Properties

Label 1568.4.a.t.1.2
Level $1568$
Weight $4$
Character 1568.1
Self dual yes
Analytic conductor $92.515$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1568,4,Mod(1,1568)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1568.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1568, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1568 = 2^{5} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1568.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,2,0,0,0,-40,0,0,0,-120,0,0,0,50,0,0,0,0,0,0,0,-248] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.5149948890\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 224)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.64575\) of defining polynomial
Character \(\chi\) \(=\) 1568.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.64575 q^{3} +1.00000 q^{5} -20.0000 q^{9} -2.64575 q^{11} -60.0000 q^{13} +2.64575 q^{15} +25.0000 q^{17} +97.8928 q^{19} +156.099 q^{23} -124.000 q^{25} -124.350 q^{27} +52.0000 q^{29} -224.889 q^{31} -7.00000 q^{33} +95.0000 q^{37} -158.745 q^{39} +64.0000 q^{41} -201.077 q^{43} -20.0000 q^{45} +436.549 q^{47} +66.1438 q^{51} +203.000 q^{53} -2.64575 q^{55} +259.000 q^{57} +150.808 q^{59} +151.000 q^{61} -60.0000 q^{65} +891.618 q^{67} +413.000 q^{69} +888.972 q^{71} +335.000 q^{73} -328.073 q^{75} +7.93725 q^{79} +211.000 q^{81} -95.2470 q^{83} +25.0000 q^{85} +137.579 q^{87} +1263.00 q^{89} -595.000 q^{93} +97.8928 q^{95} -64.0000 q^{97} +52.9150 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - 40 q^{9} - 120 q^{13} + 50 q^{17} - 248 q^{25} + 104 q^{29} - 14 q^{33} + 190 q^{37} + 128 q^{41} - 40 q^{45} + 406 q^{53} + 518 q^{57} + 302 q^{61} - 120 q^{65} + 826 q^{69} + 670 q^{73}+ \cdots - 128 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.64575 0.509175 0.254588 0.967050i \(-0.418060\pi\)
0.254588 + 0.967050i \(0.418060\pi\)
\(4\) 0 0
\(5\) 1.00000 0.0894427 0.0447214 0.998999i \(-0.485760\pi\)
0.0447214 + 0.998999i \(0.485760\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −20.0000 −0.740741
\(10\) 0 0
\(11\) −2.64575 −0.0725204 −0.0362602 0.999342i \(-0.511545\pi\)
−0.0362602 + 0.999342i \(0.511545\pi\)
\(12\) 0 0
\(13\) −60.0000 −1.28008 −0.640039 0.768343i \(-0.721082\pi\)
−0.640039 + 0.768343i \(0.721082\pi\)
\(14\) 0 0
\(15\) 2.64575 0.0455420
\(16\) 0 0
\(17\) 25.0000 0.356670 0.178335 0.983970i \(-0.442929\pi\)
0.178335 + 0.983970i \(0.442929\pi\)
\(18\) 0 0
\(19\) 97.8928 1.18201 0.591004 0.806669i \(-0.298732\pi\)
0.591004 + 0.806669i \(0.298732\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 156.099 1.41517 0.707586 0.706627i \(-0.249784\pi\)
0.707586 + 0.706627i \(0.249784\pi\)
\(24\) 0 0
\(25\) −124.000 −0.992000
\(26\) 0 0
\(27\) −124.350 −0.886342
\(28\) 0 0
\(29\) 52.0000 0.332971 0.166485 0.986044i \(-0.446758\pi\)
0.166485 + 0.986044i \(0.446758\pi\)
\(30\) 0 0
\(31\) −224.889 −1.30294 −0.651471 0.758673i \(-0.725848\pi\)
−0.651471 + 0.758673i \(0.725848\pi\)
\(32\) 0 0
\(33\) −7.00000 −0.0369256
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 95.0000 0.422106 0.211053 0.977475i \(-0.432311\pi\)
0.211053 + 0.977475i \(0.432311\pi\)
\(38\) 0 0
\(39\) −158.745 −0.651783
\(40\) 0 0
\(41\) 64.0000 0.243783 0.121892 0.992543i \(-0.461104\pi\)
0.121892 + 0.992543i \(0.461104\pi\)
\(42\) 0 0
\(43\) −201.077 −0.713116 −0.356558 0.934273i \(-0.616050\pi\)
−0.356558 + 0.934273i \(0.616050\pi\)
\(44\) 0 0
\(45\) −20.0000 −0.0662539
\(46\) 0 0
\(47\) 436.549 1.35483 0.677417 0.735599i \(-0.263099\pi\)
0.677417 + 0.735599i \(0.263099\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 66.1438 0.181607
\(52\) 0 0
\(53\) 203.000 0.526117 0.263058 0.964780i \(-0.415269\pi\)
0.263058 + 0.964780i \(0.415269\pi\)
\(54\) 0 0
\(55\) −2.64575 −0.00648642
\(56\) 0 0
\(57\) 259.000 0.601849
\(58\) 0 0
\(59\) 150.808 0.332771 0.166386 0.986061i \(-0.446790\pi\)
0.166386 + 0.986061i \(0.446790\pi\)
\(60\) 0 0
\(61\) 151.000 0.316944 0.158472 0.987363i \(-0.449343\pi\)
0.158472 + 0.987363i \(0.449343\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −60.0000 −0.114494
\(66\) 0 0
\(67\) 891.618 1.62580 0.812899 0.582404i \(-0.197888\pi\)
0.812899 + 0.582404i \(0.197888\pi\)
\(68\) 0 0
\(69\) 413.000 0.720570
\(70\) 0 0
\(71\) 888.972 1.48594 0.742969 0.669326i \(-0.233417\pi\)
0.742969 + 0.669326i \(0.233417\pi\)
\(72\) 0 0
\(73\) 335.000 0.537107 0.268553 0.963265i \(-0.413454\pi\)
0.268553 + 0.963265i \(0.413454\pi\)
\(74\) 0 0
\(75\) −328.073 −0.505102
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 7.93725 0.0113039 0.00565197 0.999984i \(-0.498201\pi\)
0.00565197 + 0.999984i \(0.498201\pi\)
\(80\) 0 0
\(81\) 211.000 0.289438
\(82\) 0 0
\(83\) −95.2470 −0.125961 −0.0629803 0.998015i \(-0.520061\pi\)
−0.0629803 + 0.998015i \(0.520061\pi\)
\(84\) 0 0
\(85\) 25.0000 0.0319015
\(86\) 0 0
\(87\) 137.579 0.169541
\(88\) 0 0
\(89\) 1263.00 1.50424 0.752122 0.659024i \(-0.229030\pi\)
0.752122 + 0.659024i \(0.229030\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −595.000 −0.663426
\(94\) 0 0
\(95\) 97.8928 0.105722
\(96\) 0 0
\(97\) −64.0000 −0.0669919 −0.0334960 0.999439i \(-0.510664\pi\)
−0.0334960 + 0.999439i \(0.510664\pi\)
\(98\) 0 0
\(99\) 52.9150 0.0537188
\(100\) 0 0
\(101\) 1109.00 1.09257 0.546285 0.837599i \(-0.316041\pi\)
0.546285 + 0.837599i \(0.316041\pi\)
\(102\) 0 0
\(103\) −1029.20 −0.984561 −0.492281 0.870437i \(-0.663837\pi\)
−0.492281 + 0.870437i \(0.663837\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1595.39 −1.44142 −0.720710 0.693236i \(-0.756184\pi\)
−0.720710 + 0.693236i \(0.756184\pi\)
\(108\) 0 0
\(109\) −1907.00 −1.67576 −0.837878 0.545857i \(-0.816204\pi\)
−0.837878 + 0.545857i \(0.816204\pi\)
\(110\) 0 0
\(111\) 251.346 0.214926
\(112\) 0 0
\(113\) 1288.00 1.07226 0.536128 0.844137i \(-0.319887\pi\)
0.536128 + 0.844137i \(0.319887\pi\)
\(114\) 0 0
\(115\) 156.099 0.126577
\(116\) 0 0
\(117\) 1200.00 0.948205
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1324.00 −0.994741
\(122\) 0 0
\(123\) 169.328 0.124128
\(124\) 0 0
\(125\) −249.000 −0.178170
\(126\) 0 0
\(127\) −105.830 −0.0739441 −0.0369720 0.999316i \(-0.511771\pi\)
−0.0369720 + 0.999316i \(0.511771\pi\)
\(128\) 0 0
\(129\) −532.000 −0.363101
\(130\) 0 0
\(131\) 939.242 0.626427 0.313213 0.949683i \(-0.398594\pi\)
0.313213 + 0.949683i \(0.398594\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −124.350 −0.0792768
\(136\) 0 0
\(137\) −255.000 −0.159023 −0.0795114 0.996834i \(-0.525336\pi\)
−0.0795114 + 0.996834i \(0.525336\pi\)
\(138\) 0 0
\(139\) 497.401 0.303518 0.151759 0.988418i \(-0.451506\pi\)
0.151759 + 0.988418i \(0.451506\pi\)
\(140\) 0 0
\(141\) 1155.00 0.689848
\(142\) 0 0
\(143\) 158.745 0.0928317
\(144\) 0 0
\(145\) 52.0000 0.0297818
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 777.000 0.427210 0.213605 0.976920i \(-0.431479\pi\)
0.213605 + 0.976920i \(0.431479\pi\)
\(150\) 0 0
\(151\) 1997.54 1.07654 0.538270 0.842772i \(-0.319078\pi\)
0.538270 + 0.842772i \(0.319078\pi\)
\(152\) 0 0
\(153\) −500.000 −0.264200
\(154\) 0 0
\(155\) −224.889 −0.116539
\(156\) 0 0
\(157\) 2771.00 1.40860 0.704299 0.709903i \(-0.251261\pi\)
0.704299 + 0.709903i \(0.251261\pi\)
\(158\) 0 0
\(159\) 537.088 0.267886
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1891.71 0.909020 0.454510 0.890742i \(-0.349814\pi\)
0.454510 + 0.890742i \(0.349814\pi\)
\(164\) 0 0
\(165\) −7.00000 −0.00330272
\(166\) 0 0
\(167\) −841.349 −0.389853 −0.194927 0.980818i \(-0.562447\pi\)
−0.194927 + 0.980818i \(0.562447\pi\)
\(168\) 0 0
\(169\) 1403.00 0.638598
\(170\) 0 0
\(171\) −1957.86 −0.875561
\(172\) 0 0
\(173\) 3135.00 1.37774 0.688872 0.724883i \(-0.258106\pi\)
0.688872 + 0.724883i \(0.258106\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 399.000 0.169439
\(178\) 0 0
\(179\) −4616.84 −1.92781 −0.963907 0.266241i \(-0.914218\pi\)
−0.963907 + 0.266241i \(0.914218\pi\)
\(180\) 0 0
\(181\) 3074.00 1.26237 0.631184 0.775633i \(-0.282569\pi\)
0.631184 + 0.775633i \(0.282569\pi\)
\(182\) 0 0
\(183\) 399.508 0.161380
\(184\) 0 0
\(185\) 95.0000 0.0377543
\(186\) 0 0
\(187\) −66.1438 −0.0258658
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3039.97 1.15165 0.575823 0.817574i \(-0.304682\pi\)
0.575823 + 0.817574i \(0.304682\pi\)
\(192\) 0 0
\(193\) −1967.00 −0.733615 −0.366808 0.930297i \(-0.619549\pi\)
−0.366808 + 0.930297i \(0.619549\pi\)
\(194\) 0 0
\(195\) −158.745 −0.0582973
\(196\) 0 0
\(197\) 3876.00 1.40179 0.700897 0.713262i \(-0.252783\pi\)
0.700897 + 0.713262i \(0.252783\pi\)
\(198\) 0 0
\(199\) 3796.65 1.35245 0.676225 0.736695i \(-0.263615\pi\)
0.676225 + 0.736695i \(0.263615\pi\)
\(200\) 0 0
\(201\) 2359.00 0.827816
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 64.0000 0.0218047
\(206\) 0 0
\(207\) −3121.99 −1.04828
\(208\) 0 0
\(209\) −259.000 −0.0857196
\(210\) 0 0
\(211\) −3058.49 −0.997891 −0.498946 0.866633i \(-0.666279\pi\)
−0.498946 + 0.866633i \(0.666279\pi\)
\(212\) 0 0
\(213\) 2352.00 0.756603
\(214\) 0 0
\(215\) −201.077 −0.0637830
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 886.327 0.273481
\(220\) 0 0
\(221\) −1500.00 −0.456565
\(222\) 0 0
\(223\) −3259.57 −0.978819 −0.489410 0.872054i \(-0.662788\pi\)
−0.489410 + 0.872054i \(0.662788\pi\)
\(224\) 0 0
\(225\) 2480.00 0.734815
\(226\) 0 0
\(227\) −5780.97 −1.69029 −0.845146 0.534536i \(-0.820486\pi\)
−0.845146 + 0.534536i \(0.820486\pi\)
\(228\) 0 0
\(229\) 5865.00 1.69245 0.846223 0.532829i \(-0.178871\pi\)
0.846223 + 0.532829i \(0.178871\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6695.00 −1.88242 −0.941210 0.337821i \(-0.890310\pi\)
−0.941210 + 0.337821i \(0.890310\pi\)
\(234\) 0 0
\(235\) 436.549 0.121180
\(236\) 0 0
\(237\) 21.0000 0.00575568
\(238\) 0 0
\(239\) −3413.02 −0.923723 −0.461862 0.886952i \(-0.652818\pi\)
−0.461862 + 0.886952i \(0.652818\pi\)
\(240\) 0 0
\(241\) 1935.00 0.517196 0.258598 0.965985i \(-0.416739\pi\)
0.258598 + 0.965985i \(0.416739\pi\)
\(242\) 0 0
\(243\) 3915.71 1.03372
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −5873.57 −1.51306
\(248\) 0 0
\(249\) −252.000 −0.0641359
\(250\) 0 0
\(251\) 5529.62 1.39054 0.695272 0.718747i \(-0.255284\pi\)
0.695272 + 0.718747i \(0.255284\pi\)
\(252\) 0 0
\(253\) −413.000 −0.102629
\(254\) 0 0
\(255\) 66.1438 0.0162435
\(256\) 0 0
\(257\) 4185.00 1.01577 0.507885 0.861425i \(-0.330427\pi\)
0.507885 + 0.861425i \(0.330427\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1040.00 −0.246645
\(262\) 0 0
\(263\) 2277.99 0.534095 0.267048 0.963683i \(-0.413952\pi\)
0.267048 + 0.963683i \(0.413952\pi\)
\(264\) 0 0
\(265\) 203.000 0.0470573
\(266\) 0 0
\(267\) 3341.58 0.765924
\(268\) 0 0
\(269\) 5947.00 1.34794 0.673968 0.738760i \(-0.264588\pi\)
0.673968 + 0.738760i \(0.264588\pi\)
\(270\) 0 0
\(271\) −3251.63 −0.728865 −0.364432 0.931230i \(-0.618737\pi\)
−0.364432 + 0.931230i \(0.618737\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 328.073 0.0719402
\(276\) 0 0
\(277\) −3285.00 −0.712551 −0.356275 0.934381i \(-0.615953\pi\)
−0.356275 + 0.934381i \(0.615953\pi\)
\(278\) 0 0
\(279\) 4497.78 0.965143
\(280\) 0 0
\(281\) 5520.00 1.17187 0.585935 0.810358i \(-0.300727\pi\)
0.585935 + 0.810358i \(0.300727\pi\)
\(282\) 0 0
\(283\) 8611.92 1.80892 0.904462 0.426554i \(-0.140273\pi\)
0.904462 + 0.426554i \(0.140273\pi\)
\(284\) 0 0
\(285\) 259.000 0.0538310
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −4288.00 −0.872786
\(290\) 0 0
\(291\) −169.328 −0.0341106
\(292\) 0 0
\(293\) 3630.00 0.723778 0.361889 0.932221i \(-0.382132\pi\)
0.361889 + 0.932221i \(0.382132\pi\)
\(294\) 0 0
\(295\) 150.808 0.0297640
\(296\) 0 0
\(297\) 329.000 0.0642778
\(298\) 0 0
\(299\) −9365.96 −1.81153
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 2934.14 0.556310
\(304\) 0 0
\(305\) 151.000 0.0283483
\(306\) 0 0
\(307\) −4942.26 −0.918794 −0.459397 0.888231i \(-0.651935\pi\)
−0.459397 + 0.888231i \(0.651935\pi\)
\(308\) 0 0
\(309\) −2723.00 −0.501314
\(310\) 0 0
\(311\) −1828.21 −0.333339 −0.166670 0.986013i \(-0.553301\pi\)
−0.166670 + 0.986013i \(0.553301\pi\)
\(312\) 0 0
\(313\) 5335.00 0.963425 0.481713 0.876329i \(-0.340015\pi\)
0.481713 + 0.876329i \(0.340015\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7135.00 1.26417 0.632084 0.774900i \(-0.282200\pi\)
0.632084 + 0.774900i \(0.282200\pi\)
\(318\) 0 0
\(319\) −137.579 −0.0241472
\(320\) 0 0
\(321\) −4221.00 −0.733935
\(322\) 0 0
\(323\) 2447.32 0.421587
\(324\) 0 0
\(325\) 7440.00 1.26984
\(326\) 0 0
\(327\) −5045.45 −0.853254
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −10172.9 −1.68929 −0.844643 0.535329i \(-0.820187\pi\)
−0.844643 + 0.535329i \(0.820187\pi\)
\(332\) 0 0
\(333\) −1900.00 −0.312671
\(334\) 0 0
\(335\) 891.618 0.145416
\(336\) 0 0
\(337\) 10384.0 1.67849 0.839247 0.543750i \(-0.182996\pi\)
0.839247 + 0.543750i \(0.182996\pi\)
\(338\) 0 0
\(339\) 3407.73 0.545966
\(340\) 0 0
\(341\) 595.000 0.0944899
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 413.000 0.0644498
\(346\) 0 0
\(347\) 1949.92 0.301663 0.150832 0.988559i \(-0.451805\pi\)
0.150832 + 0.988559i \(0.451805\pi\)
\(348\) 0 0
\(349\) 6348.00 0.973641 0.486820 0.873502i \(-0.338157\pi\)
0.486820 + 0.873502i \(0.338157\pi\)
\(350\) 0 0
\(351\) 7461.02 1.13459
\(352\) 0 0
\(353\) −10527.0 −1.58724 −0.793620 0.608414i \(-0.791806\pi\)
−0.793620 + 0.608414i \(0.791806\pi\)
\(354\) 0 0
\(355\) 888.972 0.132906
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −833.412 −0.122523 −0.0612615 0.998122i \(-0.519512\pi\)
−0.0612615 + 0.998122i \(0.519512\pi\)
\(360\) 0 0
\(361\) 2724.00 0.397142
\(362\) 0 0
\(363\) −3502.97 −0.506497
\(364\) 0 0
\(365\) 335.000 0.0480403
\(366\) 0 0
\(367\) −2611.36 −0.371422 −0.185711 0.982604i \(-0.559459\pi\)
−0.185711 + 0.982604i \(0.559459\pi\)
\(368\) 0 0
\(369\) −1280.00 −0.180580
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 4655.00 0.646184 0.323092 0.946368i \(-0.395278\pi\)
0.323092 + 0.946368i \(0.395278\pi\)
\(374\) 0 0
\(375\) −658.792 −0.0907197
\(376\) 0 0
\(377\) −3120.00 −0.426229
\(378\) 0 0
\(379\) −7307.57 −0.990407 −0.495204 0.868777i \(-0.664907\pi\)
−0.495204 + 0.868777i \(0.664907\pi\)
\(380\) 0 0
\(381\) −280.000 −0.0376505
\(382\) 0 0
\(383\) 12353.0 1.64807 0.824033 0.566541i \(-0.191719\pi\)
0.824033 + 0.566541i \(0.191719\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4021.54 0.528234
\(388\) 0 0
\(389\) −6955.00 −0.906510 −0.453255 0.891381i \(-0.649737\pi\)
−0.453255 + 0.891381i \(0.649737\pi\)
\(390\) 0 0
\(391\) 3902.48 0.504750
\(392\) 0 0
\(393\) 2485.00 0.318961
\(394\) 0 0
\(395\) 7.93725 0.00101105
\(396\) 0 0
\(397\) 241.000 0.0304671 0.0152336 0.999884i \(-0.495151\pi\)
0.0152336 + 0.999884i \(0.495151\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −8159.00 −1.01606 −0.508031 0.861339i \(-0.669627\pi\)
−0.508031 + 0.861339i \(0.669627\pi\)
\(402\) 0 0
\(403\) 13493.3 1.66787
\(404\) 0 0
\(405\) 211.000 0.0258881
\(406\) 0 0
\(407\) −251.346 −0.0306112
\(408\) 0 0
\(409\) −4327.00 −0.523121 −0.261560 0.965187i \(-0.584237\pi\)
−0.261560 + 0.965187i \(0.584237\pi\)
\(410\) 0 0
\(411\) −674.667 −0.0809704
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −95.2470 −0.0112662
\(416\) 0 0
\(417\) 1316.00 0.154544
\(418\) 0 0
\(419\) 2381.18 0.277633 0.138816 0.990318i \(-0.455670\pi\)
0.138816 + 0.990318i \(0.455670\pi\)
\(420\) 0 0
\(421\) −964.000 −0.111597 −0.0557987 0.998442i \(-0.517770\pi\)
−0.0557987 + 0.998442i \(0.517770\pi\)
\(422\) 0 0
\(423\) −8730.98 −1.00358
\(424\) 0 0
\(425\) −3100.00 −0.353817
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 420.000 0.0472676
\(430\) 0 0
\(431\) −9707.26 −1.08488 −0.542439 0.840095i \(-0.682499\pi\)
−0.542439 + 0.840095i \(0.682499\pi\)
\(432\) 0 0
\(433\) −10392.0 −1.15337 −0.576683 0.816968i \(-0.695653\pi\)
−0.576683 + 0.816968i \(0.695653\pi\)
\(434\) 0 0
\(435\) 137.579 0.0151642
\(436\) 0 0
\(437\) 15281.0 1.67274
\(438\) 0 0
\(439\) 7632.99 0.829847 0.414924 0.909856i \(-0.363808\pi\)
0.414924 + 0.909856i \(0.363808\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8543.13 0.916245 0.458122 0.888889i \(-0.348522\pi\)
0.458122 + 0.888889i \(0.348522\pi\)
\(444\) 0 0
\(445\) 1263.00 0.134544
\(446\) 0 0
\(447\) 2055.75 0.217525
\(448\) 0 0
\(449\) −13608.0 −1.43029 −0.715146 0.698975i \(-0.753640\pi\)
−0.715146 + 0.698975i \(0.753640\pi\)
\(450\) 0 0
\(451\) −169.328 −0.0176793
\(452\) 0 0
\(453\) 5285.00 0.548148
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −2625.00 −0.268692 −0.134346 0.990934i \(-0.542893\pi\)
−0.134346 + 0.990934i \(0.542893\pi\)
\(458\) 0 0
\(459\) −3108.76 −0.316132
\(460\) 0 0
\(461\) 5860.00 0.592033 0.296017 0.955183i \(-0.404342\pi\)
0.296017 + 0.955183i \(0.404342\pi\)
\(462\) 0 0
\(463\) −11260.3 −1.13026 −0.565131 0.825001i \(-0.691174\pi\)
−0.565131 + 0.825001i \(0.691174\pi\)
\(464\) 0 0
\(465\) −595.000 −0.0593386
\(466\) 0 0
\(467\) 8643.67 0.856491 0.428246 0.903662i \(-0.359132\pi\)
0.428246 + 0.903662i \(0.359132\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 7331.38 0.717223
\(472\) 0 0
\(473\) 532.000 0.0517154
\(474\) 0 0
\(475\) −12138.7 −1.17255
\(476\) 0 0
\(477\) −4060.00 −0.389716
\(478\) 0 0
\(479\) −5595.76 −0.533772 −0.266886 0.963728i \(-0.585995\pi\)
−0.266886 + 0.963728i \(0.585995\pi\)
\(480\) 0 0
\(481\) −5700.00 −0.540328
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −64.0000 −0.00599194
\(486\) 0 0
\(487\) 542.379 0.0504672 0.0252336 0.999682i \(-0.491967\pi\)
0.0252336 + 0.999682i \(0.491967\pi\)
\(488\) 0 0
\(489\) 5005.00 0.462851
\(490\) 0 0
\(491\) 15001.4 1.37883 0.689414 0.724368i \(-0.257868\pi\)
0.689414 + 0.724368i \(0.257868\pi\)
\(492\) 0 0
\(493\) 1300.00 0.118761
\(494\) 0 0
\(495\) 52.9150 0.00480475
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 11077.8 0.993805 0.496902 0.867806i \(-0.334471\pi\)
0.496902 + 0.867806i \(0.334471\pi\)
\(500\) 0 0
\(501\) −2226.00 −0.198504
\(502\) 0 0
\(503\) −18477.9 −1.63795 −0.818976 0.573827i \(-0.805458\pi\)
−0.818976 + 0.573827i \(0.805458\pi\)
\(504\) 0 0
\(505\) 1109.00 0.0977225
\(506\) 0 0
\(507\) 3711.99 0.325158
\(508\) 0 0
\(509\) 1593.00 0.138720 0.0693600 0.997592i \(-0.477904\pi\)
0.0693600 + 0.997592i \(0.477904\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −12173.0 −1.04766
\(514\) 0 0
\(515\) −1029.20 −0.0880618
\(516\) 0 0
\(517\) −1155.00 −0.0982531
\(518\) 0 0
\(519\) 8294.43 0.701513
\(520\) 0 0
\(521\) −19585.0 −1.64690 −0.823450 0.567389i \(-0.807953\pi\)
−0.823450 + 0.567389i \(0.807953\pi\)
\(522\) 0 0
\(523\) 3082.30 0.257705 0.128852 0.991664i \(-0.458871\pi\)
0.128852 + 0.991664i \(0.458871\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5622.22 −0.464721
\(528\) 0 0
\(529\) 12200.0 1.00271
\(530\) 0 0
\(531\) −3016.16 −0.246497
\(532\) 0 0
\(533\) −3840.00 −0.312062
\(534\) 0 0
\(535\) −1595.39 −0.128925
\(536\) 0 0
\(537\) −12215.0 −0.981594
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 18529.0 1.47250 0.736251 0.676708i \(-0.236594\pi\)
0.736251 + 0.676708i \(0.236594\pi\)
\(542\) 0 0
\(543\) 8133.04 0.642766
\(544\) 0 0
\(545\) −1907.00 −0.149884
\(546\) 0 0
\(547\) 7201.74 0.562932 0.281466 0.959571i \(-0.409179\pi\)
0.281466 + 0.959571i \(0.409179\pi\)
\(548\) 0 0
\(549\) −3020.00 −0.234773
\(550\) 0 0
\(551\) 5090.43 0.393574
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 251.346 0.0192235
\(556\) 0 0
\(557\) 13221.0 1.00573 0.502865 0.864365i \(-0.332279\pi\)
0.502865 + 0.864365i \(0.332279\pi\)
\(558\) 0 0
\(559\) 12064.6 0.912843
\(560\) 0 0
\(561\) −175.000 −0.0131702
\(562\) 0 0
\(563\) −1775.30 −0.132895 −0.0664475 0.997790i \(-0.521167\pi\)
−0.0664475 + 0.997790i \(0.521167\pi\)
\(564\) 0 0
\(565\) 1288.00 0.0959054
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5415.00 0.398961 0.199480 0.979902i \(-0.436075\pi\)
0.199480 + 0.979902i \(0.436075\pi\)
\(570\) 0 0
\(571\) −7410.75 −0.543135 −0.271568 0.962419i \(-0.587542\pi\)
−0.271568 + 0.962419i \(0.587542\pi\)
\(572\) 0 0
\(573\) 8043.00 0.586389
\(574\) 0 0
\(575\) −19356.3 −1.40385
\(576\) 0 0
\(577\) −16201.0 −1.16890 −0.584451 0.811429i \(-0.698690\pi\)
−0.584451 + 0.811429i \(0.698690\pi\)
\(578\) 0 0
\(579\) −5204.19 −0.373539
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −537.088 −0.0381542
\(584\) 0 0
\(585\) 1200.00 0.0848101
\(586\) 0 0
\(587\) 24288.0 1.70779 0.853895 0.520445i \(-0.174234\pi\)
0.853895 + 0.520445i \(0.174234\pi\)
\(588\) 0 0
\(589\) −22015.0 −1.54009
\(590\) 0 0
\(591\) 10254.9 0.713759
\(592\) 0 0
\(593\) −24567.0 −1.70126 −0.850629 0.525767i \(-0.823778\pi\)
−0.850629 + 0.525767i \(0.823778\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 10045.0 0.688634
\(598\) 0 0
\(599\) 15358.6 1.04764 0.523819 0.851830i \(-0.324507\pi\)
0.523819 + 0.851830i \(0.324507\pi\)
\(600\) 0 0
\(601\) −9680.00 −0.656997 −0.328499 0.944504i \(-0.606543\pi\)
−0.328499 + 0.944504i \(0.606543\pi\)
\(602\) 0 0
\(603\) −17832.4 −1.20430
\(604\) 0 0
\(605\) −1324.00 −0.0889723
\(606\) 0 0
\(607\) −20179.1 −1.34933 −0.674667 0.738122i \(-0.735713\pi\)
−0.674667 + 0.738122i \(0.735713\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −26192.9 −1.73429
\(612\) 0 0
\(613\) 605.000 0.0398625 0.0199313 0.999801i \(-0.493655\pi\)
0.0199313 + 0.999801i \(0.493655\pi\)
\(614\) 0 0
\(615\) 169.328 0.0111024
\(616\) 0 0
\(617\) 5400.00 0.352343 0.176172 0.984359i \(-0.443629\pi\)
0.176172 + 0.984359i \(0.443629\pi\)
\(618\) 0 0
\(619\) −17586.3 −1.14193 −0.570964 0.820975i \(-0.693430\pi\)
−0.570964 + 0.820975i \(0.693430\pi\)
\(620\) 0 0
\(621\) −19411.0 −1.25433
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 15251.0 0.976064
\(626\) 0 0
\(627\) −685.250 −0.0436463
\(628\) 0 0
\(629\) 2375.00 0.150552
\(630\) 0 0
\(631\) 11175.7 0.705065 0.352532 0.935800i \(-0.385321\pi\)
0.352532 + 0.935800i \(0.385321\pi\)
\(632\) 0 0
\(633\) −8092.00 −0.508101
\(634\) 0 0
\(635\) −105.830 −0.00661376
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −17779.4 −1.10070
\(640\) 0 0
\(641\) 10559.0 0.650632 0.325316 0.945605i \(-0.394529\pi\)
0.325316 + 0.945605i \(0.394529\pi\)
\(642\) 0 0
\(643\) 3756.97 0.230420 0.115210 0.993341i \(-0.463246\pi\)
0.115210 + 0.993341i \(0.463246\pi\)
\(644\) 0 0
\(645\) −532.000 −0.0324767
\(646\) 0 0
\(647\) 18554.7 1.12745 0.563724 0.825963i \(-0.309368\pi\)
0.563724 + 0.825963i \(0.309368\pi\)
\(648\) 0 0
\(649\) −399.000 −0.0241327
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 4175.00 0.250200 0.125100 0.992144i \(-0.460075\pi\)
0.125100 + 0.992144i \(0.460075\pi\)
\(654\) 0 0
\(655\) 939.242 0.0560293
\(656\) 0 0
\(657\) −6700.00 −0.397857
\(658\) 0 0
\(659\) 14530.5 0.858917 0.429459 0.903086i \(-0.358704\pi\)
0.429459 + 0.903086i \(0.358704\pi\)
\(660\) 0 0
\(661\) 12531.0 0.737367 0.368683 0.929555i \(-0.379809\pi\)
0.368683 + 0.929555i \(0.379809\pi\)
\(662\) 0 0
\(663\) −3968.63 −0.232472
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 8117.17 0.471211
\(668\) 0 0
\(669\) −8624.00 −0.498390
\(670\) 0 0
\(671\) −399.508 −0.0229849
\(672\) 0 0
\(673\) −20800.0 −1.19135 −0.595677 0.803224i \(-0.703116\pi\)
−0.595677 + 0.803224i \(0.703116\pi\)
\(674\) 0 0
\(675\) 15419.4 0.879251
\(676\) 0 0
\(677\) −24975.0 −1.41782 −0.708912 0.705297i \(-0.750814\pi\)
−0.708912 + 0.705297i \(0.750814\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −15295.0 −0.860654
\(682\) 0 0
\(683\) −12173.1 −0.681978 −0.340989 0.940067i \(-0.610762\pi\)
−0.340989 + 0.940067i \(0.610762\pi\)
\(684\) 0 0
\(685\) −255.000 −0.0142234
\(686\) 0 0
\(687\) 15517.3 0.861751
\(688\) 0 0
\(689\) −12180.0 −0.673470
\(690\) 0 0
\(691\) −17200.0 −0.946917 −0.473459 0.880816i \(-0.656995\pi\)
−0.473459 + 0.880816i \(0.656995\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 497.401 0.0271475
\(696\) 0 0
\(697\) 1600.00 0.0869502
\(698\) 0 0
\(699\) −17713.3 −0.958482
\(700\) 0 0
\(701\) −25386.0 −1.36778 −0.683892 0.729584i \(-0.739714\pi\)
−0.683892 + 0.729584i \(0.739714\pi\)
\(702\) 0 0
\(703\) 9299.82 0.498932
\(704\) 0 0
\(705\) 1155.00 0.0617019
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 8543.00 0.452523 0.226262 0.974067i \(-0.427350\pi\)
0.226262 + 0.974067i \(0.427350\pi\)
\(710\) 0 0
\(711\) −158.745 −0.00837328
\(712\) 0 0
\(713\) −35105.0 −1.84389
\(714\) 0 0
\(715\) 158.745 0.00830312
\(716\) 0 0
\(717\) −9030.00 −0.470337
\(718\) 0 0
\(719\) −23528.7 −1.22040 −0.610202 0.792245i \(-0.708912\pi\)
−0.610202 + 0.792245i \(0.708912\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 5119.53 0.263343
\(724\) 0 0
\(725\) −6448.00 −0.330307
\(726\) 0 0
\(727\) 5418.50 0.276425 0.138213 0.990403i \(-0.455864\pi\)
0.138213 + 0.990403i \(0.455864\pi\)
\(728\) 0 0
\(729\) 4663.00 0.236905
\(730\) 0 0
\(731\) −5026.93 −0.254347
\(732\) 0 0
\(733\) −30953.0 −1.55972 −0.779860 0.625954i \(-0.784710\pi\)
−0.779860 + 0.625954i \(0.784710\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2359.00 −0.117904
\(738\) 0 0
\(739\) −4638.00 −0.230868 −0.115434 0.993315i \(-0.536826\pi\)
−0.115434 + 0.993315i \(0.536826\pi\)
\(740\) 0 0
\(741\) −15540.0 −0.770413
\(742\) 0 0
\(743\) −36045.7 −1.77980 −0.889898 0.456159i \(-0.849225\pi\)
−0.889898 + 0.456159i \(0.849225\pi\)
\(744\) 0 0
\(745\) 777.000 0.0382108
\(746\) 0 0
\(747\) 1904.94 0.0933041
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −3584.99 −0.174192 −0.0870960 0.996200i \(-0.527759\pi\)
−0.0870960 + 0.996200i \(0.527759\pi\)
\(752\) 0 0
\(753\) 14630.0 0.708030
\(754\) 0 0
\(755\) 1997.54 0.0962887
\(756\) 0 0
\(757\) −8900.00 −0.427313 −0.213657 0.976909i \(-0.568537\pi\)
−0.213657 + 0.976909i \(0.568537\pi\)
\(758\) 0 0
\(759\) −1092.70 −0.0522560
\(760\) 0 0
\(761\) 1593.00 0.0758820 0.0379410 0.999280i \(-0.487920\pi\)
0.0379410 + 0.999280i \(0.487920\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −500.000 −0.0236308
\(766\) 0 0
\(767\) −9048.47 −0.425973
\(768\) 0 0
\(769\) 26240.0 1.23048 0.615240 0.788340i \(-0.289059\pi\)
0.615240 + 0.788340i \(0.289059\pi\)
\(770\) 0 0
\(771\) 11072.5 0.517205
\(772\) 0 0
\(773\) −31515.0 −1.46639 −0.733193 0.680021i \(-0.761971\pi\)
−0.733193 + 0.680021i \(0.761971\pi\)
\(774\) 0 0
\(775\) 27886.2 1.29252
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 6265.14 0.288154
\(780\) 0 0
\(781\) −2352.00 −0.107761
\(782\) 0 0
\(783\) −6466.22 −0.295126
\(784\) 0 0
\(785\) 2771.00 0.125989
\(786\) 0 0
\(787\) −13353.1 −0.604812 −0.302406 0.953179i \(-0.597790\pi\)
−0.302406 + 0.953179i \(0.597790\pi\)
\(788\) 0 0
\(789\) 6027.00 0.271948
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −9060.00 −0.405713
\(794\) 0 0
\(795\) 537.088 0.0239604
\(796\) 0 0
\(797\) −2460.00 −0.109332 −0.0546660 0.998505i \(-0.517409\pi\)
−0.0546660 + 0.998505i \(0.517409\pi\)
\(798\) 0 0
\(799\) 10913.7 0.483229
\(800\) 0 0
\(801\) −25260.0 −1.11425
\(802\) 0 0
\(803\) −886.327 −0.0389512
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 15734.3 0.686336
\(808\) 0 0
\(809\) 5143.00 0.223508 0.111754 0.993736i \(-0.464353\pi\)
0.111754 + 0.993736i \(0.464353\pi\)
\(810\) 0 0
\(811\) 40691.7 1.76187 0.880935 0.473236i \(-0.156914\pi\)
0.880935 + 0.473236i \(0.156914\pi\)
\(812\) 0 0
\(813\) −8603.00 −0.371120
\(814\) 0 0
\(815\) 1891.71 0.0813053
\(816\) 0 0
\(817\) −19684.0 −0.842908
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 11345.0 0.482269 0.241135 0.970492i \(-0.422480\pi\)
0.241135 + 0.970492i \(0.422480\pi\)
\(822\) 0 0
\(823\) −29132.4 −1.23389 −0.616944 0.787007i \(-0.711630\pi\)
−0.616944 + 0.787007i \(0.711630\pi\)
\(824\) 0 0
\(825\) 868.000 0.0366302
\(826\) 0 0
\(827\) −37326.3 −1.56948 −0.784741 0.619824i \(-0.787204\pi\)
−0.784741 + 0.619824i \(0.787204\pi\)
\(828\) 0 0
\(829\) 17965.0 0.752654 0.376327 0.926487i \(-0.377187\pi\)
0.376327 + 0.926487i \(0.377187\pi\)
\(830\) 0 0
\(831\) −8691.29 −0.362813
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −841.349 −0.0348696
\(836\) 0 0
\(837\) 27965.0 1.15485
\(838\) 0 0
\(839\) −11662.5 −0.479897 −0.239948 0.970786i \(-0.577130\pi\)
−0.239948 + 0.970786i \(0.577130\pi\)
\(840\) 0 0
\(841\) −21685.0 −0.889130
\(842\) 0 0
\(843\) 14604.5 0.596687
\(844\) 0 0
\(845\) 1403.00 0.0571179
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 22785.0 0.921059
\(850\) 0 0
\(851\) 14829.4 0.597352
\(852\) 0 0
\(853\) 37092.0 1.48887 0.744435 0.667695i \(-0.232719\pi\)
0.744435 + 0.667695i \(0.232719\pi\)
\(854\) 0 0
\(855\) −1957.86 −0.0783126
\(856\) 0 0
\(857\) 15831.0 0.631011 0.315506 0.948924i \(-0.397826\pi\)
0.315506 + 0.948924i \(0.397826\pi\)
\(858\) 0 0
\(859\) 42980.2 1.70718 0.853589 0.520946i \(-0.174421\pi\)
0.853589 + 0.520946i \(0.174421\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 12622.9 0.497900 0.248950 0.968516i \(-0.419914\pi\)
0.248950 + 0.968516i \(0.419914\pi\)
\(864\) 0 0
\(865\) 3135.00 0.123229
\(866\) 0 0
\(867\) −11345.0 −0.444401
\(868\) 0 0
\(869\) −21.0000 −0.000819765 0
\(870\) 0 0
\(871\) −53497.1 −2.08115
\(872\) 0 0
\(873\) 1280.00 0.0496236
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 6689.00 0.257550 0.128775 0.991674i \(-0.458895\pi\)
0.128775 + 0.991674i \(0.458895\pi\)
\(878\) 0 0
\(879\) 9604.08 0.368530
\(880\) 0 0
\(881\) −1074.00 −0.0410715 −0.0205357 0.999789i \(-0.506537\pi\)
−0.0205357 + 0.999789i \(0.506537\pi\)
\(882\) 0 0
\(883\) −36246.8 −1.38143 −0.690714 0.723128i \(-0.742704\pi\)
−0.690714 + 0.723128i \(0.742704\pi\)
\(884\) 0 0
\(885\) 399.000 0.0151551
\(886\) 0 0
\(887\) 19253.1 0.728813 0.364406 0.931240i \(-0.381272\pi\)
0.364406 + 0.931240i \(0.381272\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −558.254 −0.0209901
\(892\) 0 0
\(893\) 42735.0 1.60142
\(894\) 0 0
\(895\) −4616.84 −0.172429
\(896\) 0 0
\(897\) −24780.0 −0.922386
\(898\) 0 0
\(899\) −11694.2 −0.433842
\(900\) 0 0
\(901\) 5075.00 0.187650
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 3074.00 0.112910
\(906\) 0 0
\(907\) −39281.5 −1.43806 −0.719030 0.694979i \(-0.755413\pi\)
−0.719030 + 0.694979i \(0.755413\pi\)
\(908\) 0 0
\(909\) −22180.0 −0.809312
\(910\) 0 0
\(911\) 22922.8 0.833662 0.416831 0.908984i \(-0.363141\pi\)
0.416831 + 0.908984i \(0.363141\pi\)
\(912\) 0 0
\(913\) 252.000 0.00913470
\(914\) 0 0
\(915\) 399.508 0.0144343
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 20205.6 0.725268 0.362634 0.931932i \(-0.381878\pi\)
0.362634 + 0.931932i \(0.381878\pi\)
\(920\) 0 0
\(921\) −13076.0 −0.467827
\(922\) 0 0
\(923\) −53338.3 −1.90212
\(924\) 0 0
\(925\) −11780.0 −0.418729
\(926\) 0 0
\(927\) 20583.9 0.729305
\(928\) 0 0
\(929\) −45497.0 −1.60679 −0.803395 0.595446i \(-0.796975\pi\)
−0.803395 + 0.595446i \(0.796975\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −4837.00 −0.169728
\(934\) 0 0
\(935\) −66.1438 −0.00231351
\(936\) 0 0
\(937\) 34810.0 1.21365 0.606827 0.794834i \(-0.292442\pi\)
0.606827 + 0.794834i \(0.292442\pi\)
\(938\) 0 0
\(939\) 14115.1 0.490552
\(940\) 0 0
\(941\) −43845.0 −1.51892 −0.759461 0.650552i \(-0.774537\pi\)
−0.759461 + 0.650552i \(0.774537\pi\)
\(942\) 0 0
\(943\) 9990.36 0.344996
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −21941.2 −0.752897 −0.376449 0.926437i \(-0.622855\pi\)
−0.376449 + 0.926437i \(0.622855\pi\)
\(948\) 0 0
\(949\) −20100.0 −0.687538
\(950\) 0 0
\(951\) 18877.4 0.643683
\(952\) 0 0
\(953\) 24120.0 0.819857 0.409928 0.912118i \(-0.365554\pi\)
0.409928 + 0.912118i \(0.365554\pi\)
\(954\) 0 0
\(955\) 3039.97 0.103006
\(956\) 0 0
\(957\) −364.000 −0.0122951
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 20784.0 0.697660
\(962\) 0 0
\(963\) 31907.8 1.06772
\(964\) 0 0
\(965\) −1967.00 −0.0656165
\(966\) 0 0
\(967\) 35643.6 1.18534 0.592668 0.805447i \(-0.298075\pi\)
0.592668 + 0.805447i \(0.298075\pi\)
\(968\) 0 0
\(969\) 6475.00 0.214661
\(970\) 0 0
\(971\) −45731.8 −1.51144 −0.755718 0.654898i \(-0.772712\pi\)
−0.755718 + 0.654898i \(0.772712\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 19684.4 0.646569
\(976\) 0 0
\(977\) −8719.00 −0.285512 −0.142756 0.989758i \(-0.545596\pi\)
−0.142756 + 0.989758i \(0.545596\pi\)
\(978\) 0 0
\(979\) −3341.58 −0.109088
\(980\) 0 0
\(981\) 38140.0 1.24130
\(982\) 0 0
\(983\) 12644.0 0.410257 0.205128 0.978735i \(-0.434239\pi\)
0.205128 + 0.978735i \(0.434239\pi\)
\(984\) 0 0
\(985\) 3876.00 0.125380
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −31388.0 −1.00918
\(990\) 0 0
\(991\) −33958.2 −1.08851 −0.544257 0.838918i \(-0.683189\pi\)
−0.544257 + 0.838918i \(0.683189\pi\)
\(992\) 0 0
\(993\) −26915.0 −0.860143
\(994\) 0 0
\(995\) 3796.65 0.120967
\(996\) 0 0
\(997\) 13819.0 0.438969 0.219485 0.975616i \(-0.429562\pi\)
0.219485 + 0.975616i \(0.429562\pi\)
\(998\) 0 0
\(999\) −11813.3 −0.374130
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1568.4.a.t.1.2 2
4.3 odd 2 inner 1568.4.a.t.1.1 2
7.2 even 3 224.4.i.a.193.1 yes 4
7.4 even 3 224.4.i.a.65.1 4
7.6 odd 2 1568.4.a.q.1.1 2
28.11 odd 6 224.4.i.a.65.2 yes 4
28.23 odd 6 224.4.i.a.193.2 yes 4
28.27 even 2 1568.4.a.q.1.2 2
56.11 odd 6 448.4.i.i.65.1 4
56.37 even 6 448.4.i.i.193.2 4
56.51 odd 6 448.4.i.i.193.1 4
56.53 even 6 448.4.i.i.65.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
224.4.i.a.65.1 4 7.4 even 3
224.4.i.a.65.2 yes 4 28.11 odd 6
224.4.i.a.193.1 yes 4 7.2 even 3
224.4.i.a.193.2 yes 4 28.23 odd 6
448.4.i.i.65.1 4 56.11 odd 6
448.4.i.i.65.2 4 56.53 even 6
448.4.i.i.193.1 4 56.51 odd 6
448.4.i.i.193.2 4 56.37 even 6
1568.4.a.q.1.1 2 7.6 odd 2
1568.4.a.q.1.2 2 28.27 even 2
1568.4.a.t.1.1 2 4.3 odd 2 inner
1568.4.a.t.1.2 2 1.1 even 1 trivial