298904\pi\)
\(978\) 0 0
\(979\) 9.09886i 0.290801i
\(980\) 0 0
\(981\) 0 0
\(982\) 36.6494 + 36.6494i 1.16953 + 1.16953i
\(983\) −15.0257 15.0257i −0.479247 0.479247i 0.425644 0.904891i \(-0.360048\pi\)
−0.904891 + 0.425644i \(0.860048\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 44.7090i 1.42383i
\(987\) 0 0
\(988\) −54.7959 + 54.7959i −1.74329 + 1.74329i
\(989\) −10.4589 −0.332575
\(990\) 0 0
\(991\) 37.5534 1.19292 0.596461 0.802642i \(-0.296573\pi\)
0.596461 + 0.802642i \(0.296573\pi\)
\(992\) −12.9500 + 12.9500i −0.411164 + 0.411164i
\(993\) 0 0
\(994\) 12.5459i 0.397931i
\(995\) 0 0
\(996\) 0 0
\(997\) −36.6256 36.6256i −1.15995 1.15995i −0.984487 0.175459i \(-0.943859\pi\)
−0.175459 0.984487i \(-0.556141\pi\)
\(998\) −56.9814 56.9814i −1.80371 1.80371i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.2.m.c.1457.5 12
3.2 odd 2 1575.2.m.d.1457.2 12
5.2 odd 4 315.2.m.b.8.5 yes 12
5.3 odd 4 1575.2.m.d.1268.2 12
5.4 even 2 315.2.m.a.197.2 yes 12
15.2 even 4 315.2.m.a.8.2 12
15.8 even 4 inner 1575.2.m.c.1268.5 12
15.14 odd 2 315.2.m.b.197.5 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.m.a.8.2 12 15.2 even 4
315.2.m.a.197.2 yes 12 5.4 even 2
315.2.m.b.8.5 yes 12 5.2 odd 4
315.2.m.b.197.5 yes 12 15.14 odd 2
1575.2.m.c.1268.5 12 15.8 even 4 inner
1575.2.m.c.1457.5 12 1.1 even 1 trivial
1575.2.m.d.1268.2 12 5.3 odd 4
1575.2.m.d.1457.2 12 3.2 odd 2