Properties

Label 1573.4.a.q.1.7
Level $1573$
Weight $4$
Character 1573.1
Self dual yes
Analytic conductor $92.810$
Analytic rank $0$
Dimension $38$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1573,4,Mod(1,1573)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1573, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1573.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1573 = 11^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1573.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38,-3,19,181,52] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.8100044390\)
Analytic rank: \(0\)
Dimension: \(38\)
Twist minimal: no (minimal twist has level 143)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Character \(\chi\) \(=\) 1573.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.15222 q^{2} -8.58190 q^{3} +9.24094 q^{4} +6.15304 q^{5} +35.6340 q^{6} -2.19831 q^{7} -5.15264 q^{8} +46.6491 q^{9} -25.5488 q^{10} -79.3048 q^{12} -13.0000 q^{13} +9.12788 q^{14} -52.8048 q^{15} -52.5326 q^{16} +4.33204 q^{17} -193.697 q^{18} -26.5681 q^{19} +56.8599 q^{20} +18.8657 q^{21} +0.674151 q^{23} +44.2195 q^{24} -87.1401 q^{25} +53.9789 q^{26} -168.627 q^{27} -20.3145 q^{28} +80.7315 q^{29} +219.257 q^{30} +290.951 q^{31} +259.348 q^{32} -17.9876 q^{34} -13.5263 q^{35} +431.081 q^{36} +336.533 q^{37} +110.317 q^{38} +111.565 q^{39} -31.7044 q^{40} -162.354 q^{41} -78.3346 q^{42} +258.374 q^{43} +287.034 q^{45} -2.79922 q^{46} +83.6576 q^{47} +450.830 q^{48} -338.167 q^{49} +361.825 q^{50} -37.1772 q^{51} -120.132 q^{52} -253.507 q^{53} +700.175 q^{54} +11.3271 q^{56} +228.005 q^{57} -335.215 q^{58} -25.0547 q^{59} -487.966 q^{60} +433.646 q^{61} -1208.09 q^{62} -102.549 q^{63} -656.610 q^{64} -79.9895 q^{65} +852.622 q^{67} +40.0321 q^{68} -5.78550 q^{69} +56.1642 q^{70} -451.381 q^{71} -240.366 q^{72} -486.807 q^{73} -1397.36 q^{74} +747.828 q^{75} -245.515 q^{76} -463.241 q^{78} +130.035 q^{79} -323.235 q^{80} +187.612 q^{81} +674.130 q^{82} -553.122 q^{83} +174.337 q^{84} +26.6552 q^{85} -1072.83 q^{86} -692.830 q^{87} +1549.44 q^{89} -1191.83 q^{90} +28.5781 q^{91} +6.22979 q^{92} -2496.92 q^{93} -347.365 q^{94} -163.475 q^{95} -2225.70 q^{96} +270.885 q^{97} +1404.15 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q - 3 q^{2} + 19 q^{3} + 181 q^{4} + 52 q^{5} - 104 q^{6} - 12 q^{7} - 57 q^{8} + 477 q^{9} + 30 q^{10} + 122 q^{12} - 494 q^{13} + 181 q^{14} + 264 q^{15} + 961 q^{16} + 33 q^{17} - 28 q^{18} - 107 q^{19}+ \cdots - 2043 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.15222 −1.46803 −0.734016 0.679132i \(-0.762356\pi\)
−0.734016 + 0.679132i \(0.762356\pi\)
\(3\) −8.58190 −1.65159 −0.825794 0.563972i \(-0.809273\pi\)
−0.825794 + 0.563972i \(0.809273\pi\)
\(4\) 9.24094 1.15512
\(5\) 6.15304 0.550345 0.275172 0.961395i \(-0.411265\pi\)
0.275172 + 0.961395i \(0.411265\pi\)
\(6\) 35.6340 2.42458
\(7\) −2.19831 −0.118698 −0.0593489 0.998237i \(-0.518902\pi\)
−0.0593489 + 0.998237i \(0.518902\pi\)
\(8\) −5.15264 −0.227717
\(9\) 46.6491 1.72774
\(10\) −25.5488 −0.807923
\(11\) 0 0
\(12\) −79.3048 −1.90778
\(13\) −13.0000 −0.277350
\(14\) 9.12788 0.174252
\(15\) −52.8048 −0.908943
\(16\) −52.5326 −0.820822
\(17\) 4.33204 0.0618044 0.0309022 0.999522i \(-0.490162\pi\)
0.0309022 + 0.999522i \(0.490162\pi\)
\(18\) −193.697 −2.53638
\(19\) −26.5681 −0.320797 −0.160399 0.987052i \(-0.551278\pi\)
−0.160399 + 0.987052i \(0.551278\pi\)
\(20\) 56.8599 0.635713
\(21\) 18.8657 0.196040
\(22\) 0 0
\(23\) 0.674151 0.00611175 0.00305587 0.999995i \(-0.499027\pi\)
0.00305587 + 0.999995i \(0.499027\pi\)
\(24\) 44.2195 0.376094
\(25\) −87.1401 −0.697121
\(26\) 53.9789 0.407159
\(27\) −168.627 −1.20193
\(28\) −20.3145 −0.137110
\(29\) 80.7315 0.516947 0.258473 0.966018i \(-0.416781\pi\)
0.258473 + 0.966018i \(0.416781\pi\)
\(30\) 219.257 1.33436
\(31\) 290.951 1.68569 0.842845 0.538156i \(-0.180879\pi\)
0.842845 + 0.538156i \(0.180879\pi\)
\(32\) 259.348 1.43271
\(33\) 0 0
\(34\) −17.9876 −0.0907308
\(35\) −13.5263 −0.0653247
\(36\) 431.081 1.99575
\(37\) 336.533 1.49529 0.747644 0.664100i \(-0.231185\pi\)
0.747644 + 0.664100i \(0.231185\pi\)
\(38\) 110.317 0.470941
\(39\) 111.565 0.458068
\(40\) −31.7044 −0.125323
\(41\) −162.354 −0.618426 −0.309213 0.950993i \(-0.600066\pi\)
−0.309213 + 0.950993i \(0.600066\pi\)
\(42\) −78.3346 −0.287793
\(43\) 258.374 0.916317 0.458159 0.888870i \(-0.348509\pi\)
0.458159 + 0.888870i \(0.348509\pi\)
\(44\) 0 0
\(45\) 287.034 0.950855
\(46\) −2.79922 −0.00897224
\(47\) 83.6576 0.259632 0.129816 0.991538i \(-0.458561\pi\)
0.129816 + 0.991538i \(0.458561\pi\)
\(48\) 450.830 1.35566
\(49\) −338.167 −0.985911
\(50\) 361.825 1.02340
\(51\) −37.1772 −0.102075
\(52\) −120.132 −0.320372
\(53\) −253.507 −0.657016 −0.328508 0.944501i \(-0.606546\pi\)
−0.328508 + 0.944501i \(0.606546\pi\)
\(54\) 700.175 1.76448
\(55\) 0 0
\(56\) 11.3271 0.0270295
\(57\) 228.005 0.529825
\(58\) −335.215 −0.758894
\(59\) −25.0547 −0.0552855 −0.0276427 0.999618i \(-0.508800\pi\)
−0.0276427 + 0.999618i \(0.508800\pi\)
\(60\) −487.966 −1.04994
\(61\) 433.646 0.910208 0.455104 0.890438i \(-0.349602\pi\)
0.455104 + 0.890438i \(0.349602\pi\)
\(62\) −1208.09 −2.47465
\(63\) −102.549 −0.205079
\(64\) −656.610 −1.28244
\(65\) −79.9895 −0.152638
\(66\) 0 0
\(67\) 852.622 1.55469 0.777346 0.629073i \(-0.216565\pi\)
0.777346 + 0.629073i \(0.216565\pi\)
\(68\) 40.0321 0.0713913
\(69\) −5.78550 −0.0100941
\(70\) 56.1642 0.0958987
\(71\) −451.381 −0.754493 −0.377247 0.926113i \(-0.623129\pi\)
−0.377247 + 0.926113i \(0.623129\pi\)
\(72\) −240.366 −0.393436
\(73\) −486.807 −0.780499 −0.390250 0.920709i \(-0.627611\pi\)
−0.390250 + 0.920709i \(0.627611\pi\)
\(74\) −1397.36 −2.19513
\(75\) 747.828 1.15136
\(76\) −245.515 −0.370559
\(77\) 0 0
\(78\) −463.241 −0.672459
\(79\) 130.035 0.185191 0.0925955 0.995704i \(-0.470484\pi\)
0.0925955 + 0.995704i \(0.470484\pi\)
\(80\) −323.235 −0.451735
\(81\) 187.612 0.257355
\(82\) 674.130 0.907869
\(83\) −553.122 −0.731482 −0.365741 0.930717i \(-0.619184\pi\)
−0.365741 + 0.930717i \(0.619184\pi\)
\(84\) 174.337 0.226449
\(85\) 26.6552 0.0340137
\(86\) −1072.83 −1.34518
\(87\) −692.830 −0.853783
\(88\) 0 0
\(89\) 1549.44 1.84540 0.922700 0.385519i \(-0.125978\pi\)
0.922700 + 0.385519i \(0.125978\pi\)
\(90\) −1191.83 −1.39588
\(91\) 28.5781 0.0329208
\(92\) 6.22979 0.00705978
\(93\) −2496.92 −2.78407
\(94\) −347.365 −0.381148
\(95\) −163.475 −0.176549
\(96\) −2225.70 −2.36625
\(97\) 270.885 0.283548 0.141774 0.989899i \(-0.454719\pi\)
0.141774 + 0.989899i \(0.454719\pi\)
\(98\) 1404.15 1.44735
\(99\) 0 0
\(100\) −805.256 −0.805256
\(101\) −1082.85 −1.06681 −0.533405 0.845860i \(-0.679088\pi\)
−0.533405 + 0.845860i \(0.679088\pi\)
\(102\) 154.368 0.149850
\(103\) 111.118 0.106299 0.0531495 0.998587i \(-0.483074\pi\)
0.0531495 + 0.998587i \(0.483074\pi\)
\(104\) 66.9843 0.0631573
\(105\) 116.081 0.107889
\(106\) 1052.62 0.964521
\(107\) −408.439 −0.369021 −0.184511 0.982831i \(-0.559070\pi\)
−0.184511 + 0.982831i \(0.559070\pi\)
\(108\) −1558.27 −1.38837
\(109\) −785.113 −0.689910 −0.344955 0.938619i \(-0.612106\pi\)
−0.344955 + 0.938619i \(0.612106\pi\)
\(110\) 0 0
\(111\) −2888.09 −2.46960
\(112\) 115.483 0.0974297
\(113\) 2253.49 1.87602 0.938009 0.346610i \(-0.112667\pi\)
0.938009 + 0.346610i \(0.112667\pi\)
\(114\) −946.728 −0.777800
\(115\) 4.14808 0.00336357
\(116\) 746.034 0.597134
\(117\) −606.438 −0.479190
\(118\) 104.033 0.0811608
\(119\) −9.52318 −0.00733604
\(120\) 272.084 0.206981
\(121\) 0 0
\(122\) −1800.59 −1.33621
\(123\) 1393.31 1.02139
\(124\) 2688.66 1.94717
\(125\) −1305.31 −0.934001
\(126\) 425.807 0.301063
\(127\) −489.084 −0.341726 −0.170863 0.985295i \(-0.554656\pi\)
−0.170863 + 0.985295i \(0.554656\pi\)
\(128\) 651.603 0.449954
\(129\) −2217.34 −1.51338
\(130\) 332.134 0.224078
\(131\) −2008.91 −1.33984 −0.669920 0.742433i \(-0.733672\pi\)
−0.669920 + 0.742433i \(0.733672\pi\)
\(132\) 0 0
\(133\) 58.4051 0.0380779
\(134\) −3540.27 −2.28234
\(135\) −1037.57 −0.661477
\(136\) −22.3215 −0.0140739
\(137\) 912.528 0.569069 0.284535 0.958666i \(-0.408161\pi\)
0.284535 + 0.958666i \(0.408161\pi\)
\(138\) 24.0227 0.0148184
\(139\) −2447.16 −1.49328 −0.746638 0.665231i \(-0.768333\pi\)
−0.746638 + 0.665231i \(0.768333\pi\)
\(140\) −124.996 −0.0754576
\(141\) −717.942 −0.428806
\(142\) 1874.23 1.10762
\(143\) 0 0
\(144\) −2450.60 −1.41817
\(145\) 496.744 0.284499
\(146\) 2021.33 1.14580
\(147\) 2902.12 1.62832
\(148\) 3109.88 1.72723
\(149\) −2682.91 −1.47512 −0.737560 0.675282i \(-0.764022\pi\)
−0.737560 + 0.675282i \(0.764022\pi\)
\(150\) −3105.15 −1.69023
\(151\) −3419.00 −1.84261 −0.921305 0.388841i \(-0.872876\pi\)
−0.921305 + 0.388841i \(0.872876\pi\)
\(152\) 136.896 0.0730509
\(153\) 202.086 0.106782
\(154\) 0 0
\(155\) 1790.24 0.927711
\(156\) 1030.96 0.529122
\(157\) −3034.47 −1.54253 −0.771265 0.636514i \(-0.780376\pi\)
−0.771265 + 0.636514i \(0.780376\pi\)
\(158\) −539.934 −0.271866
\(159\) 2175.57 1.08512
\(160\) 1595.78 0.788484
\(161\) −1.48199 −0.000725451 0
\(162\) −779.004 −0.377805
\(163\) 3602.67 1.73118 0.865592 0.500750i \(-0.166942\pi\)
0.865592 + 0.500750i \(0.166942\pi\)
\(164\) −1500.30 −0.714354
\(165\) 0 0
\(166\) 2296.68 1.07384
\(167\) 3514.90 1.62869 0.814346 0.580380i \(-0.197096\pi\)
0.814346 + 0.580380i \(0.197096\pi\)
\(168\) −97.2082 −0.0446415
\(169\) 169.000 0.0769231
\(170\) −110.678 −0.0499332
\(171\) −1239.38 −0.554256
\(172\) 2387.62 1.05845
\(173\) −739.068 −0.324800 −0.162400 0.986725i \(-0.551923\pi\)
−0.162400 + 0.986725i \(0.551923\pi\)
\(174\) 2876.78 1.25338
\(175\) 191.561 0.0827466
\(176\) 0 0
\(177\) 215.017 0.0913088
\(178\) −6433.63 −2.70911
\(179\) 1016.07 0.424273 0.212137 0.977240i \(-0.431958\pi\)
0.212137 + 0.977240i \(0.431958\pi\)
\(180\) 2652.46 1.09835
\(181\) −662.625 −0.272113 −0.136057 0.990701i \(-0.543443\pi\)
−0.136057 + 0.990701i \(0.543443\pi\)
\(182\) −118.662 −0.0483288
\(183\) −3721.51 −1.50329
\(184\) −3.47366 −0.00139175
\(185\) 2070.70 0.822924
\(186\) 10367.7 4.08710
\(187\) 0 0
\(188\) 773.075 0.299906
\(189\) 370.694 0.142667
\(190\) 678.784 0.259180
\(191\) −40.6513 −0.0154001 −0.00770006 0.999970i \(-0.502451\pi\)
−0.00770006 + 0.999970i \(0.502451\pi\)
\(192\) 5634.96 2.11806
\(193\) −2375.84 −0.886098 −0.443049 0.896497i \(-0.646103\pi\)
−0.443049 + 0.896497i \(0.646103\pi\)
\(194\) −1124.77 −0.416258
\(195\) 686.462 0.252095
\(196\) −3124.98 −1.13884
\(197\) 3903.38 1.41170 0.705849 0.708362i \(-0.250566\pi\)
0.705849 + 0.708362i \(0.250566\pi\)
\(198\) 0 0
\(199\) 3133.72 1.11630 0.558150 0.829740i \(-0.311511\pi\)
0.558150 + 0.829740i \(0.311511\pi\)
\(200\) 449.002 0.158746
\(201\) −7317.12 −2.56771
\(202\) 4496.24 1.56611
\(203\) −177.473 −0.0613604
\(204\) −343.552 −0.117909
\(205\) −998.972 −0.340347
\(206\) −461.387 −0.156050
\(207\) 31.4485 0.0105595
\(208\) 682.924 0.227655
\(209\) 0 0
\(210\) −481.996 −0.158385
\(211\) −445.565 −0.145374 −0.0726871 0.997355i \(-0.523157\pi\)
−0.0726871 + 0.997355i \(0.523157\pi\)
\(212\) −2342.64 −0.758931
\(213\) 3873.70 1.24611
\(214\) 1695.93 0.541735
\(215\) 1589.78 0.504290
\(216\) 868.872 0.273700
\(217\) −639.602 −0.200088
\(218\) 3259.96 1.01281
\(219\) 4177.73 1.28906
\(220\) 0 0
\(221\) −56.3166 −0.0171415
\(222\) 11992.0 3.62545
\(223\) −4170.38 −1.25233 −0.626164 0.779692i \(-0.715376\pi\)
−0.626164 + 0.779692i \(0.715376\pi\)
\(224\) −570.128 −0.170059
\(225\) −4065.01 −1.20445
\(226\) −9356.97 −2.75405
\(227\) 940.040 0.274858 0.137429 0.990512i \(-0.456116\pi\)
0.137429 + 0.990512i \(0.456116\pi\)
\(228\) 2106.98 0.612010
\(229\) −6082.15 −1.75511 −0.877554 0.479479i \(-0.840826\pi\)
−0.877554 + 0.479479i \(0.840826\pi\)
\(230\) −17.2237 −0.00493782
\(231\) 0 0
\(232\) −415.980 −0.117717
\(233\) −449.840 −0.126481 −0.0632404 0.997998i \(-0.520143\pi\)
−0.0632404 + 0.997998i \(0.520143\pi\)
\(234\) 2518.06 0.703466
\(235\) 514.749 0.142887
\(236\) −231.529 −0.0638612
\(237\) −1115.95 −0.305859
\(238\) 39.5424 0.0107695
\(239\) 5700.21 1.54274 0.771372 0.636384i \(-0.219571\pi\)
0.771372 + 0.636384i \(0.219571\pi\)
\(240\) 2773.97 0.746080
\(241\) 2914.08 0.778889 0.389444 0.921050i \(-0.372667\pi\)
0.389444 + 0.921050i \(0.372667\pi\)
\(242\) 0 0
\(243\) 2942.85 0.776889
\(244\) 4007.30 1.05140
\(245\) −2080.76 −0.542591
\(246\) −5785.32 −1.49943
\(247\) 345.386 0.0889732
\(248\) −1499.17 −0.383860
\(249\) 4746.84 1.20811
\(250\) 5419.92 1.37114
\(251\) 4162.22 1.04668 0.523340 0.852124i \(-0.324686\pi\)
0.523340 + 0.852124i \(0.324686\pi\)
\(252\) −947.651 −0.236891
\(253\) 0 0
\(254\) 2030.78 0.501664
\(255\) −228.753 −0.0561767
\(256\) 2547.27 0.621893
\(257\) −4211.23 −1.02214 −0.511069 0.859540i \(-0.670750\pi\)
−0.511069 + 0.859540i \(0.670750\pi\)
\(258\) 9206.88 2.22169
\(259\) −739.804 −0.177487
\(260\) −739.178 −0.176315
\(261\) 3766.05 0.893151
\(262\) 8341.43 1.96693
\(263\) −6038.85 −1.41586 −0.707931 0.706282i \(-0.750371\pi\)
−0.707931 + 0.706282i \(0.750371\pi\)
\(264\) 0 0
\(265\) −1559.84 −0.361585
\(266\) −242.511 −0.0558996
\(267\) −13297.2 −3.04784
\(268\) 7879.03 1.79585
\(269\) 3558.00 0.806450 0.403225 0.915101i \(-0.367889\pi\)
0.403225 + 0.915101i \(0.367889\pi\)
\(270\) 4308.20 0.971070
\(271\) 7773.31 1.74242 0.871209 0.490913i \(-0.163337\pi\)
0.871209 + 0.490913i \(0.163337\pi\)
\(272\) −227.573 −0.0507304
\(273\) −245.254 −0.0543716
\(274\) −3789.02 −0.835412
\(275\) 0 0
\(276\) −53.4634 −0.0116599
\(277\) 2639.76 0.572592 0.286296 0.958141i \(-0.407576\pi\)
0.286296 + 0.958141i \(0.407576\pi\)
\(278\) 10161.1 2.19218
\(279\) 13572.6 2.91244
\(280\) 69.6962 0.0148755
\(281\) −1102.23 −0.233999 −0.116999 0.993132i \(-0.537328\pi\)
−0.116999 + 0.993132i \(0.537328\pi\)
\(282\) 2981.05 0.629500
\(283\) 3958.36 0.831450 0.415725 0.909490i \(-0.363528\pi\)
0.415725 + 0.909490i \(0.363528\pi\)
\(284\) −4171.18 −0.871528
\(285\) 1402.93 0.291587
\(286\) 0 0
\(287\) 356.905 0.0734057
\(288\) 12098.3 2.47535
\(289\) −4894.23 −0.996180
\(290\) −2062.59 −0.417653
\(291\) −2324.71 −0.468305
\(292\) −4498.55 −0.901568
\(293\) −2149.93 −0.428670 −0.214335 0.976760i \(-0.568758\pi\)
−0.214335 + 0.976760i \(0.568758\pi\)
\(294\) −12050.2 −2.39042
\(295\) −154.162 −0.0304261
\(296\) −1734.03 −0.340502
\(297\) 0 0
\(298\) 11140.0 2.16552
\(299\) −8.76396 −0.00169509
\(300\) 6910.63 1.32995
\(301\) −567.986 −0.108765
\(302\) 14196.4 2.70501
\(303\) 9292.94 1.76193
\(304\) 1395.69 0.263317
\(305\) 2668.24 0.500928
\(306\) −839.105 −0.156760
\(307\) −4334.13 −0.805738 −0.402869 0.915258i \(-0.631987\pi\)
−0.402869 + 0.915258i \(0.631987\pi\)
\(308\) 0 0
\(309\) −953.605 −0.175562
\(310\) −7433.45 −1.36191
\(311\) 1932.81 0.352411 0.176206 0.984353i \(-0.443618\pi\)
0.176206 + 0.984353i \(0.443618\pi\)
\(312\) −574.853 −0.104310
\(313\) −3991.03 −0.720722 −0.360361 0.932813i \(-0.617347\pi\)
−0.360361 + 0.932813i \(0.617347\pi\)
\(314\) 12599.8 2.26448
\(315\) −630.990 −0.112864
\(316\) 1201.65 0.213917
\(317\) 7134.01 1.26399 0.631996 0.774971i \(-0.282236\pi\)
0.631996 + 0.774971i \(0.282236\pi\)
\(318\) −9033.46 −1.59299
\(319\) 0 0
\(320\) −4040.14 −0.705784
\(321\) 3505.18 0.609471
\(322\) 6.15357 0.00106498
\(323\) −115.094 −0.0198267
\(324\) 1733.71 0.297275
\(325\) 1132.82 0.193347
\(326\) −14959.1 −2.54143
\(327\) 6737.77 1.13945
\(328\) 836.553 0.140826
\(329\) −183.906 −0.0308178
\(330\) 0 0
\(331\) 5833.01 0.968614 0.484307 0.874898i \(-0.339072\pi\)
0.484307 + 0.874898i \(0.339072\pi\)
\(332\) −5111.36 −0.844948
\(333\) 15698.9 2.58347
\(334\) −14594.7 −2.39097
\(335\) 5246.22 0.855616
\(336\) −991.064 −0.160914
\(337\) −6846.13 −1.10662 −0.553312 0.832974i \(-0.686636\pi\)
−0.553312 + 0.832974i \(0.686636\pi\)
\(338\) −701.725 −0.112926
\(339\) −19339.2 −3.09841
\(340\) 246.319 0.0392898
\(341\) 0 0
\(342\) 5146.18 0.813665
\(343\) 1497.42 0.235723
\(344\) −1331.31 −0.208661
\(345\) −35.5984 −0.00555523
\(346\) 3068.77 0.476816
\(347\) 1639.33 0.253613 0.126807 0.991927i \(-0.459527\pi\)
0.126807 + 0.991927i \(0.459527\pi\)
\(348\) −6402.39 −0.986219
\(349\) 6097.13 0.935162 0.467581 0.883950i \(-0.345126\pi\)
0.467581 + 0.883950i \(0.345126\pi\)
\(350\) −795.404 −0.121475
\(351\) 2192.14 0.333356
\(352\) 0 0
\(353\) 1745.44 0.263174 0.131587 0.991305i \(-0.457993\pi\)
0.131587 + 0.991305i \(0.457993\pi\)
\(354\) −892.798 −0.134044
\(355\) −2777.36 −0.415231
\(356\) 14318.3 2.13165
\(357\) 81.7270 0.0121161
\(358\) −4218.96 −0.622847
\(359\) 4390.14 0.645412 0.322706 0.946499i \(-0.395407\pi\)
0.322706 + 0.946499i \(0.395407\pi\)
\(360\) −1478.98 −0.216525
\(361\) −6153.13 −0.897089
\(362\) 2751.36 0.399471
\(363\) 0 0
\(364\) 264.088 0.0380274
\(365\) −2995.34 −0.429544
\(366\) 15452.5 2.20688
\(367\) 8713.43 1.23934 0.619669 0.784863i \(-0.287267\pi\)
0.619669 + 0.784863i \(0.287267\pi\)
\(368\) −35.4149 −0.00501666
\(369\) −7573.67 −1.06848
\(370\) −8598.01 −1.20808
\(371\) 557.288 0.0779863
\(372\) −23073.8 −3.21592
\(373\) −10129.8 −1.40616 −0.703081 0.711109i \(-0.748193\pi\)
−0.703081 + 0.711109i \(0.748193\pi\)
\(374\) 0 0
\(375\) 11202.0 1.54259
\(376\) −431.058 −0.0591226
\(377\) −1049.51 −0.143375
\(378\) −1539.20 −0.209439
\(379\) 7551.08 1.02341 0.511705 0.859161i \(-0.329014\pi\)
0.511705 + 0.859161i \(0.329014\pi\)
\(380\) −1510.66 −0.203935
\(381\) 4197.27 0.564390
\(382\) 168.793 0.0226079
\(383\) 9046.18 1.20689 0.603444 0.797405i \(-0.293795\pi\)
0.603444 + 0.797405i \(0.293795\pi\)
\(384\) −5592.00 −0.743139
\(385\) 0 0
\(386\) 9865.02 1.30082
\(387\) 12052.9 1.58316
\(388\) 2503.23 0.327532
\(389\) −8470.15 −1.10399 −0.551997 0.833846i \(-0.686134\pi\)
−0.551997 + 0.833846i \(0.686134\pi\)
\(390\) −2850.34 −0.370084
\(391\) 2.92045 0.000377733 0
\(392\) 1742.46 0.224508
\(393\) 17240.3 2.21287
\(394\) −16207.7 −2.07242
\(395\) 800.111 0.101919
\(396\) 0 0
\(397\) −7496.00 −0.947641 −0.473820 0.880621i \(-0.657125\pi\)
−0.473820 + 0.880621i \(0.657125\pi\)
\(398\) −13011.9 −1.63876
\(399\) −501.227 −0.0628890
\(400\) 4577.69 0.572212
\(401\) 11070.5 1.37864 0.689318 0.724459i \(-0.257910\pi\)
0.689318 + 0.724459i \(0.257910\pi\)
\(402\) 30382.3 3.76948
\(403\) −3782.37 −0.467526
\(404\) −10006.6 −1.23229
\(405\) 1154.38 0.141634
\(406\) 736.907 0.0900790
\(407\) 0 0
\(408\) 191.561 0.0232443
\(409\) −7152.52 −0.864717 −0.432359 0.901702i \(-0.642319\pi\)
−0.432359 + 0.901702i \(0.642319\pi\)
\(410\) 4147.95 0.499641
\(411\) −7831.22 −0.939868
\(412\) 1026.84 0.122788
\(413\) 55.0780 0.00656226
\(414\) −130.581 −0.0155017
\(415\) −3403.38 −0.402567
\(416\) −3371.52 −0.397362
\(417\) 21001.3 2.46628
\(418\) 0 0
\(419\) −6604.83 −0.770088 −0.385044 0.922898i \(-0.625814\pi\)
−0.385044 + 0.922898i \(0.625814\pi\)
\(420\) 1072.70 0.124625
\(421\) −16638.4 −1.92614 −0.963070 0.269250i \(-0.913224\pi\)
−0.963070 + 0.269250i \(0.913224\pi\)
\(422\) 1850.08 0.213414
\(423\) 3902.55 0.448578
\(424\) 1306.23 0.149614
\(425\) −377.495 −0.0430851
\(426\) −16084.5 −1.82933
\(427\) −953.290 −0.108040
\(428\) −3774.35 −0.426262
\(429\) 0 0
\(430\) −6601.14 −0.740314
\(431\) −9392.11 −1.04966 −0.524829 0.851208i \(-0.675871\pi\)
−0.524829 + 0.851208i \(0.675871\pi\)
\(432\) 8858.39 0.986573
\(433\) −2478.75 −0.275107 −0.137554 0.990494i \(-0.543924\pi\)
−0.137554 + 0.990494i \(0.543924\pi\)
\(434\) 2655.77 0.293735
\(435\) −4263.01 −0.469875
\(436\) −7255.18 −0.796927
\(437\) −17.9109 −0.00196063
\(438\) −17346.9 −1.89239
\(439\) −14103.0 −1.53326 −0.766630 0.642089i \(-0.778068\pi\)
−0.766630 + 0.642089i \(0.778068\pi\)
\(440\) 0 0
\(441\) −15775.2 −1.70340
\(442\) 233.839 0.0251642
\(443\) 16203.3 1.73779 0.868896 0.494995i \(-0.164830\pi\)
0.868896 + 0.494995i \(0.164830\pi\)
\(444\) −26688.7 −2.85268
\(445\) 9533.78 1.01561
\(446\) 17316.3 1.83846
\(447\) 23024.5 2.43629
\(448\) 1443.43 0.152223
\(449\) −10516.6 −1.10537 −0.552685 0.833390i \(-0.686397\pi\)
−0.552685 + 0.833390i \(0.686397\pi\)
\(450\) 16878.8 1.76816
\(451\) 0 0
\(452\) 20824.3 2.16702
\(453\) 29341.5 3.04323
\(454\) −3903.26 −0.403500
\(455\) 175.842 0.0181178
\(456\) −1174.83 −0.120650
\(457\) 9539.65 0.976468 0.488234 0.872713i \(-0.337641\pi\)
0.488234 + 0.872713i \(0.337641\pi\)
\(458\) 25254.4 2.57655
\(459\) −730.497 −0.0742847
\(460\) 38.3321 0.00388531
\(461\) 10538.3 1.06468 0.532339 0.846531i \(-0.321313\pi\)
0.532339 + 0.846531i \(0.321313\pi\)
\(462\) 0 0
\(463\) −2071.48 −0.207926 −0.103963 0.994581i \(-0.533152\pi\)
−0.103963 + 0.994581i \(0.533152\pi\)
\(464\) −4241.03 −0.424321
\(465\) −15363.6 −1.53220
\(466\) 1867.84 0.185678
\(467\) −13278.8 −1.31578 −0.657892 0.753112i \(-0.728552\pi\)
−0.657892 + 0.753112i \(0.728552\pi\)
\(468\) −5604.06 −0.553520
\(469\) −1874.33 −0.184538
\(470\) −2137.35 −0.209763
\(471\) 26041.6 2.54763
\(472\) 129.098 0.0125894
\(473\) 0 0
\(474\) 4633.66 0.449011
\(475\) 2315.15 0.223635
\(476\) −88.0031 −0.00847399
\(477\) −11825.9 −1.13516
\(478\) −23668.5 −2.26480
\(479\) 2165.10 0.206526 0.103263 0.994654i \(-0.467072\pi\)
0.103263 + 0.994654i \(0.467072\pi\)
\(480\) −13694.8 −1.30225
\(481\) −4374.93 −0.414718
\(482\) −12099.9 −1.14343
\(483\) 12.7183 0.00119815
\(484\) 0 0
\(485\) 1666.77 0.156049
\(486\) −12219.4 −1.14050
\(487\) 8970.67 0.834702 0.417351 0.908745i \(-0.362959\pi\)
0.417351 + 0.908745i \(0.362959\pi\)
\(488\) −2234.42 −0.207270
\(489\) −30917.8 −2.85920
\(490\) 8639.77 0.796540
\(491\) −15379.8 −1.41361 −0.706803 0.707410i \(-0.749863\pi\)
−0.706803 + 0.707410i \(0.749863\pi\)
\(492\) 12875.5 1.17982
\(493\) 349.732 0.0319496
\(494\) −1434.12 −0.130615
\(495\) 0 0
\(496\) −15284.4 −1.38365
\(497\) 992.276 0.0895566
\(498\) −19709.9 −1.77354
\(499\) 6023.52 0.540380 0.270190 0.962807i \(-0.412913\pi\)
0.270190 + 0.962807i \(0.412913\pi\)
\(500\) −12062.3 −1.07888
\(501\) −30164.6 −2.68993
\(502\) −17282.5 −1.53656
\(503\) 17429.9 1.54505 0.772526 0.634983i \(-0.218993\pi\)
0.772526 + 0.634983i \(0.218993\pi\)
\(504\) 528.400 0.0467000
\(505\) −6662.84 −0.587114
\(506\) 0 0
\(507\) −1450.34 −0.127045
\(508\) −4519.59 −0.394733
\(509\) −10440.7 −0.909190 −0.454595 0.890698i \(-0.650216\pi\)
−0.454595 + 0.890698i \(0.650216\pi\)
\(510\) 949.832 0.0824691
\(511\) 1070.15 0.0926435
\(512\) −15789.7 −1.36291
\(513\) 4480.09 0.385577
\(514\) 17486.0 1.50053
\(515\) 683.714 0.0585011
\(516\) −20490.3 −1.74813
\(517\) 0 0
\(518\) 3071.83 0.260557
\(519\) 6342.61 0.536435
\(520\) 412.157 0.0347583
\(521\) −2331.22 −0.196032 −0.0980158 0.995185i \(-0.531250\pi\)
−0.0980158 + 0.995185i \(0.531250\pi\)
\(522\) −15637.5 −1.31117
\(523\) −17700.7 −1.47992 −0.739961 0.672650i \(-0.765156\pi\)
−0.739961 + 0.672650i \(0.765156\pi\)
\(524\) −18564.2 −1.54767
\(525\) −1643.96 −0.136663
\(526\) 25074.7 2.07853
\(527\) 1260.41 0.104183
\(528\) 0 0
\(529\) −12166.5 −0.999963
\(530\) 6476.80 0.530819
\(531\) −1168.78 −0.0955191
\(532\) 539.718 0.0439845
\(533\) 2110.60 0.171520
\(534\) 55212.8 4.47433
\(535\) −2513.14 −0.203089
\(536\) −4393.26 −0.354029
\(537\) −8719.85 −0.700725
\(538\) −14773.6 −1.18389
\(539\) 0 0
\(540\) −9588.08 −0.764084
\(541\) 13245.5 1.05262 0.526312 0.850291i \(-0.323574\pi\)
0.526312 + 0.850291i \(0.323574\pi\)
\(542\) −32276.5 −2.55792
\(543\) 5686.58 0.449419
\(544\) 1123.51 0.0885477
\(545\) −4830.83 −0.379688
\(546\) 1018.35 0.0798193
\(547\) 9311.56 0.727850 0.363925 0.931428i \(-0.381437\pi\)
0.363925 + 0.931428i \(0.381437\pi\)
\(548\) 8432.61 0.657342
\(549\) 20229.2 1.57261
\(550\) 0 0
\(551\) −2144.89 −0.165835
\(552\) 29.8106 0.00229859
\(553\) −285.858 −0.0219817
\(554\) −10960.9 −0.840584
\(555\) −17770.6 −1.35913
\(556\) −22614.0 −1.72491
\(557\) 8674.13 0.659847 0.329923 0.944008i \(-0.392977\pi\)
0.329923 + 0.944008i \(0.392977\pi\)
\(558\) −56356.5 −4.27556
\(559\) −3358.86 −0.254141
\(560\) 710.572 0.0536199
\(561\) 0 0
\(562\) 4576.71 0.343517
\(563\) 3724.96 0.278843 0.139421 0.990233i \(-0.455476\pi\)
0.139421 + 0.990233i \(0.455476\pi\)
\(564\) −6634.45 −0.495321
\(565\) 13865.8 1.03246
\(566\) −16436.0 −1.22059
\(567\) −412.429 −0.0305474
\(568\) 2325.80 0.171811
\(569\) 12865.5 0.947893 0.473947 0.880554i \(-0.342829\pi\)
0.473947 + 0.880554i \(0.342829\pi\)
\(570\) −5825.26 −0.428058
\(571\) 23526.9 1.72429 0.862146 0.506661i \(-0.169120\pi\)
0.862146 + 0.506661i \(0.169120\pi\)
\(572\) 0 0
\(573\) 348.865 0.0254347
\(574\) −1481.95 −0.107762
\(575\) −58.7456 −0.00426063
\(576\) −30630.2 −2.21573
\(577\) 8584.19 0.619349 0.309675 0.950843i \(-0.399780\pi\)
0.309675 + 0.950843i \(0.399780\pi\)
\(578\) 20321.9 1.46242
\(579\) 20389.2 1.46347
\(580\) 4590.38 0.328629
\(581\) 1215.93 0.0868253
\(582\) 9652.70 0.687487
\(583\) 0 0
\(584\) 2508.34 0.177733
\(585\) −3731.44 −0.263720
\(586\) 8927.00 0.629302
\(587\) −1675.18 −0.117789 −0.0588945 0.998264i \(-0.518758\pi\)
−0.0588945 + 0.998264i \(0.518758\pi\)
\(588\) 26818.3 1.88090
\(589\) −7730.04 −0.540765
\(590\) 640.117 0.0446664
\(591\) −33498.5 −2.33154
\(592\) −17678.9 −1.22737
\(593\) 27794.4 1.92476 0.962378 0.271716i \(-0.0875911\pi\)
0.962378 + 0.271716i \(0.0875911\pi\)
\(594\) 0 0
\(595\) −58.5965 −0.00403735
\(596\) −24792.6 −1.70394
\(597\) −26893.3 −1.84367
\(598\) 36.3899 0.00248845
\(599\) −5242.04 −0.357569 −0.178785 0.983888i \(-0.557217\pi\)
−0.178785 + 0.983888i \(0.557217\pi\)
\(600\) −3853.29 −0.262183
\(601\) 19010.7 1.29029 0.645143 0.764062i \(-0.276798\pi\)
0.645143 + 0.764062i \(0.276798\pi\)
\(602\) 2358.41 0.159670
\(603\) 39774.0 2.68611
\(604\) −31594.7 −2.12843
\(605\) 0 0
\(606\) −38586.3 −2.58657
\(607\) 27139.4 1.81475 0.907375 0.420323i \(-0.138083\pi\)
0.907375 + 0.420323i \(0.138083\pi\)
\(608\) −6890.40 −0.459609
\(609\) 1523.06 0.101342
\(610\) −11079.1 −0.735379
\(611\) −1087.55 −0.0720090
\(612\) 1867.46 0.123346
\(613\) 14792.4 0.974648 0.487324 0.873221i \(-0.337973\pi\)
0.487324 + 0.873221i \(0.337973\pi\)
\(614\) 17996.2 1.18285
\(615\) 8573.08 0.562114
\(616\) 0 0
\(617\) −603.355 −0.0393682 −0.0196841 0.999806i \(-0.506266\pi\)
−0.0196841 + 0.999806i \(0.506266\pi\)
\(618\) 3959.58 0.257731
\(619\) 12639.2 0.820697 0.410348 0.911929i \(-0.365407\pi\)
0.410348 + 0.911929i \(0.365407\pi\)
\(620\) 16543.5 1.07161
\(621\) −113.680 −0.00734591
\(622\) −8025.47 −0.517351
\(623\) −3406.16 −0.219045
\(624\) −5860.79 −0.375992
\(625\) 2860.91 0.183098
\(626\) 16571.6 1.05804
\(627\) 0 0
\(628\) −28041.4 −1.78180
\(629\) 1457.87 0.0924154
\(630\) 2620.01 0.165688
\(631\) −2187.41 −0.138002 −0.0690012 0.997617i \(-0.521981\pi\)
−0.0690012 + 0.997617i \(0.521981\pi\)
\(632\) −670.024 −0.0421711
\(633\) 3823.80 0.240098
\(634\) −29622.0 −1.85558
\(635\) −3009.35 −0.188067
\(636\) 20104.3 1.25344
\(637\) 4396.18 0.273442
\(638\) 0 0
\(639\) −21056.5 −1.30357
\(640\) 4009.34 0.247630
\(641\) 29850.8 1.83937 0.919684 0.392659i \(-0.128445\pi\)
0.919684 + 0.392659i \(0.128445\pi\)
\(642\) −14554.3 −0.894722
\(643\) 21406.6 1.31290 0.656448 0.754371i \(-0.272058\pi\)
0.656448 + 0.754371i \(0.272058\pi\)
\(644\) −13.6950 −0.000837980 0
\(645\) −13643.4 −0.832880
\(646\) 477.897 0.0291062
\(647\) 11212.9 0.681335 0.340667 0.940184i \(-0.389347\pi\)
0.340667 + 0.940184i \(0.389347\pi\)
\(648\) −966.695 −0.0586039
\(649\) 0 0
\(650\) −4703.72 −0.283839
\(651\) 5489.00 0.330462
\(652\) 33292.1 1.99972
\(653\) 25749.4 1.54311 0.771555 0.636162i \(-0.219479\pi\)
0.771555 + 0.636162i \(0.219479\pi\)
\(654\) −27976.7 −1.67274
\(655\) −12360.9 −0.737374
\(656\) 8528.89 0.507617
\(657\) −22709.1 −1.34850
\(658\) 763.616 0.0452414
\(659\) 8761.33 0.517895 0.258948 0.965891i \(-0.416624\pi\)
0.258948 + 0.965891i \(0.416624\pi\)
\(660\) 0 0
\(661\) 5810.78 0.341926 0.170963 0.985277i \(-0.445312\pi\)
0.170963 + 0.985277i \(0.445312\pi\)
\(662\) −24219.9 −1.42196
\(663\) 483.303 0.0283106
\(664\) 2850.04 0.166571
\(665\) 359.369 0.0209560
\(666\) −65185.5 −3.79262
\(667\) 54.4252 0.00315945
\(668\) 32481.0 1.88133
\(669\) 35789.8 2.06833
\(670\) −21783.5 −1.25607
\(671\) 0 0
\(672\) 4892.78 0.280868
\(673\) −31867.0 −1.82523 −0.912616 0.408817i \(-0.865941\pi\)
−0.912616 + 0.408817i \(0.865941\pi\)
\(674\) 28426.6 1.62456
\(675\) 14694.1 0.837892
\(676\) 1561.72 0.0888552
\(677\) 14491.7 0.822689 0.411345 0.911480i \(-0.365059\pi\)
0.411345 + 0.911480i \(0.365059\pi\)
\(678\) 80300.6 4.54856
\(679\) −595.490 −0.0336565
\(680\) −137.345 −0.00774549
\(681\) −8067.34 −0.453952
\(682\) 0 0
\(683\) 17072.9 0.956478 0.478239 0.878230i \(-0.341275\pi\)
0.478239 + 0.878230i \(0.341275\pi\)
\(684\) −11453.0 −0.640230
\(685\) 5614.82 0.313184
\(686\) −6217.61 −0.346049
\(687\) 52196.4 2.89871
\(688\) −13573.0 −0.752133
\(689\) 3295.59 0.182224
\(690\) 147.812 0.00815525
\(691\) −9887.90 −0.544361 −0.272181 0.962246i \(-0.587745\pi\)
−0.272181 + 0.962246i \(0.587745\pi\)
\(692\) −6829.68 −0.375182
\(693\) 0 0
\(694\) −6806.86 −0.372312
\(695\) −15057.5 −0.821816
\(696\) 3569.90 0.194421
\(697\) −703.325 −0.0382214
\(698\) −25316.6 −1.37285
\(699\) 3860.49 0.208894
\(700\) 1770.20 0.0955821
\(701\) −3055.12 −0.164608 −0.0823041 0.996607i \(-0.526228\pi\)
−0.0823041 + 0.996607i \(0.526228\pi\)
\(702\) −9102.27 −0.489377
\(703\) −8941.06 −0.479685
\(704\) 0 0
\(705\) −4417.52 −0.235991
\(706\) −7247.45 −0.386347
\(707\) 2380.45 0.126628
\(708\) 1986.96 0.105472
\(709\) −10654.2 −0.564354 −0.282177 0.959362i \(-0.591057\pi\)
−0.282177 + 0.959362i \(0.591057\pi\)
\(710\) 11532.2 0.609573
\(711\) 6066.02 0.319963
\(712\) −7983.72 −0.420228
\(713\) 196.145 0.0103025
\(714\) −339.349 −0.0177868
\(715\) 0 0
\(716\) 9389.47 0.490085
\(717\) −48918.6 −2.54798
\(718\) −18228.8 −0.947485
\(719\) −2879.46 −0.149355 −0.0746773 0.997208i \(-0.523793\pi\)
−0.0746773 + 0.997208i \(0.523793\pi\)
\(720\) −15078.6 −0.780482
\(721\) −244.272 −0.0126174
\(722\) 25549.2 1.31696
\(723\) −25008.3 −1.28640
\(724\) −6123.27 −0.314323
\(725\) −7034.95 −0.360374
\(726\) 0 0
\(727\) 13697.2 0.698761 0.349381 0.936981i \(-0.386392\pi\)
0.349381 + 0.936981i \(0.386392\pi\)
\(728\) −147.253 −0.00749662
\(729\) −30320.8 −1.54046
\(730\) 12437.3 0.630584
\(731\) 1119.29 0.0566324
\(732\) −34390.2 −1.73647
\(733\) 15736.7 0.792971 0.396485 0.918041i \(-0.370230\pi\)
0.396485 + 0.918041i \(0.370230\pi\)
\(734\) −36180.1 −1.81939
\(735\) 17856.9 0.896137
\(736\) 174.840 0.00875636
\(737\) 0 0
\(738\) 31447.6 1.56856
\(739\) 8499.92 0.423105 0.211552 0.977367i \(-0.432148\pi\)
0.211552 + 0.977367i \(0.432148\pi\)
\(740\) 19135.2 0.950573
\(741\) −2964.07 −0.146947
\(742\) −2313.98 −0.114486
\(743\) −1692.91 −0.0835891 −0.0417945 0.999126i \(-0.513307\pi\)
−0.0417945 + 0.999126i \(0.513307\pi\)
\(744\) 12865.7 0.633978
\(745\) −16508.1 −0.811824
\(746\) 42061.0 2.06429
\(747\) −25802.6 −1.26381
\(748\) 0 0
\(749\) 897.876 0.0438020
\(750\) −46513.2 −2.26456
\(751\) −4258.56 −0.206920 −0.103460 0.994634i \(-0.532991\pi\)
−0.103460 + 0.994634i \(0.532991\pi\)
\(752\) −4394.75 −0.213112
\(753\) −35719.8 −1.72869
\(754\) 4357.79 0.210479
\(755\) −21037.2 −1.01407
\(756\) 3425.56 0.164797
\(757\) 6981.59 0.335205 0.167603 0.985855i \(-0.446397\pi\)
0.167603 + 0.985855i \(0.446397\pi\)
\(758\) −31353.7 −1.50240
\(759\) 0 0
\(760\) 842.327 0.0402032
\(761\) −33895.2 −1.61459 −0.807293 0.590150i \(-0.799068\pi\)
−0.807293 + 0.590150i \(0.799068\pi\)
\(762\) −17428.0 −0.828543
\(763\) 1725.92 0.0818908
\(764\) −375.656 −0.0177889
\(765\) 1243.44 0.0587670
\(766\) −37561.7 −1.77175
\(767\) 325.711 0.0153334
\(768\) −21860.5 −1.02711
\(769\) −33303.6 −1.56172 −0.780858 0.624709i \(-0.785218\pi\)
−0.780858 + 0.624709i \(0.785218\pi\)
\(770\) 0 0
\(771\) 36140.4 1.68815
\(772\) −21955.0 −1.02355
\(773\) −2414.53 −0.112347 −0.0561736 0.998421i \(-0.517890\pi\)
−0.0561736 + 0.998421i \(0.517890\pi\)
\(774\) −50046.3 −2.32413
\(775\) −25353.5 −1.17513
\(776\) −1395.77 −0.0645687
\(777\) 6348.93 0.293136
\(778\) 35169.9 1.62070
\(779\) 4313.45 0.198389
\(780\) 6343.56 0.291200
\(781\) 0 0
\(782\) −12.1264 −0.000554524 0
\(783\) −13613.5 −0.621335
\(784\) 17764.8 0.809257
\(785\) −18671.2 −0.848923
\(786\) −71585.4 −3.24856
\(787\) 6065.42 0.274725 0.137363 0.990521i \(-0.456137\pi\)
0.137363 + 0.990521i \(0.456137\pi\)
\(788\) 36070.9 1.63068
\(789\) 51824.9 2.33842
\(790\) −3322.24 −0.149620
\(791\) −4953.87 −0.222679
\(792\) 0 0
\(793\) −5637.40 −0.252446
\(794\) 31125.0 1.39117
\(795\) 13386.4 0.597190
\(796\) 28958.6 1.28946
\(797\) 18480.2 0.821331 0.410666 0.911786i \(-0.365296\pi\)
0.410666 + 0.911786i \(0.365296\pi\)
\(798\) 2081.20 0.0923231
\(799\) 362.408 0.0160464
\(800\) −22599.6 −0.998771
\(801\) 72280.1 3.18838
\(802\) −45967.0 −2.02388
\(803\) 0 0
\(804\) −67617.0 −2.96601
\(805\) −9.11877 −0.000399248 0
\(806\) 15705.2 0.686344
\(807\) −30534.4 −1.33192
\(808\) 5579.55 0.242931
\(809\) 26647.9 1.15809 0.579043 0.815297i \(-0.303426\pi\)
0.579043 + 0.815297i \(0.303426\pi\)
\(810\) −4793.25 −0.207923
\(811\) −17176.2 −0.743698 −0.371849 0.928293i \(-0.621276\pi\)
−0.371849 + 0.928293i \(0.621276\pi\)
\(812\) −1640.02 −0.0708784
\(813\) −66709.8 −2.87776
\(814\) 0 0
\(815\) 22167.4 0.952748
\(816\) 1953.01 0.0837857
\(817\) −6864.51 −0.293952
\(818\) 29698.8 1.26943
\(819\) 1333.14 0.0568787
\(820\) −9231.44 −0.393141
\(821\) 34685.8 1.47448 0.737238 0.675633i \(-0.236130\pi\)
0.737238 + 0.675633i \(0.236130\pi\)
\(822\) 32517.0 1.37976
\(823\) 7272.88 0.308040 0.154020 0.988068i \(-0.450778\pi\)
0.154020 + 0.988068i \(0.450778\pi\)
\(824\) −572.552 −0.0242061
\(825\) 0 0
\(826\) −228.696 −0.00963360
\(827\) 27211.7 1.14419 0.572094 0.820188i \(-0.306131\pi\)
0.572094 + 0.820188i \(0.306131\pi\)
\(828\) 290.614 0.0121975
\(829\) 30947.2 1.29655 0.648276 0.761406i \(-0.275490\pi\)
0.648276 + 0.761406i \(0.275490\pi\)
\(830\) 14131.6 0.590982
\(831\) −22654.2 −0.945687
\(832\) 8535.92 0.355685
\(833\) −1464.96 −0.0609336
\(834\) −87201.9 −3.62057
\(835\) 21627.3 0.896341
\(836\) 0 0
\(837\) −49062.1 −2.02609
\(838\) 27424.7 1.13051
\(839\) 8581.68 0.353126 0.176563 0.984289i \(-0.443502\pi\)
0.176563 + 0.984289i \(0.443502\pi\)
\(840\) −598.126 −0.0245682
\(841\) −17871.4 −0.732766
\(842\) 69086.2 2.82764
\(843\) 9459.24 0.386469
\(844\) −4117.44 −0.167924
\(845\) 1039.86 0.0423342
\(846\) −16204.3 −0.658527
\(847\) 0 0
\(848\) 13317.4 0.539293
\(849\) −33970.3 −1.37321
\(850\) 1567.44 0.0632503
\(851\) 226.874 0.00913883
\(852\) 35796.7 1.43941
\(853\) −13722.2 −0.550808 −0.275404 0.961329i \(-0.588812\pi\)
−0.275404 + 0.961329i \(0.588812\pi\)
\(854\) 3958.27 0.158606
\(855\) −7625.95 −0.305032
\(856\) 2104.54 0.0840323
\(857\) −14377.6 −0.573080 −0.286540 0.958068i \(-0.592505\pi\)
−0.286540 + 0.958068i \(0.592505\pi\)
\(858\) 0 0
\(859\) −2556.76 −0.101555 −0.0507773 0.998710i \(-0.516170\pi\)
−0.0507773 + 0.998710i \(0.516170\pi\)
\(860\) 14691.1 0.582514
\(861\) −3062.93 −0.121236
\(862\) 38998.1 1.54093
\(863\) −9864.89 −0.389113 −0.194557 0.980891i \(-0.562327\pi\)
−0.194557 + 0.980891i \(0.562327\pi\)
\(864\) −43733.0 −1.72202
\(865\) −4547.52 −0.178752
\(866\) 10292.3 0.403866
\(867\) 42001.8 1.64528
\(868\) −5910.52 −0.231125
\(869\) 0 0
\(870\) 17701.0 0.689791
\(871\) −11084.1 −0.431194
\(872\) 4045.41 0.157104
\(873\) 12636.5 0.489899
\(874\) 74.3702 0.00287827
\(875\) 2869.47 0.110864
\(876\) 38606.1 1.48902
\(877\) 9690.40 0.373115 0.186557 0.982444i \(-0.440267\pi\)
0.186557 + 0.982444i \(0.440267\pi\)
\(878\) 58558.9 2.25088
\(879\) 18450.5 0.707987
\(880\) 0 0
\(881\) −8946.66 −0.342135 −0.171067 0.985259i \(-0.554722\pi\)
−0.171067 + 0.985259i \(0.554722\pi\)
\(882\) 65502.1 2.50065
\(883\) 7357.38 0.280403 0.140201 0.990123i \(-0.455225\pi\)
0.140201 + 0.990123i \(0.455225\pi\)
\(884\) −520.418 −0.0198004
\(885\) 1323.01 0.0502513
\(886\) −67279.7 −2.55113
\(887\) −7039.29 −0.266467 −0.133233 0.991085i \(-0.542536\pi\)
−0.133233 + 0.991085i \(0.542536\pi\)
\(888\) 14881.3 0.562369
\(889\) 1075.16 0.0405621
\(890\) −39586.4 −1.49094
\(891\) 0 0
\(892\) −38538.2 −1.44658
\(893\) −2222.63 −0.0832894
\(894\) −95602.8 −3.57655
\(895\) 6251.94 0.233497
\(896\) −1432.43 −0.0534085
\(897\) 75.2115 0.00279960
\(898\) 43667.4 1.62272
\(899\) 23488.9 0.871412
\(900\) −37564.5 −1.39128
\(901\) −1098.20 −0.0406065
\(902\) 0 0
\(903\) 4874.41 0.179635
\(904\) −11611.4 −0.427201
\(905\) −4077.16 −0.149756
\(906\) −121832. −4.46756
\(907\) 34483.1 1.26240 0.631198 0.775622i \(-0.282563\pi\)
0.631198 + 0.775622i \(0.282563\pi\)
\(908\) 8686.85 0.317493
\(909\) −50514.1 −1.84318
\(910\) −730.135 −0.0265975
\(911\) −10157.5 −0.369412 −0.184706 0.982794i \(-0.559133\pi\)
−0.184706 + 0.982794i \(0.559133\pi\)
\(912\) −11977.7 −0.434892
\(913\) 0 0
\(914\) −39610.7 −1.43349
\(915\) −22898.6 −0.827327
\(916\) −56204.7 −2.02735
\(917\) 4416.21 0.159036
\(918\) 3033.19 0.109052
\(919\) 27753.8 0.996208 0.498104 0.867117i \(-0.334030\pi\)
0.498104 + 0.867117i \(0.334030\pi\)
\(920\) −21.3736 −0.000765941 0
\(921\) 37195.1 1.33075
\(922\) −43757.3 −1.56298
\(923\) 5867.95 0.209259
\(924\) 0 0
\(925\) −29325.5 −1.04240
\(926\) 8601.25 0.305243
\(927\) 5183.56 0.183657
\(928\) 20937.5 0.740634
\(929\) 17784.9 0.628097 0.314048 0.949407i \(-0.398315\pi\)
0.314048 + 0.949407i \(0.398315\pi\)
\(930\) 63793.2 2.24931
\(931\) 8984.48 0.316278
\(932\) −4156.95 −0.146100
\(933\) −16587.2 −0.582038
\(934\) 55136.6 1.93161
\(935\) 0 0
\(936\) 3124.76 0.109120
\(937\) 37947.5 1.32304 0.661522 0.749926i \(-0.269911\pi\)
0.661522 + 0.749926i \(0.269911\pi\)
\(938\) 7782.63 0.270908
\(939\) 34250.6 1.19034
\(940\) 4756.76 0.165051
\(941\) 8536.63 0.295735 0.147867 0.989007i \(-0.452759\pi\)
0.147867 + 0.989007i \(0.452759\pi\)
\(942\) −108130. −3.73999
\(943\) −109.451 −0.00377966
\(944\) 1316.19 0.0453795
\(945\) 2280.89 0.0785159
\(946\) 0 0
\(947\) 39690.2 1.36194 0.680970 0.732311i \(-0.261558\pi\)
0.680970 + 0.732311i \(0.261558\pi\)
\(948\) −10312.4 −0.353303
\(949\) 6328.49 0.216472
\(950\) −9613.02 −0.328303
\(951\) −61223.4 −2.08760
\(952\) 49.0695 0.00167054
\(953\) −28989.3 −0.985367 −0.492683 0.870209i \(-0.663984\pi\)
−0.492683 + 0.870209i \(0.663984\pi\)
\(954\) 49103.6 1.66644
\(955\) −250.129 −0.00847537
\(956\) 52675.3 1.78205
\(957\) 0 0
\(958\) −8989.98 −0.303187
\(959\) −2006.02 −0.0675472
\(960\) 34672.1 1.16567
\(961\) 54861.7 1.84155
\(962\) 18165.7 0.608820
\(963\) −19053.3 −0.637574
\(964\) 26928.8 0.899707
\(965\) −14618.7 −0.487659
\(966\) −52.8093 −0.00175892
\(967\) 7443.57 0.247538 0.123769 0.992311i \(-0.460502\pi\)
0.123769 + 0.992311i \(0.460502\pi\)
\(968\) 0 0
\(969\) 987.729 0.0327455
\(970\) −6920.78 −0.229085
\(971\) 4715.89 0.155860 0.0779300 0.996959i \(-0.475169\pi\)
0.0779300 + 0.996959i \(0.475169\pi\)
\(972\) 27194.7 0.897398
\(973\) 5379.62 0.177248
\(974\) −37248.2 −1.22537
\(975\) −9721.76 −0.319329
\(976\) −22780.6 −0.747119
\(977\) −39450.6 −1.29185 −0.645925 0.763401i \(-0.723528\pi\)
−0.645925 + 0.763401i \(0.723528\pi\)
\(978\) 128377. 4.19740
\(979\) 0 0
\(980\) −19228.2 −0.626756
\(981\) −36624.8 −1.19199
\(982\) 63860.3 2.07522
\(983\) 13652.1 0.442963 0.221482 0.975165i \(-0.428911\pi\)
0.221482 + 0.975165i \(0.428911\pi\)
\(984\) −7179.22 −0.232586
\(985\) 24017.7 0.776920
\(986\) −1452.16 −0.0469030
\(987\) 1578.26 0.0508982
\(988\) 3191.69 0.102774
\(989\) 174.183 0.00560030
\(990\) 0 0
\(991\) −37372.6 −1.19796 −0.598981 0.800763i \(-0.704428\pi\)
−0.598981 + 0.800763i \(0.704428\pi\)
\(992\) 75457.7 2.41510
\(993\) −50058.3 −1.59975
\(994\) −4120.15 −0.131472
\(995\) 19281.9 0.614350
\(996\) 43865.2 1.39551
\(997\) −10266.1 −0.326109 −0.163054 0.986617i \(-0.552135\pi\)
−0.163054 + 0.986617i \(0.552135\pi\)
\(998\) −25011.0 −0.793295
\(999\) −56748.4 −1.79724
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1573.4.a.q.1.7 38
11.5 even 5 143.4.h.b.14.17 76
11.9 even 5 143.4.h.b.92.17 yes 76
11.10 odd 2 1573.4.a.r.1.32 38
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
143.4.h.b.14.17 76 11.5 even 5
143.4.h.b.92.17 yes 76 11.9 even 5
1573.4.a.q.1.7 38 1.1 even 1 trivial
1573.4.a.r.1.32 38 11.10 odd 2