Properties

Label 1575.2.m.c.1268.4
Level $1575$
Weight $2$
Character 1575.1268
Analytic conductor $12.576$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1575,2,Mod(1268,1575)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1575, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1575.1268"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1575.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5764383184\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 107x^{8} + 240x^{6} + 151x^{4} + 30x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 315)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1268.4
Root \(2.15459i\) of defining polynomial
Character \(\chi\) \(=\) 1575.1268
Dual form 1575.2.m.c.1457.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0241053 + 0.0241053i) q^{2} -1.99884i q^{4} +(-0.707107 + 0.707107i) q^{7} +(0.0963933 - 0.0963933i) q^{8} -0.390676i q^{11} +(2.20280 + 2.20280i) q^{13} -0.0340901 q^{14} -3.99303 q^{16} +(-4.78742 - 4.78742i) q^{17} -5.50477i q^{19} +(0.00941736 - 0.00941736i) q^{22} +(-2.18868 + 2.18868i) q^{23} +0.106198i q^{26} +(1.41339 + 1.41339i) q^{28} -7.17089 q^{29} +5.38951 q^{31} +(-0.289040 - 0.289040i) q^{32} -0.230805i q^{34} +(2.75668 - 2.75668i) q^{37} +(0.132694 - 0.132694i) q^{38} +2.54112i q^{41} +(-6.99884 - 6.99884i) q^{43} -0.780897 q^{44} -0.105518 q^{46} +(-0.537576 - 0.537576i) q^{47} -1.00000i q^{49} +(4.40304 - 4.40304i) q^{52} +(5.19225 - 5.19225i) q^{53} +0.136321i q^{56} +(-0.172857 - 0.172857i) q^{58} -10.3092 q^{59} -8.12574 q^{61} +(0.129916 + 0.129916i) q^{62} +7.97212i q^{64} +(3.76141 - 3.76141i) q^{67} +(-9.56928 + 9.56928i) q^{68} +16.0785i q^{71} +(-7.17580 - 7.17580i) q^{73} +0.132901 q^{74} -11.0031 q^{76} +(0.276249 + 0.276249i) q^{77} -7.35036i q^{79} +(-0.0612544 + 0.0612544i) q^{82} +(-6.29085 + 6.29085i) q^{83} -0.337418i q^{86} +(-0.0376585 - 0.0376585i) q^{88} -9.94088 q^{89} -3.11523 q^{91} +(4.37481 + 4.37481i) q^{92} -0.0259169i q^{94} +(-2.17456 + 2.17456i) q^{97} +(0.0241053 - 0.0241053i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 24 q^{8} + 4 q^{13} - 4 q^{14} - 20 q^{16} - 8 q^{17} + 8 q^{22} - 8 q^{23} - 32 q^{29} - 48 q^{32} - 4 q^{37} - 24 q^{38} - 40 q^{43} - 64 q^{44} + 16 q^{46} - 24 q^{47} - 36 q^{52} + 40 q^{53}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1575\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(1226\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0241053 + 0.0241053i 0.0170450 + 0.0170450i 0.715578 0.698533i \(-0.246163\pi\)
−0.698533 + 0.715578i \(0.746163\pi\)
\(3\) 0 0
\(4\) 1.99884i 0.999419i
\(5\) 0 0
\(6\) 0 0
\(7\) −0.707107 + 0.707107i −0.267261 + 0.267261i
\(8\) 0.0963933 0.0963933i 0.0340802 0.0340802i
\(9\) 0 0
\(10\) 0 0
\(11\) 0.390676i 0.117793i −0.998264 0.0588966i \(-0.981242\pi\)
0.998264 0.0588966i \(-0.0187582\pi\)
\(12\) 0 0
\(13\) 2.20280 + 2.20280i 0.610947 + 0.610947i 0.943193 0.332246i \(-0.107806\pi\)
−0.332246 + 0.943193i \(0.607806\pi\)
\(14\) −0.0340901 −0.00911095
\(15\) 0 0
\(16\) −3.99303 −0.998257
\(17\) −4.78742 4.78742i −1.16112 1.16112i −0.984231 0.176890i \(-0.943396\pi\)
−0.176890 0.984231i \(-0.556604\pi\)
\(18\) 0 0
\(19\) 5.50477i 1.26288i −0.775424 0.631440i \(-0.782464\pi\)
0.775424 0.631440i \(-0.217536\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0.00941736 0.00941736i 0.00200779 0.00200779i
\(23\) −2.18868 + 2.18868i −0.456371 + 0.456371i −0.897462 0.441091i \(-0.854592\pi\)
0.441091 + 0.897462i \(0.354592\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0.106198i 0.0208272i
\(27\) 0 0
\(28\) 1.41339 + 1.41339i 0.267106 + 0.267106i
\(29\) −7.17089 −1.33160 −0.665801 0.746130i \(-0.731910\pi\)
−0.665801 + 0.746130i \(0.731910\pi\)
\(30\) 0 0
\(31\) 5.38951 0.967985 0.483993 0.875072i \(-0.339186\pi\)
0.483993 + 0.875072i \(0.339186\pi\)
\(32\) −0.289040 0.289040i −0.0510955 0.0510955i
\(33\) 0 0
\(34\) 0.230805i 0.0395827i
\(35\) 0 0
\(36\) 0 0
\(37\) 2.75668 2.75668i 0.453195 0.453195i −0.443218 0.896414i \(-0.646163\pi\)
0.896414 + 0.443218i \(0.146163\pi\)
\(38\) 0.132694 0.132694i 0.0215258 0.0215258i
\(39\) 0 0
\(40\) 0 0
\(41\) 2.54112i 0.396856i 0.980115 + 0.198428i \(0.0635836\pi\)
−0.980115 + 0.198428i \(0.936416\pi\)
\(42\) 0 0
\(43\) −6.99884 6.99884i −1.06731 1.06731i −0.997565 0.0697481i \(-0.977780\pi\)
−0.0697481 0.997565i \(-0.522220\pi\)
\(44\) −0.780897 −0.117725
\(45\) 0 0
\(46\) −0.105518 −0.0155577
\(47\) −0.537576 0.537576i −0.0784135 0.0784135i 0.666812 0.745226i \(-0.267658\pi\)
−0.745226 + 0.666812i \(0.767658\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 0 0
\(52\) 4.40304 4.40304i 0.610592 0.610592i
\(53\) 5.19225 5.19225i 0.713210 0.713210i −0.253995 0.967205i \(-0.581745\pi\)
0.967205 + 0.253995i \(0.0817448\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0.136321i 0.0182166i
\(57\) 0 0
\(58\) −0.172857 0.172857i −0.0226972 0.0226972i
\(59\) −10.3092 −1.34214 −0.671070 0.741394i \(-0.734165\pi\)
−0.671070 + 0.741394i \(0.734165\pi\)
\(60\) 0 0
\(61\) −8.12574 −1.04039 −0.520197 0.854046i \(-0.674142\pi\)
−0.520197 + 0.854046i \(0.674142\pi\)
\(62\) 0.129916 + 0.129916i 0.0164993 + 0.0164993i
\(63\) 0 0
\(64\) 7.97212i 0.996515i
\(65\) 0 0
\(66\) 0 0
\(67\) 3.76141 3.76141i 0.459529 0.459529i −0.438972 0.898501i \(-0.644657\pi\)
0.898501 + 0.438972i \(0.144657\pi\)
\(68\) −9.56928 + 9.56928i −1.16045 + 1.16045i
\(69\) 0 0
\(70\) 0 0
\(71\) 16.0785i 1.90816i 0.299550 + 0.954081i \(0.403164\pi\)
−0.299550 + 0.954081i \(0.596836\pi\)
\(72\) 0 0
\(73\) −7.17580 7.17580i −0.839864 0.839864i 0.148977 0.988841i \(-0.452402\pi\)
−0.988841 + 0.148977i \(0.952402\pi\)
\(74\) 0.132901 0.0154495
\(75\) 0 0
\(76\) −11.0031 −1.26215
\(77\) 0.276249 + 0.276249i 0.0314815 + 0.0314815i
\(78\) 0 0
\(79\) 7.35036i 0.826980i −0.910509 0.413490i \(-0.864310\pi\)
0.910509 0.413490i \(-0.135690\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −0.0612544 + 0.0612544i −0.00676442 + 0.00676442i
\(83\) −6.29085 + 6.29085i −0.690511 + 0.690511i −0.962344 0.271834i \(-0.912370\pi\)
0.271834 + 0.962344i \(0.412370\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.337418i 0.0363848i
\(87\) 0 0
\(88\) −0.0376585 0.0376585i −0.00401441 0.00401441i
\(89\) −9.94088 −1.05373 −0.526865 0.849949i \(-0.676633\pi\)
−0.526865 + 0.849949i \(0.676633\pi\)
\(90\) 0 0
\(91\) −3.11523 −0.326565
\(92\) 4.37481 + 4.37481i 0.456106 + 0.456106i
\(93\) 0 0
\(94\) 0.0259169i 0.00267312i
\(95\) 0 0
\(96\) 0 0
\(97\) −2.17456 + 2.17456i −0.220793 + 0.220793i −0.808832 0.588039i \(-0.799900\pi\)
0.588039 + 0.808832i \(0.299900\pi\)
\(98\) 0.0241053 0.0241053i 0.00243501 0.00243501i
\(99\) 0 0
\(100\) 0 0
\(101\) 5.24052i 0.521451i −0.965413 0.260725i \(-0.916038\pi\)
0.965413 0.260725i \(-0.0839617\pi\)
\(102\) 0 0
\(103\) 1.29201 + 1.29201i 0.127306 + 0.127306i 0.767889 0.640583i \(-0.221307\pi\)
−0.640583 + 0.767889i \(0.721307\pi\)
\(104\) 0.424670 0.0416423
\(105\) 0 0
\(106\) 0.250322 0.0243134
\(107\) −10.0523 10.0523i −0.971794 0.971794i 0.0278187 0.999613i \(-0.491144\pi\)
−0.999613 + 0.0278187i \(0.991144\pi\)
\(108\) 0 0
\(109\) 13.9522i 1.33638i 0.743991 + 0.668189i \(0.232930\pi\)
−0.743991 + 0.668189i \(0.767070\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.82350 2.82350i 0.266795 0.266795i
\(113\) 8.80038 8.80038i 0.827870 0.827870i −0.159352 0.987222i \(-0.550940\pi\)
0.987222 + 0.159352i \(0.0509403\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 14.3335i 1.33083i
\(117\) 0 0
\(118\) −0.248506 0.248506i −0.0228768 0.0228768i
\(119\) 6.77044 0.620645
\(120\) 0 0
\(121\) 10.8474 0.986125
\(122\) −0.195874 0.195874i −0.0177336 0.0177336i
\(123\) 0 0
\(124\) 10.7728i 0.967423i
\(125\) 0 0
\(126\) 0 0
\(127\) −4.61675 + 4.61675i −0.409670 + 0.409670i −0.881624 0.471953i \(-0.843549\pi\)
0.471953 + 0.881624i \(0.343549\pi\)
\(128\) −0.770250 + 0.770250i −0.0680811 + 0.0680811i
\(129\) 0 0
\(130\) 0 0
\(131\) 3.44081i 0.300625i −0.988639 0.150313i \(-0.951972\pi\)
0.988639 0.150313i \(-0.0480280\pi\)
\(132\) 0 0
\(133\) 3.89246 + 3.89246i 0.337519 + 0.337519i
\(134\) 0.181340 0.0156654
\(135\) 0 0
\(136\) −0.922951 −0.0791424
\(137\) −1.07863 1.07863i −0.0921540 0.0921540i 0.659527 0.751681i \(-0.270757\pi\)
−0.751681 + 0.659527i \(0.770757\pi\)
\(138\) 0 0
\(139\) 21.5355i 1.82662i −0.407268 0.913309i \(-0.633519\pi\)
0.407268 0.913309i \(-0.366481\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −0.387576 + 0.387576i −0.0325247 + 0.0325247i
\(143\) 0.860580 0.860580i 0.0719653 0.0719653i
\(144\) 0 0
\(145\) 0 0
\(146\) 0.345950i 0.0286310i
\(147\) 0 0
\(148\) −5.51015 5.51015i −0.452932 0.452932i
\(149\) 6.48256 0.531072 0.265536 0.964101i \(-0.414451\pi\)
0.265536 + 0.964101i \(0.414451\pi\)
\(150\) 0 0
\(151\) −1.76882 −0.143945 −0.0719724 0.997407i \(-0.522929\pi\)
−0.0719724 + 0.997407i \(0.522929\pi\)
\(152\) −0.530623 0.530623i −0.0430392 0.0430392i
\(153\) 0 0
\(154\) 0.0133182i 0.00107321i
\(155\) 0 0
\(156\) 0 0
\(157\) 7.49249 7.49249i 0.597966 0.597966i −0.341805 0.939771i \(-0.611038\pi\)
0.939771 + 0.341805i \(0.111038\pi\)
\(158\) 0.177183 0.177183i 0.0140959 0.0140959i
\(159\) 0 0
\(160\) 0 0
\(161\) 3.09526i 0.243941i
\(162\) 0 0
\(163\) 13.9311 + 13.9311i 1.09117 + 1.09117i 0.995404 + 0.0957639i \(0.0305294\pi\)
0.0957639 + 0.995404i \(0.469471\pi\)
\(164\) 5.07928 0.396625
\(165\) 0 0
\(166\) −0.303286 −0.0235396
\(167\) 0.477182 + 0.477182i 0.0369254 + 0.0369254i 0.725328 0.688403i \(-0.241688\pi\)
−0.688403 + 0.725328i \(0.741688\pi\)
\(168\) 0 0
\(169\) 3.29535i 0.253488i
\(170\) 0 0
\(171\) 0 0
\(172\) −13.9895 + 13.9895i −1.06669 + 1.06669i
\(173\) −14.6395 + 14.6395i −1.11302 + 1.11302i −0.120278 + 0.992740i \(0.538379\pi\)
−0.992740 + 0.120278i \(0.961621\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.55998i 0.117588i
\(177\) 0 0
\(178\) −0.239628 0.239628i −0.0179609 0.0179609i
\(179\) −3.04789 −0.227810 −0.113905 0.993492i \(-0.536336\pi\)
−0.113905 + 0.993492i \(0.536336\pi\)
\(180\) 0 0
\(181\) 4.12967 0.306956 0.153478 0.988152i \(-0.450953\pi\)
0.153478 + 0.988152i \(0.450953\pi\)
\(182\) −0.0750936 0.0750936i −0.00556631 0.00556631i
\(183\) 0 0
\(184\) 0.421948i 0.0311064i
\(185\) 0 0
\(186\) 0 0
\(187\) −1.87033 + 1.87033i −0.136772 + 0.136772i
\(188\) −1.07453 + 1.07453i −0.0783679 + 0.0783679i
\(189\) 0 0
\(190\) 0 0
\(191\) 21.4943i 1.55527i −0.628714 0.777637i \(-0.716418\pi\)
0.628714 0.777637i \(-0.283582\pi\)
\(192\) 0 0
\(193\) 9.04475 + 9.04475i 0.651055 + 0.651055i 0.953247 0.302192i \(-0.0977183\pi\)
−0.302192 + 0.953247i \(0.597718\pi\)
\(194\) −0.104837 −0.00752685
\(195\) 0 0
\(196\) −1.99884 −0.142774
\(197\) 8.80038 + 8.80038i 0.627001 + 0.627001i 0.947312 0.320311i \(-0.103787\pi\)
−0.320311 + 0.947312i \(0.603787\pi\)
\(198\) 0 0
\(199\) 0.816553i 0.0578839i 0.999581 + 0.0289419i \(0.00921379\pi\)
−0.999581 + 0.0289419i \(0.990786\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0.126324 0.126324i 0.00888815 0.00888815i
\(203\) 5.07059 5.07059i 0.355885 0.355885i
\(204\) 0 0
\(205\) 0 0
\(206\) 0.0622888i 0.00433987i
\(207\) 0 0
\(208\) −8.79584 8.79584i −0.609882 0.609882i
\(209\) −2.15058 −0.148759
\(210\) 0 0
\(211\) 5.93663 0.408695 0.204347 0.978898i \(-0.434493\pi\)
0.204347 + 0.978898i \(0.434493\pi\)
\(212\) −10.3785 10.3785i −0.712796 0.712796i
\(213\) 0 0
\(214\) 0.484629i 0.0331285i
\(215\) 0 0
\(216\) 0 0
\(217\) −3.81096 + 3.81096i −0.258705 + 0.258705i
\(218\) −0.336322 + 0.336322i −0.0227786 + 0.0227786i
\(219\) 0 0
\(220\) 0 0
\(221\) 21.0915i 1.41877i
\(222\) 0 0
\(223\) 2.17086 + 2.17086i 0.145372 + 0.145372i 0.776047 0.630675i \(-0.217222\pi\)
−0.630675 + 0.776047i \(0.717222\pi\)
\(224\) 0.408764 0.0273117
\(225\) 0 0
\(226\) 0.424272 0.0282222
\(227\) −17.8822 17.8822i −1.18688 1.18688i −0.977924 0.208960i \(-0.932992\pi\)
−0.208960 0.977924i \(-0.567008\pi\)
\(228\) 0 0
\(229\) 2.42623i 0.160330i −0.996782 0.0801649i \(-0.974455\pi\)
0.996782 0.0801649i \(-0.0255447\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −0.691226 + 0.691226i −0.0453812 + 0.0453812i
\(233\) 16.9725 16.9725i 1.11191 1.11191i 0.119014 0.992893i \(-0.462027\pi\)
0.992893 0.119014i \(-0.0379734\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 20.6064i 1.34136i
\(237\) 0 0
\(238\) 0.163204 + 0.163204i 0.0105789 + 0.0105789i
\(239\) −8.48710 −0.548985 −0.274492 0.961589i \(-0.588510\pi\)
−0.274492 + 0.961589i \(0.588510\pi\)
\(240\) 0 0
\(241\) 12.5268 0.806924 0.403462 0.914996i \(-0.367807\pi\)
0.403462 + 0.914996i \(0.367807\pi\)
\(242\) 0.261479 + 0.261479i 0.0168085 + 0.0168085i
\(243\) 0 0
\(244\) 16.2420i 1.03979i
\(245\) 0 0
\(246\) 0 0
\(247\) 12.1259 12.1259i 0.771553 0.771553i
\(248\) 0.519513 0.519513i 0.0329891 0.0329891i
\(249\) 0 0
\(250\) 0 0
\(251\) 6.60853i 0.417127i −0.978009 0.208563i \(-0.933121\pi\)
0.978009 0.208563i \(-0.0668788\pi\)
\(252\) 0 0
\(253\) 0.855063 + 0.855063i 0.0537574 + 0.0537574i
\(254\) −0.222576 −0.0139657
\(255\) 0 0
\(256\) 15.9071 0.994194
\(257\) 20.9703 + 20.9703i 1.30809 + 1.30809i 0.922793 + 0.385296i \(0.125901\pi\)
0.385296 + 0.922793i \(0.374099\pi\)
\(258\) 0 0
\(259\) 3.89853i 0.242243i
\(260\) 0 0
\(261\) 0 0
\(262\) 0.0829419 0.0829419i 0.00512417 0.00512417i
\(263\) 16.8546 16.8546i 1.03930 1.03930i 0.0401013 0.999196i \(-0.487232\pi\)
0.999196 0.0401013i \(-0.0127681\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0.187658i 0.0115060i
\(267\) 0 0
\(268\) −7.51845 7.51845i −0.459262 0.459262i
\(269\) 15.6271 0.952798 0.476399 0.879229i \(-0.341942\pi\)
0.476399 + 0.879229i \(0.341942\pi\)
\(270\) 0 0
\(271\) −5.42718 −0.329678 −0.164839 0.986320i \(-0.552710\pi\)
−0.164839 + 0.986320i \(0.552710\pi\)
\(272\) 19.1163 + 19.1163i 1.15910 + 1.15910i
\(273\) 0 0
\(274\) 0.0520017i 0.00314154i
\(275\) 0 0
\(276\) 0 0
\(277\) 19.7465 19.7465i 1.18645 1.18645i 0.208411 0.978041i \(-0.433171\pi\)
0.978041 0.208411i \(-0.0668292\pi\)
\(278\) 0.519120 0.519120i 0.0311348 0.0311348i
\(279\) 0 0
\(280\) 0 0
\(281\) 14.3252i 0.854572i −0.904117 0.427286i \(-0.859470\pi\)
0.904117 0.427286i \(-0.140530\pi\)
\(282\) 0 0
\(283\) 11.4260 + 11.4260i 0.679208 + 0.679208i 0.959821 0.280613i \(-0.0905377\pi\)
−0.280613 + 0.959821i \(0.590538\pi\)
\(284\) 32.1382 1.90705
\(285\) 0 0
\(286\) 0.0414891 0.00245330
\(287\) −1.79684 1.79684i −0.106064 0.106064i
\(288\) 0 0
\(289\) 28.8388i 1.69640i
\(290\) 0 0
\(291\) 0 0
\(292\) −14.3433 + 14.3433i −0.839376 + 0.839376i
\(293\) 6.46919 6.46919i 0.377934 0.377934i −0.492422 0.870356i \(-0.663888\pi\)
0.870356 + 0.492422i \(0.163888\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0.531451i 0.0308899i
\(297\) 0 0
\(298\) 0.156264 + 0.156264i 0.00905214 + 0.00905214i
\(299\) −9.64244 −0.557637
\(300\) 0 0
\(301\) 9.89785 0.570503
\(302\) −0.0426381 0.0426381i −0.00245354 0.00245354i
\(303\) 0 0
\(304\) 21.9807i 1.26068i
\(305\) 0 0
\(306\) 0 0
\(307\) −8.46817 + 8.46817i −0.483304 + 0.483304i −0.906185 0.422881i \(-0.861019\pi\)
0.422881 + 0.906185i \(0.361019\pi\)
\(308\) 0.552178 0.552178i 0.0314632 0.0314632i
\(309\) 0 0
\(310\) 0 0
\(311\) 10.3241i 0.585425i −0.956200 0.292713i \(-0.905442\pi\)
0.956200 0.292713i \(-0.0945579\pi\)
\(312\) 0 0
\(313\) −18.2107 18.2107i −1.02933 1.02933i −0.999557 0.0297710i \(-0.990522\pi\)
−0.0297710 0.999557i \(-0.509478\pi\)
\(314\) 0.361218 0.0203847
\(315\) 0 0
\(316\) −14.6922 −0.826500
\(317\) 24.6528 + 24.6528i 1.38464 + 1.38464i 0.836172 + 0.548467i \(0.184788\pi\)
0.548467 + 0.836172i \(0.315212\pi\)
\(318\) 0 0
\(319\) 2.80149i 0.156853i
\(320\) 0 0
\(321\) 0 0
\(322\) 0.0746122 0.0746122i 0.00415798 0.00415798i
\(323\) −26.3537 + 26.3537i −1.46636 + 1.46636i
\(324\) 0 0
\(325\) 0 0
\(326\) 0.671627i 0.0371980i
\(327\) 0 0
\(328\) 0.244947 + 0.244947i 0.0135249 + 0.0135249i
\(329\) 0.760247 0.0419138
\(330\) 0 0
\(331\) −13.0815 −0.719025 −0.359513 0.933140i \(-0.617057\pi\)
−0.359513 + 0.933140i \(0.617057\pi\)
\(332\) 12.5744 + 12.5744i 0.690109 + 0.690109i
\(333\) 0 0
\(334\) 0.0230052i 0.00125879i
\(335\) 0 0
\(336\) 0 0
\(337\) −6.38566 + 6.38566i −0.347849 + 0.347849i −0.859308 0.511459i \(-0.829105\pi\)
0.511459 + 0.859308i \(0.329105\pi\)
\(338\) 0.0794355 0.0794355i 0.00432072 0.00432072i
\(339\) 0 0
\(340\) 0 0
\(341\) 2.10555i 0.114022i
\(342\) 0 0
\(343\) 0.707107 + 0.707107i 0.0381802 + 0.0381802i
\(344\) −1.34928 −0.0727484
\(345\) 0 0
\(346\) −0.705778 −0.0379429
\(347\) −1.89442 1.89442i −0.101698 0.101698i 0.654427 0.756125i \(-0.272910\pi\)
−0.756125 + 0.654427i \(0.772910\pi\)
\(348\) 0 0
\(349\) 27.5744i 1.47602i 0.674789 + 0.738011i \(0.264235\pi\)
−0.674789 + 0.738011i \(0.735765\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −0.112921 + 0.112921i −0.00601870 + 0.00601870i
\(353\) 10.9194 10.9194i 0.581181 0.581181i −0.354047 0.935228i \(-0.615195\pi\)
0.935228 + 0.354047i \(0.115195\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 19.8702i 1.05312i
\(357\) 0 0
\(358\) −0.0734704 0.0734704i −0.00388303 0.00388303i
\(359\) 17.0586 0.900318 0.450159 0.892948i \(-0.351367\pi\)
0.450159 + 0.892948i \(0.351367\pi\)
\(360\) 0 0
\(361\) −11.3025 −0.594868
\(362\) 0.0995470 + 0.0995470i 0.00523208 + 0.00523208i
\(363\) 0 0
\(364\) 6.22684i 0.326375i
\(365\) 0 0
\(366\) 0 0
\(367\) −15.2807 + 15.2807i −0.797645 + 0.797645i −0.982724 0.185079i \(-0.940746\pi\)
0.185079 + 0.982724i \(0.440746\pi\)
\(368\) 8.73946 8.73946i 0.455576 0.455576i
\(369\) 0 0
\(370\) 0 0
\(371\) 7.34295i 0.381227i
\(372\) 0 0
\(373\) 4.83636 + 4.83636i 0.250417 + 0.250417i 0.821142 0.570724i \(-0.193338\pi\)
−0.570724 + 0.821142i \(0.693338\pi\)
\(374\) −0.0901698 −0.00466257
\(375\) 0 0
\(376\) −0.103637 −0.00534469
\(377\) −15.7960 15.7960i −0.813537 0.813537i
\(378\) 0 0
\(379\) 15.5588i 0.799203i −0.916689 0.399602i \(-0.869148\pi\)
0.916689 0.399602i \(-0.130852\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0.518127 0.518127i 0.0265097 0.0265097i
\(383\) −10.6615 + 10.6615i −0.544777 + 0.544777i −0.924926 0.380148i \(-0.875873\pi\)
0.380148 + 0.924926i \(0.375873\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0.436053i 0.0221945i
\(387\) 0 0
\(388\) 4.34659 + 4.34659i 0.220665 + 0.220665i
\(389\) 22.6658 1.14920 0.574602 0.818433i \(-0.305157\pi\)
0.574602 + 0.818433i \(0.305157\pi\)
\(390\) 0 0
\(391\) 20.9563 1.05980
\(392\) −0.0963933 0.0963933i −0.00486860 0.00486860i
\(393\) 0 0
\(394\) 0.424272i 0.0213745i
\(395\) 0 0
\(396\) 0 0
\(397\) −8.59588 + 8.59588i −0.431415 + 0.431415i −0.889109 0.457695i \(-0.848675\pi\)
0.457695 + 0.889109i \(0.348675\pi\)
\(398\) −0.0196833 + 0.0196833i −0.000986633 + 0.000986633i
\(399\) 0 0
\(400\) 0 0
\(401\) 17.9764i 0.897697i 0.893608 + 0.448848i \(0.148166\pi\)
−0.893608 + 0.448848i \(0.851834\pi\)
\(402\) 0 0
\(403\) 11.8720 + 11.8720i 0.591387 + 0.591387i
\(404\) −10.4749 −0.521148
\(405\) 0 0
\(406\) 0.244456 0.0121322
\(407\) −1.07697 1.07697i −0.0533833 0.0533833i
\(408\) 0 0
\(409\) 19.3321i 0.955908i −0.878385 0.477954i \(-0.841378\pi\)
0.878385 0.477954i \(-0.158622\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 2.58253 2.58253i 0.127232 0.127232i
\(413\) 7.28969 7.28969i 0.358702 0.358702i
\(414\) 0 0
\(415\) 0 0
\(416\) 1.27339i 0.0624332i
\(417\) 0 0
\(418\) −0.0518404 0.0518404i −0.00253560 0.00253560i
\(419\) −0.694391 −0.0339232 −0.0169616 0.999856i \(-0.505399\pi\)
−0.0169616 + 0.999856i \(0.505399\pi\)
\(420\) 0 0
\(421\) −13.9451 −0.679641 −0.339821 0.940490i \(-0.610366\pi\)
−0.339821 + 0.940490i \(0.610366\pi\)
\(422\) 0.143104 + 0.143104i 0.00696621 + 0.00696621i
\(423\) 0 0
\(424\) 1.00100i 0.0486126i
\(425\) 0 0
\(426\) 0 0
\(427\) 5.74577 5.74577i 0.278057 0.278057i
\(428\) −20.0930 + 20.0930i −0.971230 + 0.971230i
\(429\) 0 0
\(430\) 0 0
\(431\) 31.4909i 1.51686i −0.651754 0.758431i \(-0.725966\pi\)
0.651754 0.758431i \(-0.274034\pi\)
\(432\) 0 0
\(433\) −21.7296 21.7296i −1.04426 1.04426i −0.998974 0.0452816i \(-0.985581\pi\)
−0.0452816 0.998974i \(-0.514419\pi\)
\(434\) −0.183729 −0.00881927
\(435\) 0 0
\(436\) 27.8882 1.33560
\(437\) 12.0482 + 12.0482i 0.576342 + 0.576342i
\(438\) 0 0
\(439\) 5.11682i 0.244212i −0.992517 0.122106i \(-0.961035\pi\)
0.992517 0.122106i \(-0.0389648\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0.508417 0.508417i 0.0241829 0.0241829i
\(443\) 16.0066 16.0066i 0.760498 0.760498i −0.215914 0.976412i \(-0.569273\pi\)
0.976412 + 0.215914i \(0.0692731\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0.104659i 0.00495574i
\(447\) 0 0
\(448\) −5.63714 5.63714i −0.266330 0.266330i
\(449\) 28.5938 1.34943 0.674713 0.738080i \(-0.264267\pi\)
0.674713 + 0.738080i \(0.264267\pi\)
\(450\) 0 0
\(451\) 0.992752 0.0467469
\(452\) −17.5905 17.5905i −0.827389 0.827389i
\(453\) 0 0
\(454\) 0.862113i 0.0404610i
\(455\) 0 0
\(456\) 0 0
\(457\) −20.1448 + 20.1448i −0.942336 + 0.942336i −0.998426 0.0560895i \(-0.982137\pi\)
0.0560895 + 0.998426i \(0.482137\pi\)
\(458\) 0.0584851 0.0584851i 0.00273283 0.00273283i
\(459\) 0 0
\(460\) 0 0
\(461\) 8.52903i 0.397236i −0.980077 0.198618i \(-0.936355\pi\)
0.980077 0.198618i \(-0.0636454\pi\)
\(462\) 0 0
\(463\) 23.3379 + 23.3379i 1.08461 + 1.08461i 0.996073 + 0.0885330i \(0.0282179\pi\)
0.0885330 + 0.996073i \(0.471782\pi\)
\(464\) 28.6336 1.32928
\(465\) 0 0
\(466\) 0.818256 0.0379050
\(467\) 26.1758 + 26.1758i 1.21127 + 1.21127i 0.970609 + 0.240660i \(0.0773640\pi\)
0.240660 + 0.970609i \(0.422636\pi\)
\(468\) 0 0
\(469\) 5.31944i 0.245629i
\(470\) 0 0
\(471\) 0 0
\(472\) −0.993735 + 0.993735i −0.0457404 + 0.0457404i
\(473\) −2.73428 + 2.73428i −0.125722 + 0.125722i
\(474\) 0 0
\(475\) 0 0
\(476\) 13.5330i 0.620285i
\(477\) 0 0
\(478\) −0.204584 0.204584i −0.00935746 0.00935746i
\(479\) 29.9325 1.36765 0.683826 0.729645i \(-0.260315\pi\)
0.683826 + 0.729645i \(0.260315\pi\)
\(480\) 0 0
\(481\) 12.1448 0.553756
\(482\) 0.301963 + 0.301963i 0.0137540 + 0.0137540i
\(483\) 0 0
\(484\) 21.6821i 0.985552i
\(485\) 0 0
\(486\) 0 0
\(487\) 9.20330 9.20330i 0.417041 0.417041i −0.467141 0.884183i \(-0.654716\pi\)
0.884183 + 0.467141i \(0.154716\pi\)
\(488\) −0.783267 + 0.783267i −0.0354568 + 0.0354568i
\(489\) 0 0
\(490\) 0 0
\(491\) 0.109662i 0.00494898i −0.999997 0.00247449i \(-0.999212\pi\)
0.999997 0.00247449i \(-0.000787655\pi\)
\(492\) 0 0
\(493\) 34.3301 + 34.3301i 1.54615 + 1.54615i
\(494\) 0.584598 0.0263023
\(495\) 0 0
\(496\) −21.5205 −0.966298
\(497\) −11.3692 11.3692i −0.509978 0.509978i
\(498\) 0 0
\(499\) 4.07430i 0.182391i 0.995833 + 0.0911953i \(0.0290688\pi\)
−0.995833 + 0.0911953i \(0.970931\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0.159301 0.159301i 0.00710994 0.00710994i
\(503\) −5.34928 + 5.34928i −0.238513 + 0.238513i −0.816234 0.577721i \(-0.803942\pi\)
0.577721 + 0.816234i \(0.303942\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0.0412232i 0.00183259i
\(507\) 0 0
\(508\) 9.22813 + 9.22813i 0.409432 + 0.409432i
\(509\) −38.2954 −1.69742 −0.848708 0.528862i \(-0.822619\pi\)
−0.848708 + 0.528862i \(0.822619\pi\)
\(510\) 0 0
\(511\) 10.1481 0.448926
\(512\) 1.92395 + 1.92395i 0.0850272 + 0.0850272i
\(513\) 0 0
\(514\) 1.01099i 0.0445928i
\(515\) 0 0
\(516\) 0 0
\(517\) −0.210018 + 0.210018i −0.00923657 + 0.00923657i
\(518\) −0.0939754 + 0.0939754i −0.00412904 + 0.00412904i
\(519\) 0 0
\(520\) 0 0
\(521\) 13.9501i 0.611167i −0.952165 0.305583i \(-0.901149\pi\)
0.952165 0.305583i \(-0.0988514\pi\)
\(522\) 0 0
\(523\) −30.1757 30.1757i −1.31949 1.31949i −0.914179 0.405312i \(-0.867163\pi\)
−0.405312 0.914179i \(-0.632837\pi\)
\(524\) −6.87762 −0.300450
\(525\) 0 0
\(526\) 0.812569 0.0354297
\(527\) −25.8019 25.8019i −1.12395 1.12395i
\(528\) 0 0
\(529\) 13.4194i 0.583451i
\(530\) 0 0
\(531\) 0 0
\(532\) 7.78040 7.78040i 0.337323 0.337323i
\(533\) −5.59757 + 5.59757i −0.242458 + 0.242458i
\(534\) 0 0
\(535\) 0 0
\(536\) 0.725149i 0.0313217i
\(537\) 0 0
\(538\) 0.376695 + 0.376695i 0.0162405 + 0.0162405i
\(539\) −0.390676 −0.0168276
\(540\) 0 0
\(541\) 7.24202 0.311359 0.155679 0.987808i \(-0.450243\pi\)
0.155679 + 0.987808i \(0.450243\pi\)
\(542\) −0.130824 0.130824i −0.00561937 0.00561937i
\(543\) 0 0
\(544\) 2.76751i 0.118656i
\(545\) 0 0
\(546\) 0 0
\(547\) −12.9323 + 12.9323i −0.552944 + 0.552944i −0.927289 0.374346i \(-0.877867\pi\)
0.374346 + 0.927289i \(0.377867\pi\)
\(548\) −2.15602 + 2.15602i −0.0921004 + 0.0921004i
\(549\) 0 0
\(550\) 0 0
\(551\) 39.4741i 1.68165i
\(552\) 0 0
\(553\) 5.19749 + 5.19749i 0.221020 + 0.221020i
\(554\) 0.951992 0.0404462
\(555\) 0 0
\(556\) −43.0460 −1.82556
\(557\) −7.14290 7.14290i −0.302654 0.302654i 0.539397 0.842052i \(-0.318652\pi\)
−0.842052 + 0.539397i \(0.818652\pi\)
\(558\) 0 0
\(559\) 30.8341i 1.30414i
\(560\) 0 0
\(561\) 0 0
\(562\) 0.345314 0.345314i 0.0145662 0.0145662i
\(563\) 23.3269 23.3269i 0.983111 0.983111i −0.0167491 0.999860i \(-0.505332\pi\)
0.999860 + 0.0167491i \(0.00533164\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0.550857i 0.0231543i
\(567\) 0 0
\(568\) 1.54985 + 1.54985i 0.0650305 + 0.0650305i
\(569\) −20.2162 −0.847506 −0.423753 0.905778i \(-0.639288\pi\)
−0.423753 + 0.905778i \(0.639288\pi\)
\(570\) 0 0
\(571\) 26.7908 1.12116 0.560581 0.828100i \(-0.310578\pi\)
0.560581 + 0.828100i \(0.310578\pi\)
\(572\) −1.72016 1.72016i −0.0719235 0.0719235i
\(573\) 0 0
\(574\) 0.0866269i 0.00361574i
\(575\) 0 0
\(576\) 0 0
\(577\) 8.31514 8.31514i 0.346164 0.346164i −0.512515 0.858678i \(-0.671286\pi\)
0.858678 + 0.512515i \(0.171286\pi\)
\(578\) −0.695170 + 0.695170i −0.0289152 + 0.0289152i
\(579\) 0 0
\(580\) 0 0
\(581\) 8.89661i 0.369093i
\(582\) 0 0
\(583\) −2.02848 2.02848i −0.0840112 0.0840112i
\(584\) −1.38340 −0.0572454
\(585\) 0 0
\(586\) 0.311884 0.0128838
\(587\) −8.18891 8.18891i −0.337993 0.337993i 0.517619 0.855611i \(-0.326819\pi\)
−0.855611 + 0.517619i \(0.826819\pi\)
\(588\) 0 0
\(589\) 29.6680i 1.22245i
\(590\) 0 0
\(591\) 0 0
\(592\) −11.0075 + 11.0075i −0.452405 + 0.452405i
\(593\) −17.0635 + 17.0635i −0.700714 + 0.700714i −0.964564 0.263850i \(-0.915008\pi\)
0.263850 + 0.964564i \(0.415008\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 12.9576i 0.530763i
\(597\) 0 0
\(598\) −0.232434 0.232434i −0.00950494 0.00950494i
\(599\) −46.8508 −1.91427 −0.957136 0.289640i \(-0.906464\pi\)
−0.957136 + 0.289640i \(0.906464\pi\)
\(600\) 0 0
\(601\) 34.9943 1.42745 0.713723 0.700428i \(-0.247008\pi\)
0.713723 + 0.700428i \(0.247008\pi\)
\(602\) 0.238591 + 0.238591i 0.00972424 + 0.00972424i
\(603\) 0 0
\(604\) 3.53559i 0.143861i
\(605\) 0 0
\(606\) 0 0
\(607\) 6.68444 6.68444i 0.271313 0.271313i −0.558316 0.829629i \(-0.688552\pi\)
0.829629 + 0.558316i \(0.188552\pi\)
\(608\) −1.59110 + 1.59110i −0.0645275 + 0.0645275i
\(609\) 0 0
\(610\) 0 0
\(611\) 2.36834i 0.0958129i
\(612\) 0 0
\(613\) 10.0152 + 10.0152i 0.404510 + 0.404510i 0.879819 0.475309i \(-0.157664\pi\)
−0.475309 + 0.879819i \(0.657664\pi\)
\(614\) −0.408256 −0.0164759
\(615\) 0 0
\(616\) 0.0532572 0.00214579
\(617\) 2.25298 + 2.25298i 0.0907017 + 0.0907017i 0.751002 0.660300i \(-0.229571\pi\)
−0.660300 + 0.751002i \(0.729571\pi\)
\(618\) 0 0
\(619\) 18.8285i 0.756781i 0.925646 + 0.378390i \(0.123522\pi\)
−0.925646 + 0.378390i \(0.876478\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0.248865 0.248865i 0.00997859 0.00997859i
\(623\) 7.02926 7.02926i 0.281621 0.281621i
\(624\) 0 0
\(625\) 0 0
\(626\) 0.877948i 0.0350899i
\(627\) 0 0
\(628\) −14.9763 14.9763i −0.597618 0.597618i
\(629\) −26.3948 −1.05243
\(630\) 0 0
\(631\) −18.6473 −0.742338 −0.371169 0.928565i \(-0.621043\pi\)
−0.371169 + 0.928565i \(0.621043\pi\)
\(632\) −0.708525 0.708525i −0.0281836 0.0281836i
\(633\) 0 0
\(634\) 1.18853i 0.0472025i
\(635\) 0 0
\(636\) 0 0
\(637\) 2.20280 2.20280i 0.0872781 0.0872781i
\(638\) −0.0675309 + 0.0675309i −0.00267357 + 0.00267357i
\(639\) 0 0
\(640\) 0 0
\(641\) 1.94420i 0.0767912i 0.999263 + 0.0383956i \(0.0122247\pi\)
−0.999263 + 0.0383956i \(0.987775\pi\)
\(642\) 0 0
\(643\) −29.8737 29.8737i −1.17810 1.17810i −0.980227 0.197878i \(-0.936595\pi\)
−0.197878 0.980227i \(-0.563405\pi\)
\(644\) −6.18692 −0.243799
\(645\) 0 0
\(646\) −1.27053 −0.0499882
\(647\) 5.84909 + 5.84909i 0.229952 + 0.229952i 0.812672 0.582721i \(-0.198012\pi\)
−0.582721 + 0.812672i \(0.698012\pi\)
\(648\) 0 0
\(649\) 4.02754i 0.158095i
\(650\) 0 0
\(651\) 0 0
\(652\) 27.8460 27.8460i 1.09053 1.09053i
\(653\) 34.0909 34.0909i 1.33408 1.33408i 0.432396 0.901684i \(-0.357668\pi\)
0.901684 0.432396i \(-0.142332\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 10.1468i 0.396164i
\(657\) 0 0
\(658\) 0.0183260 + 0.0183260i 0.000714422 + 0.000714422i
\(659\) −24.0596 −0.937229 −0.468614 0.883403i \(-0.655247\pi\)
−0.468614 + 0.883403i \(0.655247\pi\)
\(660\) 0 0
\(661\) −2.95088 −0.114776 −0.0573880 0.998352i \(-0.518277\pi\)
−0.0573880 + 0.998352i \(0.518277\pi\)
\(662\) −0.315334 0.315334i −0.0122558 0.0122558i
\(663\) 0 0
\(664\) 1.21279i 0.0470654i
\(665\) 0 0
\(666\) 0 0
\(667\) 15.6948 15.6948i 0.607704 0.607704i
\(668\) 0.953809 0.953809i 0.0369040 0.0369040i
\(669\) 0 0
\(670\) 0 0
\(671\) 3.17453i 0.122551i
\(672\) 0 0
\(673\) −18.8062 18.8062i −0.724925 0.724925i 0.244679 0.969604i \(-0.421317\pi\)
−0.969604 + 0.244679i \(0.921317\pi\)
\(674\) −0.307857 −0.0118582
\(675\) 0 0
\(676\) −6.58687 −0.253341
\(677\) −4.99857 4.99857i −0.192111 0.192111i 0.604497 0.796608i \(-0.293374\pi\)
−0.796608 + 0.604497i \(0.793374\pi\)
\(678\) 0 0
\(679\) 3.07529i 0.118019i
\(680\) 0 0
\(681\) 0 0
\(682\) 0.0507550 0.0507550i 0.00194351 0.00194351i
\(683\) −10.0092 + 10.0092i −0.382990 + 0.382990i −0.872178 0.489188i \(-0.837293\pi\)
0.489188 + 0.872178i \(0.337293\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0.0340901i 0.00130156i
\(687\) 0 0
\(688\) 27.9466 + 27.9466i 1.06545 + 1.06545i
\(689\) 22.8750 0.871466
\(690\) 0 0
\(691\) −19.5494 −0.743696 −0.371848 0.928294i \(-0.621276\pi\)
−0.371848 + 0.928294i \(0.621276\pi\)
\(692\) 29.2619 + 29.2619i 1.11237 + 1.11237i
\(693\) 0 0
\(694\) 0.0913314i 0.00346689i
\(695\) 0 0
\(696\) 0 0
\(697\) 12.1654 12.1654i 0.460797 0.460797i
\(698\) −0.664689 + 0.664689i −0.0251589 + 0.0251589i
\(699\) 0 0
\(700\) 0 0
\(701\) 11.8659i 0.448171i −0.974570 0.224085i \(-0.928061\pi\)
0.974570 0.224085i \(-0.0719394\pi\)
\(702\) 0 0
\(703\) −15.1749 15.1749i −0.572331 0.572331i
\(704\) 3.11451 0.117383
\(705\) 0 0
\(706\) 0.526431 0.0198125
\(707\) 3.70560 + 3.70560i 0.139364 + 0.139364i
\(708\) 0 0
\(709\) 29.1357i 1.09421i 0.837063 + 0.547107i \(0.184271\pi\)
−0.837063 + 0.547107i \(0.815729\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −0.958234 + 0.958234i −0.0359113 + 0.0359113i
\(713\) −11.7959 + 11.7959i −0.441760 + 0.441760i
\(714\) 0 0
\(715\) 0 0
\(716\) 6.09224i 0.227678i
\(717\) 0 0
\(718\) 0.411203 + 0.411203i 0.0153460 + 0.0153460i
\(719\) −33.8893 −1.26386 −0.631928 0.775027i \(-0.717736\pi\)
−0.631928 + 0.775027i \(0.717736\pi\)
\(720\) 0 0
\(721\) −1.82718 −0.0680478
\(722\) −0.272450 0.272450i −0.0101395 0.0101395i
\(723\) 0 0
\(724\) 8.25454i 0.306778i
\(725\) 0 0
\(726\) 0 0
\(727\) 26.7239 26.7239i 0.991135 0.991135i −0.00882647 0.999961i \(-0.502810\pi\)
0.999961 + 0.00882647i \(0.00280959\pi\)
\(728\) −0.300287 + 0.300287i −0.0111294 + 0.0111294i
\(729\) 0 0
\(730\) 0 0
\(731\) 67.0128i 2.47856i
\(732\) 0 0
\(733\) 12.2852 + 12.2852i 0.453763 + 0.453763i 0.896601 0.442838i \(-0.146028\pi\)
−0.442838 + 0.896601i \(0.646028\pi\)
\(734\) −0.736691 −0.0271918
\(735\) 0 0
\(736\) 1.26523 0.0466370
\(737\) −1.46949 1.46949i −0.0541294 0.0541294i
\(738\) 0 0
\(739\) 3.61431i 0.132955i 0.997788 + 0.0664774i \(0.0211760\pi\)
−0.997788 + 0.0664774i \(0.978824\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −0.177004 + 0.177004i −0.00649802 + 0.00649802i
\(743\) −9.96922 + 9.96922i −0.365735 + 0.365735i −0.865919 0.500184i \(-0.833266\pi\)
0.500184 + 0.865919i \(0.333266\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0.233164i 0.00853674i
\(747\) 0 0
\(748\) 3.73849 + 3.73849i 0.136693 + 0.136693i
\(749\) 14.2161 0.519446
\(750\) 0 0
\(751\) −20.7823 −0.758359 −0.379179 0.925323i \(-0.623794\pi\)
−0.379179 + 0.925323i \(0.623794\pi\)
\(752\) 2.14656 + 2.14656i 0.0782768 + 0.0782768i
\(753\) 0 0
\(754\) 0.761537i 0.0277335i
\(755\) 0 0
\(756\) 0 0
\(757\) −5.61667 + 5.61667i −0.204141 + 0.204141i −0.801772 0.597630i \(-0.796109\pi\)
0.597630 + 0.801772i \(0.296109\pi\)
\(758\) 0.375051 0.375051i 0.0136224 0.0136224i
\(759\) 0 0
\(760\) 0 0
\(761\) 27.7154i 1.00468i 0.864670 + 0.502341i \(0.167528\pi\)
−0.864670 + 0.502341i \(0.832472\pi\)
\(762\) 0 0
\(763\) −9.86570 9.86570i −0.357162 0.357162i
\(764\) −42.9636 −1.55437
\(765\) 0 0
\(766\) −0.513998 −0.0185715
\(767\) −22.7090 22.7090i −0.819976 0.819976i
\(768\) 0 0
\(769\) 16.1150i 0.581123i −0.956856 0.290561i \(-0.906158\pi\)
0.956856 0.290561i \(-0.0938421\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 18.0790 18.0790i 0.650677 0.650677i
\(773\) −15.2927 + 15.2927i −0.550041 + 0.550041i −0.926452 0.376412i \(-0.877158\pi\)
0.376412 + 0.926452i \(0.377158\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0.419226i 0.0150493i
\(777\) 0 0
\(778\) 0.546367 + 0.546367i 0.0195882 + 0.0195882i
\(779\) 13.9883 0.501182
\(780\) 0 0
\(781\) 6.28146 0.224768
\(782\) 0.505157 + 0.505157i 0.0180644 + 0.0180644i
\(783\) 0 0
\(784\) 3.99303i 0.142608i
\(785\) 0 0
\(786\) 0 0
\(787\) −5.60346 + 5.60346i −0.199742 + 0.199742i −0.799889 0.600148i \(-0.795109\pi\)
0.600148 + 0.799889i \(0.295109\pi\)
\(788\) 17.5905 17.5905i 0.626637 0.626637i
\(789\) 0 0
\(790\) 0 0
\(791\) 12.4456i 0.442515i
\(792\) 0 0
\(793\) −17.8994 17.8994i −0.635626 0.635626i
\(794\) −0.414413 −0.0147070
\(795\) 0 0
\(796\) 1.63216 0.0578502
\(797\) −20.1318 20.1318i −0.713105 0.713105i 0.254079 0.967184i \(-0.418228\pi\)
−0.967184 + 0.254079i \(0.918228\pi\)
\(798\) 0 0
\(799\) 5.14721i 0.182095i
\(800\) 0 0
\(801\) 0 0
\(802\) −0.433326 + 0.433326i −0.0153013 + 0.0153013i
\(803\) −2.80341 + 2.80341i −0.0989302 + 0.0989302i
\(804\) 0 0
\(805\) 0 0
\(806\) 0.572358i 0.0201604i
\(807\) 0 0
\(808\) −0.505150 0.505150i −0.0177711 0.0177711i
\(809\) 39.2478 1.37988 0.689939 0.723868i \(-0.257637\pi\)
0.689939 + 0.723868i \(0.257637\pi\)
\(810\) 0 0
\(811\) −50.5122 −1.77372 −0.886861 0.462036i \(-0.847119\pi\)
−0.886861 + 0.462036i \(0.847119\pi\)
\(812\) −10.1353 10.1353i −0.355679 0.355679i
\(813\) 0 0
\(814\) 0.0519213i 0.00181984i
\(815\) 0 0
\(816\) 0 0
\(817\) −38.5270 + 38.5270i −1.34789 + 1.34789i
\(818\) 0.466005 0.466005i 0.0162935 0.0162935i
\(819\) 0 0
\(820\) 0 0
\(821\) 22.3236i 0.779097i −0.921006 0.389549i \(-0.872631\pi\)
0.921006 0.389549i \(-0.127369\pi\)
\(822\) 0 0
\(823\) −23.8490 23.8490i −0.831323 0.831323i 0.156375 0.987698i \(-0.450019\pi\)
−0.987698 + 0.156375i \(0.950019\pi\)
\(824\) 0.249083 0.00867721
\(825\) 0 0
\(826\) 0.351441 0.0122282
\(827\) −17.6588 17.6588i −0.614057 0.614057i 0.329944 0.944001i \(-0.392970\pi\)
−0.944001 + 0.329944i \(0.892970\pi\)
\(828\) 0 0
\(829\) 17.1138i 0.594388i −0.954817 0.297194i \(-0.903949\pi\)
0.954817 0.297194i \(-0.0960509\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −17.5610 + 17.5610i −0.608818 + 0.608818i
\(833\) −4.78742 + 4.78742i −0.165874 + 0.165874i
\(834\) 0 0
\(835\) 0 0
\(836\) 4.29866i 0.148672i
\(837\) 0 0
\(838\) −0.0167385 0.0167385i −0.000578223 0.000578223i
\(839\) −43.4377 −1.49964 −0.749818 0.661644i \(-0.769859\pi\)
−0.749818 + 0.661644i \(0.769859\pi\)
\(840\) 0 0
\(841\) 22.4217 0.773162
\(842\) −0.336150 0.336150i −0.0115845 0.0115845i
\(843\) 0 0
\(844\) 11.8664i 0.408457i
\(845\) 0 0
\(846\) 0 0
\(847\) −7.67025 + 7.67025i −0.263553 + 0.263553i
\(848\) −20.7328 + 20.7328i −0.711967 + 0.711967i
\(849\) 0 0
\(850\) 0 0
\(851\) 12.0670i 0.413650i
\(852\) 0 0
\(853\) 27.5983 + 27.5983i 0.944949 + 0.944949i 0.998562 0.0536129i \(-0.0170737\pi\)
−0.0536129 + 0.998562i \(0.517074\pi\)
\(854\) 0.277007 0.00947899
\(855\) 0 0
\(856\) −1.93795 −0.0662378
\(857\) −19.1806 19.1806i −0.655198 0.655198i 0.299042 0.954240i \(-0.403333\pi\)
−0.954240 + 0.299042i \(0.903333\pi\)
\(858\) 0 0
\(859\) 37.8659i 1.29197i −0.763351 0.645984i \(-0.776447\pi\)
0.763351 0.645984i \(-0.223553\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0.759097 0.759097i 0.0258550 0.0258550i
\(863\) −14.5099 + 14.5099i −0.493924 + 0.493924i −0.909540 0.415616i \(-0.863566\pi\)
0.415616 + 0.909540i \(0.363566\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 1.04760i 0.0355988i
\(867\) 0 0
\(868\) 7.61749 + 7.61749i 0.258555 + 0.258555i
\(869\) −2.87161 −0.0974126
\(870\) 0 0
\(871\) 16.5713 0.561496
\(872\) 1.34490 + 1.34490i 0.0455440 + 0.0455440i
\(873\) 0 0
\(874\) 0.580850i 0.0196475i
\(875\) 0 0
\(876\) 0 0
\(877\) 2.22943 2.22943i 0.0752826 0.0752826i −0.668463 0.743745i \(-0.733047\pi\)
0.743745 + 0.668463i \(0.233047\pi\)
\(878\) 0.123343 0.123343i 0.00416261 0.00416261i
\(879\) 0 0
\(880\) 0 0
\(881\) 13.5419i 0.456238i 0.973633 + 0.228119i \(0.0732575\pi\)
−0.973633 + 0.228119i \(0.926742\pi\)
\(882\) 0 0
\(883\) −23.3601 23.3601i −0.786129 0.786129i 0.194728 0.980857i \(-0.437617\pi\)
−0.980857 + 0.194728i \(0.937617\pi\)
\(884\) −42.1584 −1.41794
\(885\) 0 0
\(886\) 0.771690 0.0259254
\(887\) 12.4892 + 12.4892i 0.419346 + 0.419346i 0.884978 0.465632i \(-0.154173\pi\)
−0.465632 + 0.884978i \(0.654173\pi\)
\(888\) 0 0
\(889\) 6.52907i 0.218978i
\(890\) 0 0
\(891\) 0 0
\(892\) 4.33921 4.33921i 0.145287 0.145287i
\(893\) −2.95923 + 2.95923i −0.0990269 + 0.0990269i
\(894\) 0 0
\(895\) 0 0
\(896\) 1.08930i 0.0363909i
\(897\) 0 0
\(898\) 0.689263 + 0.689263i 0.0230010 + 0.0230010i
\(899\) −38.6476 −1.28897
\(900\) 0 0
\(901\) −49.7150 −1.65625
\(902\) 0.0239306 + 0.0239306i 0.000796802 + 0.000796802i
\(903\) 0 0
\(904\) 1.69660i 0.0564279i
\(905\) 0 0
\(906\) 0 0
\(907\) 30.6351 30.6351i 1.01722 1.01722i 0.0173730 0.999849i \(-0.494470\pi\)
0.999849 0.0173730i \(-0.00553028\pi\)
\(908\) −35.7436 + 35.7436i −1.18619 + 1.18619i
\(909\) 0 0
\(910\) 0 0
\(911\) 39.0547i 1.29394i 0.762516 + 0.646969i \(0.223964\pi\)
−0.762516 + 0.646969i \(0.776036\pi\)
\(912\) 0 0
\(913\) 2.45768 + 2.45768i 0.0813374 + 0.0813374i
\(914\) −0.971196 −0.0321243
\(915\) 0 0
\(916\) −4.84964 −0.160237
\(917\) 2.43302 + 2.43302i 0.0803454 + 0.0803454i
\(918\) 0 0
\(919\) 44.2050i 1.45819i −0.684413 0.729095i \(-0.739941\pi\)
0.684413 0.729095i \(-0.260059\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0.205595 0.205595i 0.00677091 0.00677091i
\(923\) −35.4176 + 35.4176i −1.16578 + 1.16578i
\(924\) 0 0
\(925\) 0 0
\(926\) 1.12514i 0.0369743i
\(927\) 0 0
\(928\) 2.07267 + 2.07267i 0.0680388 + 0.0680388i
\(929\) 44.4925 1.45975 0.729875 0.683580i \(-0.239578\pi\)
0.729875 + 0.683580i \(0.239578\pi\)
\(930\) 0 0
\(931\) −5.50477 −0.180412
\(932\) −33.9253 33.9253i −1.11126 1.11126i
\(933\) 0 0
\(934\) 1.26195i 0.0412923i
\(935\) 0 0
\(936\) 0 0
\(937\) −7.24786 + 7.24786i −0.236777 + 0.236777i −0.815514 0.578737i \(-0.803546\pi\)
0.578737 + 0.815514i \(0.303546\pi\)
\(938\) −0.128227 + 0.128227i −0.00418675 + 0.00418675i
\(939\) 0 0
\(940\) 0 0
\(941\) 29.6137i 0.965380i −0.875791 0.482690i \(-0.839660\pi\)
0.875791 0.482690i \(-0.160340\pi\)
\(942\) 0 0
\(943\) −5.56169 5.56169i −0.181113 0.181113i
\(944\) 41.1648 1.33980
\(945\) 0 0
\(946\) −0.131821 −0.00428588
\(947\) 35.1629 + 35.1629i 1.14264 + 1.14264i 0.987965 + 0.154676i \(0.0494332\pi\)
0.154676 + 0.987965i \(0.450567\pi\)
\(948\) 0 0
\(949\) 31.6137i 1.02622i
\(950\) 0 0
\(951\) 0 0
\(952\) 0.652625 0.652625i 0.0211517 0.0211517i
\(953\) 23.2547 23.2547i 0.753295 0.753295i −0.221798 0.975093i \(-0.571192\pi\)
0.975093 + 0.221798i \(0.0711925\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 16.9643i 0.548666i
\(957\) 0 0
\(958\) 0.721533 + 0.721533i 0.0233117 + 0.0233117i
\(959\) 1.52542 0.0492584
\(960\) 0 0
\(961\) −1.95314 −0.0630047
\(962\) 0.292755 + 0.292755i 0.00943879 + 0.00943879i
\(963\) 0 0
\(964\) 25.0391i 0.806455i
\(965\) 0 0
\(966\) 0 0
\(967\) 9.48404 9.48404i 0.304986 0.304986i −0.537975 0.842961i \(-0.680810\pi\)
0.842961 + 0.537975i \(0.180810\pi\)
\(968\) 1.04561 1.04561i 0.0336073 0.0336073i
\(969\) 0 0
\(970\) 0 0
\(971\) 27.4171i 0.879858i 0.898033 + 0.439929i \(0.144996\pi\)
−0.898033 + 0.439929i \(0.855004\pi\)
\(972\) 0 0
\(973\) 15.2279 + 15.2279i 0.488184 + 0.488184i
\(974\) 0.443697 0.0142170
\(975\) 0 0
\(976\) 32.4463 1.03858
\(977\) −0.810961 0.810961i −0.0259449 0.0259449i 0.694015 0.719960i \(-0.255840\pi\)
−0.719960 + 0.694015i \(0.755840\pi\)
\(978\) 0 0
\(979\) 3.88366i 0.124122i
\(980\) 0 0
\(981\) 0 0
\(982\) 0.00264344 0.00264344i 8.43555e−5 8.43555e-5i
\(983\) 1.20950 1.20950i 0.0385771 0.0385771i −0.687555 0.726132i \(-0.741316\pi\)
0.726132 + 0.687555i \(0.241316\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 1.65508i 0.0527084i
\(987\) 0 0
\(988\) −24.2377 24.2377i −0.771104 0.771104i
\(989\) 30.6364 0.974181
\(990\) 0 0
\(991\) −28.2009 −0.895832 −0.447916 0.894076i \(-0.647834\pi\)
−0.447916 + 0.894076i \(0.647834\pi\)
\(992\) −1.55778 1.55778i −0.0494597 0.0494597i
\(993\) 0 0
\(994\) 0.548116i 0.0173852i
\(995\) 0 0
\(996\) 0 0
\(997\) −23.4397 + 23.4397i −0.742342 + 0.742342i −0.973028 0.230687i \(-0.925903\pi\)
0.230687 + 0.973028i \(0.425903\pi\)
\(998\) −0.0982123 + 0.0982123i −0.00310886 + 0.00310886i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.2.m.c.1268.4 12
3.2 odd 2 1575.2.m.d.1268.3 12
5.2 odd 4 1575.2.m.d.1457.3 12
5.3 odd 4 315.2.m.b.197.4 yes 12
5.4 even 2 315.2.m.a.8.3 12
15.2 even 4 inner 1575.2.m.c.1457.4 12
15.8 even 4 315.2.m.a.197.3 yes 12
15.14 odd 2 315.2.m.b.8.4 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.m.a.8.3 12 5.4 even 2
315.2.m.a.197.3 yes 12 15.8 even 4
315.2.m.b.8.4 yes 12 15.14 odd 2
315.2.m.b.197.4 yes 12 5.3 odd 4
1575.2.m.c.1268.4 12 1.1 even 1 trivial
1575.2.m.c.1457.4 12 15.2 even 4 inner
1575.2.m.d.1268.3 12 3.2 odd 2
1575.2.m.d.1457.3 12 5.2 odd 4