Properties

Label 1575.2.d.f
Level $1575$
Weight $2$
Character orbit 1575.d
Analytic conductor $12.576$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1575,2,Mod(1324,1575)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1575, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1575.1324"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1575.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-6,0,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5764383184\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 525)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} + \beta_1) q^{2} + 3 \beta_{2} q^{4} - \beta_{3} q^{7} + (\beta_{3} - 4 \beta_1) q^{8} + ( - 4 \beta_{2} - 1) q^{11} + ( - 4 \beta_{3} - 2 \beta_1) q^{13} + (\beta_{2} - 1) q^{14} + ( - 3 \beta_{2} + 5) q^{16}+ \cdots + (\beta_{3} - \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{4} + 4 q^{11} - 6 q^{14} + 26 q^{16} + 4 q^{19} - 8 q^{26} - 8 q^{29} + 36 q^{34} + 32 q^{41} - 66 q^{44} + 30 q^{46} - 4 q^{49} + 12 q^{56} - 12 q^{59} - 8 q^{61} - 8 q^{64} + 20 q^{71} + 26 q^{74}+ \cdots - 40 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 3x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 2\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 2\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1575\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(1226\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1324.1
1.61803i
0.618034i
0.618034i
1.61803i
2.61803i 0 −4.85410 0 0 1.00000i 7.47214i 0 0
1324.2 0.381966i 0 1.85410 0 0 1.00000i 1.47214i 0 0
1324.3 0.381966i 0 1.85410 0 0 1.00000i 1.47214i 0 0
1324.4 2.61803i 0 −4.85410 0 0 1.00000i 7.47214i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1575.2.d.f 4
3.b odd 2 1 525.2.d.e 4
5.b even 2 1 inner 1575.2.d.f 4
5.c odd 4 1 1575.2.a.l 2
5.c odd 4 1 1575.2.a.v 2
15.d odd 2 1 525.2.d.e 4
15.e even 4 1 525.2.a.e 2
15.e even 4 1 525.2.a.i yes 2
60.l odd 4 1 8400.2.a.cy 2
60.l odd 4 1 8400.2.a.da 2
105.k odd 4 1 3675.2.a.r 2
105.k odd 4 1 3675.2.a.bh 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
525.2.a.e 2 15.e even 4 1
525.2.a.i yes 2 15.e even 4 1
525.2.d.e 4 3.b odd 2 1
525.2.d.e 4 15.d odd 2 1
1575.2.a.l 2 5.c odd 4 1
1575.2.a.v 2 5.c odd 4 1
1575.2.d.f 4 1.a even 1 1 trivial
1575.2.d.f 4 5.b even 2 1 inner
3675.2.a.r 2 105.k odd 4 1
3675.2.a.bh 2 105.k odd 4 1
8400.2.a.cy 2 60.l odd 4 1
8400.2.a.da 2 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1575, [\chi])\):

\( T_{2}^{4} + 7T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{11}^{2} - 2T_{11} - 19 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 7T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 2 T - 19)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 28T^{2} + 16 \) Copy content Toggle raw display
$17$ \( T^{4} + 92T^{2} + 1936 \) Copy content Toggle raw display
$19$ \( (T^{2} - 2 T - 4)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 25)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 4 T - 41)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 20)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 42T^{2} + 361 \) Copy content Toggle raw display
$41$ \( (T - 8)^{4} \) Copy content Toggle raw display
$43$ \( T^{4} + 82T^{2} + 961 \) Copy content Toggle raw display
$47$ \( T^{4} + 60T^{2} + 400 \) Copy content Toggle raw display
$53$ \( T^{4} + 72T^{2} + 16 \) Copy content Toggle raw display
$59$ \( (T^{2} + 6 T + 4)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 4 T - 176)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 122T^{2} + 841 \) Copy content Toggle raw display
$71$ \( (T^{2} - 10 T + 5)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 12T^{2} + 16 \) Copy content Toggle raw display
$79$ \( (T^{2} + 8 T + 11)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 168T^{2} + 1936 \) Copy content Toggle raw display
$89$ \( (T^{2} - 2 T - 44)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 168T^{2} + 1936 \) Copy content Toggle raw display
show more
show less