Properties

Label 156.3.l.c.47.9
Level $156$
Weight $3$
Character 156.47
Analytic conductor $4.251$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [156,3,Mod(47,156)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("156.47"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(156, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 156 = 2^{2} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 156.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,0,0,-36,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.25069212402\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(48\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.9
Character \(\chi\) \(=\) 156.47
Dual form 156.3.l.c.83.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.72150 + 1.01806i) q^{2} +(-1.28511 + 2.71081i) q^{3} +(1.92709 - 3.50518i) q^{4} +(-5.44277 + 5.44277i) q^{5} +(-0.547465 - 5.97497i) q^{6} +(-2.75895 - 2.75895i) q^{7} +(0.251018 + 7.99606i) q^{8} +(-5.69698 - 6.96738i) q^{9} +(3.82862 - 14.9108i) q^{10} +(7.22392 - 7.22392i) q^{11} +(7.02536 + 9.72853i) q^{12} +(-3.11329 + 12.6217i) q^{13} +(7.55830 + 1.94073i) q^{14} +(-7.75976 - 21.7489i) q^{15} +(-8.57262 - 13.5096i) q^{16} -10.4137 q^{17} +(16.9006 + 6.19442i) q^{18} +(15.8902 - 15.8902i) q^{19} +(8.58918 + 29.5666i) q^{20} +(11.0245 - 3.93343i) q^{21} +(-5.08153 + 19.7903i) q^{22} -31.2150i q^{23} +(-21.9984 - 9.59536i) q^{24} -34.2475i q^{25} +(-7.49017 - 24.8977i) q^{26} +(26.2085 - 6.48958i) q^{27} +(-14.9874 + 4.35387i) q^{28} -30.0673i q^{29} +(35.5001 + 29.5407i) q^{30} +(-27.4600 + 27.4600i) q^{31} +(28.5114 + 14.5293i) q^{32} +(10.2991 + 28.8662i) q^{33} +(17.9271 - 10.6018i) q^{34} +30.0326 q^{35} +(-35.4006 + 6.54218i) q^{36} +(-11.1224 + 11.1224i) q^{37} +(-11.1777 + 43.5321i) q^{38} +(-30.2141 - 24.6598i) q^{39} +(-44.8870 - 42.1545i) q^{40} +(-28.9702 + 28.9702i) q^{41} +(-14.9742 + 17.9951i) q^{42} -76.9839 q^{43} +(-11.4000 - 39.2423i) q^{44} +(68.9292 + 6.91448i) q^{45} +(31.7789 + 53.7365i) q^{46} +(-41.9769 + 41.9769i) q^{47} +(47.6388 - 5.87739i) q^{48} -33.7764i q^{49} +(34.8661 + 58.9569i) q^{50} +(13.3827 - 28.2294i) q^{51} +(38.2418 + 35.2359i) q^{52} +30.1801i q^{53} +(-38.5110 + 37.8537i) q^{54} +78.6362i q^{55} +(21.3682 - 22.7532i) q^{56} +(22.6546 + 63.4960i) q^{57} +(30.6104 + 51.7608i) q^{58} +(-2.76368 + 2.76368i) q^{59} +(-91.1876 - 14.7127i) q^{60} -35.8124 q^{61} +(19.3163 - 75.2284i) q^{62} +(-3.50496 + 34.9403i) q^{63} +(-63.8740 + 4.01430i) q^{64} +(-51.7521 - 85.6420i) q^{65} +(-47.1175 - 39.2079i) q^{66} +(56.2324 - 56.2324i) q^{67} +(-20.0681 + 36.5018i) q^{68} +(84.6180 + 40.1148i) q^{69} +(-51.7010 + 30.5751i) q^{70} +(-8.19412 - 8.19412i) q^{71} +(54.2816 - 47.3024i) q^{72} +(-20.8717 + 20.8717i) q^{73} +(7.82383 - 30.4704i) q^{74} +(92.8384 + 44.0118i) q^{75} +(-25.0762 - 86.3199i) q^{76} -39.8608 q^{77} +(77.1187 + 11.6919i) q^{78} -59.4245i q^{79} +(120.189 + 26.8710i) q^{80} +(-16.0888 + 79.3861i) q^{81} +(20.3785 - 79.3655i) q^{82} +(-4.56261 - 4.56261i) q^{83} +(7.45791 - 46.2231i) q^{84} +(56.6791 - 56.6791i) q^{85} +(132.527 - 78.3745i) q^{86} +(81.5068 + 38.6398i) q^{87} +(59.5762 + 55.9495i) q^{88} +(-29.4572 - 29.4572i) q^{89} +(-125.701 + 58.2711i) q^{90} +(43.4120 - 26.2332i) q^{91} +(-109.414 - 60.1543i) q^{92} +(-39.1498 - 109.728i) q^{93} +(29.5279 - 114.998i) q^{94} +172.973i q^{95} +(-76.0264 + 58.6172i) q^{96} +(-73.7534 - 73.7534i) q^{97} +(34.3866 + 58.1460i) q^{98} +(-91.4863 - 9.17725i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 36 q^{6} - 64 q^{9} - 8 q^{13} + 80 q^{16} + 48 q^{18} + 8 q^{21} + 124 q^{24} - 8 q^{28} + 24 q^{33} + 64 q^{34} - 128 q^{37} - 136 q^{40} - 140 q^{42} - 160 q^{45} + 88 q^{46} - 108 q^{48} - 320 q^{52}+ \cdots + 336 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/156\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.72150 + 1.01806i −0.860748 + 0.509032i
\(3\) −1.28511 + 2.71081i −0.428370 + 0.903603i
\(4\) 1.92709 3.50518i 0.481773 0.876296i
\(5\) −5.44277 + 5.44277i −1.08855 + 1.08855i −0.0928763 + 0.995678i \(0.529606\pi\)
−0.995678 + 0.0928763i \(0.970394\pi\)
\(6\) −0.547465 5.97497i −0.0912442 0.995829i
\(7\) −2.75895 2.75895i −0.394135 0.394135i 0.482023 0.876158i \(-0.339902\pi\)
−0.876158 + 0.482023i \(0.839902\pi\)
\(8\) 0.251018 + 7.99606i 0.0313772 + 0.999508i
\(9\) −5.69698 6.96738i −0.632998 0.774153i
\(10\) 3.82862 14.9108i 0.382862 1.49108i
\(11\) 7.22392 7.22392i 0.656720 0.656720i −0.297883 0.954602i \(-0.596280\pi\)
0.954602 + 0.297883i \(0.0962804\pi\)
\(12\) 7.02536 + 9.72853i 0.585447 + 0.810711i
\(13\) −3.11329 + 12.6217i −0.239484 + 0.970900i
\(14\) 7.55830 + 1.94073i 0.539878 + 0.138624i
\(15\) −7.75976 21.7489i −0.517317 1.44993i
\(16\) −8.57262 13.5096i −0.535789 0.844352i
\(17\) −10.4137 −0.612568 −0.306284 0.951940i \(-0.599086\pi\)
−0.306284 + 0.951940i \(0.599086\pi\)
\(18\) 16.9006 + 6.19442i 0.938920 + 0.344135i
\(19\) 15.8902 15.8902i 0.836326 0.836326i −0.152047 0.988373i \(-0.548587\pi\)
0.988373 + 0.152047i \(0.0485866\pi\)
\(20\) 8.58918 + 29.5666i 0.429459 + 1.47833i
\(21\) 11.0245 3.93343i 0.524978 0.187306i
\(22\) −5.08153 + 19.7903i −0.230979 + 0.899561i
\(23\) 31.2150i 1.35718i −0.734519 0.678588i \(-0.762592\pi\)
0.734519 0.678588i \(-0.237408\pi\)
\(24\) −21.9984 9.59536i −0.916599 0.399807i
\(25\) 34.2475i 1.36990i
\(26\) −7.49017 24.8977i −0.288084 0.957605i
\(27\) 26.2085 6.48958i 0.970685 0.240355i
\(28\) −14.9874 + 4.35387i −0.535263 + 0.155495i
\(29\) 30.0673i 1.03680i −0.855137 0.518402i \(-0.826527\pi\)
0.855137 0.518402i \(-0.173473\pi\)
\(30\) 35.5001 + 29.5407i 1.18334 + 0.984689i
\(31\) −27.4600 + 27.4600i −0.885808 + 0.885808i −0.994117 0.108309i \(-0.965456\pi\)
0.108309 + 0.994117i \(0.465456\pi\)
\(32\) 28.5114 + 14.5293i 0.890981 + 0.454040i
\(33\) 10.2991 + 28.8662i 0.312095 + 0.874733i
\(34\) 17.9271 10.6018i 0.527267 0.311817i
\(35\) 30.0326 0.858075
\(36\) −35.4006 + 6.54218i −0.983349 + 0.181727i
\(37\) −11.1224 + 11.1224i −0.300605 + 0.300605i −0.841250 0.540646i \(-0.818180\pi\)
0.540646 + 0.841250i \(0.318180\pi\)
\(38\) −11.1777 + 43.5321i −0.294149 + 1.14558i
\(39\) −30.2141 24.6598i −0.774721 0.632303i
\(40\) −44.8870 42.1545i −1.12217 1.05386i
\(41\) −28.9702 + 28.9702i −0.706590 + 0.706590i −0.965816 0.259227i \(-0.916532\pi\)
0.259227 + 0.965816i \(0.416532\pi\)
\(42\) −14.9742 + 17.9951i −0.356529 + 0.428454i
\(43\) −76.9839 −1.79032 −0.895162 0.445742i \(-0.852940\pi\)
−0.895162 + 0.445742i \(0.852940\pi\)
\(44\) −11.4000 39.2423i −0.259091 0.891871i
\(45\) 68.9292 + 6.91448i 1.53176 + 0.153655i
\(46\) 31.7789 + 53.7365i 0.690845 + 1.16819i
\(47\) −41.9769 + 41.9769i −0.893125 + 0.893125i −0.994816 0.101691i \(-0.967575\pi\)
0.101691 + 0.994816i \(0.467575\pi\)
\(48\) 47.6388 5.87739i 0.992475 0.122446i
\(49\) 33.7764i 0.689315i
\(50\) 34.8661 + 58.9569i 0.697322 + 1.17914i
\(51\) 13.3827 28.2294i 0.262406 0.553519i
\(52\) 38.2418 + 35.2359i 0.735419 + 0.677613i
\(53\) 30.1801i 0.569435i 0.958611 + 0.284718i \(0.0918998\pi\)
−0.958611 + 0.284718i \(0.908100\pi\)
\(54\) −38.5110 + 37.8537i −0.713167 + 0.700995i
\(55\) 78.6362i 1.42975i
\(56\) 21.3682 22.7532i 0.381574 0.406308i
\(57\) 22.6546 + 63.4960i 0.397450 + 1.11396i
\(58\) 30.6104 + 51.7608i 0.527766 + 0.892427i
\(59\) −2.76368 + 2.76368i −0.0468421 + 0.0468421i −0.730140 0.683298i \(-0.760545\pi\)
0.683298 + 0.730140i \(0.260545\pi\)
\(60\) −91.1876 14.7127i −1.51979 0.245212i
\(61\) −35.8124 −0.587089 −0.293544 0.955945i \(-0.594835\pi\)
−0.293544 + 0.955945i \(0.594835\pi\)
\(62\) 19.3163 75.2284i 0.311553 1.21336i
\(63\) −3.50496 + 34.9403i −0.0556343 + 0.554608i
\(64\) −63.8740 + 4.01430i −0.998031 + 0.0627235i
\(65\) −51.7521 85.6420i −0.796186 1.31757i
\(66\) −47.1175 39.2079i −0.713902 0.594058i
\(67\) 56.2324 56.2324i 0.839290 0.839290i −0.149475 0.988765i \(-0.547758\pi\)
0.988765 + 0.149475i \(0.0477584\pi\)
\(68\) −20.0681 + 36.5018i −0.295119 + 0.536791i
\(69\) 84.6180 + 40.1148i 1.22635 + 0.581373i
\(70\) −51.7010 + 30.5751i −0.738586 + 0.436787i
\(71\) −8.19412 8.19412i −0.115410 0.115410i 0.647043 0.762453i \(-0.276005\pi\)
−0.762453 + 0.647043i \(0.776005\pi\)
\(72\) 54.2816 47.3024i 0.753911 0.656977i
\(73\) −20.8717 + 20.8717i −0.285914 + 0.285914i −0.835462 0.549548i \(-0.814800\pi\)
0.549548 + 0.835462i \(0.314800\pi\)
\(74\) 7.82383 30.4704i 0.105727 0.411762i
\(75\) 92.8384 + 44.0118i 1.23785 + 0.586824i
\(76\) −25.0762 86.3199i −0.329950 1.13579i
\(77\) −39.8608 −0.517673
\(78\) 77.1187 + 11.6919i 0.988702 + 0.149896i
\(79\) 59.4245i 0.752209i −0.926577 0.376104i \(-0.877263\pi\)
0.926577 0.376104i \(-0.122737\pi\)
\(80\) 120.189 + 26.8710i 1.50236 + 0.335887i
\(81\) −16.0888 + 79.3861i −0.198627 + 0.980075i
\(82\) 20.3785 79.3655i 0.248519 0.967872i
\(83\) −4.56261 4.56261i −0.0549712 0.0549712i 0.679087 0.734058i \(-0.262376\pi\)
−0.734058 + 0.679087i \(0.762376\pi\)
\(84\) 7.45791 46.2231i 0.0887846 0.550275i
\(85\) 56.6791 56.6791i 0.666813 0.666813i
\(86\) 132.527 78.3745i 1.54102 0.911331i
\(87\) 81.5068 + 38.6398i 0.936860 + 0.444136i
\(88\) 59.5762 + 55.9495i 0.677002 + 0.635790i
\(89\) −29.4572 29.4572i −0.330980 0.330980i 0.521979 0.852958i \(-0.325194\pi\)
−0.852958 + 0.521979i \(0.825194\pi\)
\(90\) −125.701 + 58.2711i −1.39667 + 0.647456i
\(91\) 43.4120 26.2332i 0.477055 0.288277i
\(92\) −109.414 60.1543i −1.18929 0.653851i
\(93\) −39.1498 109.728i −0.420965 1.17987i
\(94\) 29.5279 114.998i 0.314126 1.22338i
\(95\) 172.973i 1.82077i
\(96\) −76.0264 + 58.6172i −0.791942 + 0.610596i
\(97\) −73.7534 73.7534i −0.760344 0.760344i 0.216040 0.976384i \(-0.430686\pi\)
−0.976384 + 0.216040i \(0.930686\pi\)
\(98\) 34.3866 + 58.1460i 0.350883 + 0.593326i
\(99\) −91.4863 9.17725i −0.924104 0.0926995i
\(100\) −120.044 65.9981i −1.20044 0.659981i
\(101\) −17.6895 −0.175144 −0.0875719 0.996158i \(-0.527911\pi\)
−0.0875719 + 0.996158i \(0.527911\pi\)
\(102\) 5.70111 + 62.2213i 0.0558933 + 0.610013i
\(103\) −32.3819 −0.314388 −0.157194 0.987568i \(-0.550245\pi\)
−0.157194 + 0.987568i \(0.550245\pi\)
\(104\) −101.705 21.7258i −0.977937 0.208902i
\(105\) −38.5952 + 81.4127i −0.367574 + 0.775359i
\(106\) −30.7252 51.9548i −0.289861 0.490140i
\(107\) −85.2271 −0.796515 −0.398258 0.917274i \(-0.630385\pi\)
−0.398258 + 0.917274i \(0.630385\pi\)
\(108\) 27.7590 104.372i 0.257028 0.966404i
\(109\) 128.706 + 128.706i 1.18079 + 1.18079i 0.979540 + 0.201248i \(0.0644998\pi\)
0.201248 + 0.979540i \(0.435500\pi\)
\(110\) −80.0567 135.372i −0.727788 1.23065i
\(111\) −15.8572 44.4441i −0.142857 0.400397i
\(112\) −13.6209 + 60.9238i −0.121616 + 0.543962i
\(113\) 98.8848i 0.875086i −0.899197 0.437543i \(-0.855849\pi\)
0.899197 0.437543i \(-0.144151\pi\)
\(114\) −103.643 86.2441i −0.909147 0.756527i
\(115\) 169.896 + 169.896i 1.47736 + 1.47736i
\(116\) −105.391 57.9425i −0.908547 0.499505i
\(117\) 105.677 50.2141i 0.903219 0.429180i
\(118\) 1.94406 7.57127i 0.0164751 0.0641633i
\(119\) 28.7307 + 28.7307i 0.241435 + 0.241435i
\(120\) 171.958 67.5068i 1.43298 0.562557i
\(121\) 16.6301i 0.137438i
\(122\) 61.6509 36.4593i 0.505335 0.298847i
\(123\) −41.3028 115.763i −0.335795 0.941159i
\(124\) 43.3344 + 149.171i 0.349471 + 1.20299i
\(125\) 50.3320 + 50.3320i 0.402656 + 0.402656i
\(126\) −29.5377 63.7178i −0.234426 0.505697i
\(127\) 103.720 0.816694 0.408347 0.912827i \(-0.366105\pi\)
0.408347 + 0.912827i \(0.366105\pi\)
\(128\) 105.872 71.9384i 0.827125 0.562019i
\(129\) 98.9328 208.689i 0.766921 1.61774i
\(130\) 176.280 + 94.7454i 1.35600 + 0.728810i
\(131\) −56.1262 −0.428444 −0.214222 0.976785i \(-0.568722\pi\)
−0.214222 + 0.976785i \(0.568722\pi\)
\(132\) 121.029 + 19.5275i 0.916884 + 0.147936i
\(133\) −87.6804 −0.659251
\(134\) −39.5557 + 154.052i −0.295192 + 1.14964i
\(135\) −107.326 + 177.968i −0.795004 + 1.31828i
\(136\) −2.61401 83.2682i −0.0192207 0.612266i
\(137\) 75.0074 + 75.0074i 0.547499 + 0.547499i 0.925717 0.378217i \(-0.123463\pi\)
−0.378217 + 0.925717i \(0.623463\pi\)
\(138\) −186.509 + 17.0891i −1.35151 + 0.123834i
\(139\) 173.052i 1.24498i −0.782628 0.622490i \(-0.786121\pi\)
0.782628 0.622490i \(-0.213879\pi\)
\(140\) 57.8757 105.270i 0.413398 0.751927i
\(141\) −59.8464 167.736i −0.424443 1.18962i
\(142\) 22.4483 + 5.76401i 0.158087 + 0.0405916i
\(143\) 68.6880 + 113.668i 0.480335 + 0.794883i
\(144\) −45.2887 + 136.693i −0.314505 + 0.949256i
\(145\) 163.650 + 163.650i 1.12862 + 1.12862i
\(146\) 14.6818 57.1793i 0.100560 0.391639i
\(147\) 91.5615 + 43.4064i 0.622867 + 0.295282i
\(148\) 17.5521 + 60.4198i 0.118595 + 0.408242i
\(149\) −138.106 + 138.106i −0.926884 + 0.926884i −0.997503 0.0706197i \(-0.977502\pi\)
0.0706197 + 0.997503i \(0.477502\pi\)
\(150\) −204.628 + 18.7493i −1.36419 + 0.124995i
\(151\) −106.560 106.560i −0.705693 0.705693i 0.259933 0.965627i \(-0.416299\pi\)
−0.965627 + 0.259933i \(0.916299\pi\)
\(152\) 131.048 + 123.070i 0.862156 + 0.809673i
\(153\) 59.3264 + 72.5559i 0.387754 + 0.474222i
\(154\) 68.6202 40.5808i 0.445586 0.263512i
\(155\) 298.917i 1.92850i
\(156\) −144.663 + 58.3842i −0.927325 + 0.374258i
\(157\) 148.752 0.947467 0.473733 0.880668i \(-0.342906\pi\)
0.473733 + 0.880668i \(0.342906\pi\)
\(158\) 60.4979 + 102.299i 0.382898 + 0.647462i
\(159\) −81.8124 38.7847i −0.514543 0.243929i
\(160\) −234.261 + 76.1014i −1.46413 + 0.475634i
\(161\) −86.1206 + 86.1206i −0.534911 + 0.534911i
\(162\) −53.1233 153.042i −0.327922 0.944705i
\(163\) 36.6617 + 36.6617i 0.224919 + 0.224919i 0.810566 0.585647i \(-0.199160\pi\)
−0.585647 + 0.810566i \(0.699160\pi\)
\(164\) 45.7175 + 157.374i 0.278766 + 0.959597i
\(165\) −213.168 101.056i −1.29193 0.612462i
\(166\) 12.4995 + 3.20949i 0.0752985 + 0.0193343i
\(167\) 67.0902 67.0902i 0.401738 0.401738i −0.477107 0.878845i \(-0.658315\pi\)
0.878845 + 0.477107i \(0.158315\pi\)
\(168\) 34.2193 + 87.1655i 0.203686 + 0.518842i
\(169\) −149.615 78.5902i −0.885295 0.465031i
\(170\) −39.8699 + 155.276i −0.234529 + 0.913387i
\(171\) −201.239 20.1869i −1.17684 0.118052i
\(172\) −148.355 + 269.843i −0.862530 + 1.56885i
\(173\) 1.07602 0.00621977 0.00310988 0.999995i \(-0.499010\pi\)
0.00310988 + 0.999995i \(0.499010\pi\)
\(174\) −179.651 + 16.4608i −1.03248 + 0.0946024i
\(175\) −94.4870 + 94.4870i −0.539926 + 0.539926i
\(176\) −159.520 35.6645i −0.906366 0.202639i
\(177\) −3.94018 11.0435i −0.0222609 0.0623924i
\(178\) 80.6997 + 20.7211i 0.453369 + 0.116411i
\(179\) 280.851i 1.56900i 0.620130 + 0.784499i \(0.287080\pi\)
−0.620130 + 0.784499i \(0.712920\pi\)
\(180\) 157.070 228.285i 0.872609 1.26825i
\(181\) 311.872i 1.72305i 0.507715 + 0.861525i \(0.330490\pi\)
−0.507715 + 0.861525i \(0.669510\pi\)
\(182\) −48.0265 + 89.3565i −0.263882 + 0.490970i
\(183\) 46.0229 97.0807i 0.251491 0.530495i
\(184\) 249.597 7.83552i 1.35651 0.0425844i
\(185\) 121.073i 0.654449i
\(186\) 179.106 + 149.040i 0.962938 + 0.801288i
\(187\) −75.2274 + 75.2274i −0.402286 + 0.402286i
\(188\) 66.2433 + 228.030i 0.352358 + 1.21293i
\(189\) −90.2122 54.4034i −0.477313 0.287849i
\(190\) −176.098 297.773i −0.926831 1.56723i
\(191\) 97.0718 0.508229 0.254115 0.967174i \(-0.418216\pi\)
0.254115 + 0.967174i \(0.418216\pi\)
\(192\) 71.2031 178.309i 0.370850 0.928693i
\(193\) −118.585 + 118.585i −0.614431 + 0.614431i −0.944098 0.329666i \(-0.893064\pi\)
0.329666 + 0.944098i \(0.393064\pi\)
\(194\) 202.052 + 51.8805i 1.04150 + 0.267425i
\(195\) 298.666 30.2307i 1.53162 0.155029i
\(196\) −118.393 65.0903i −0.604044 0.332094i
\(197\) −28.2416 + 28.2416i −0.143358 + 0.143358i −0.775144 0.631785i \(-0.782322\pi\)
0.631785 + 0.775144i \(0.282322\pi\)
\(198\) 166.836 77.3403i 0.842607 0.390607i
\(199\) −95.0913 −0.477846 −0.238923 0.971039i \(-0.576794\pi\)
−0.238923 + 0.971039i \(0.576794\pi\)
\(200\) 273.845 8.59672i 1.36923 0.0429836i
\(201\) 80.1706 + 224.700i 0.398859 + 1.11791i
\(202\) 30.4524 18.0091i 0.150755 0.0891537i
\(203\) −82.9541 + 82.9541i −0.408641 + 0.408641i
\(204\) −73.1597 101.310i −0.358626 0.496616i
\(205\) 315.356i 1.53832i
\(206\) 55.7453 32.9669i 0.270608 0.160033i
\(207\) −217.487 + 177.832i −1.05066 + 0.859089i
\(208\) 197.204 66.1417i 0.948095 0.317989i
\(209\) 229.579i 1.09846i
\(210\) −16.4418 179.444i −0.0782944 0.854495i
\(211\) 83.2846i 0.394714i −0.980332 0.197357i \(-0.936764\pi\)
0.980332 0.197357i \(-0.0632358\pi\)
\(212\) 105.787 + 58.1598i 0.498994 + 0.274339i
\(213\) 32.7431 11.6824i 0.153723 0.0548468i
\(214\) 146.718 86.7667i 0.685599 0.405452i
\(215\) 419.006 419.006i 1.94886 1.94886i
\(216\) 58.4699 + 207.936i 0.270694 + 0.962665i
\(217\) 151.522 0.698256
\(218\) −352.598 90.5359i −1.61742 0.415302i
\(219\) −29.7568 83.4017i −0.135876 0.380830i
\(220\) 275.634 + 151.539i 1.25288 + 0.688815i
\(221\) 32.4208 131.438i 0.146700 0.594742i
\(222\) 72.5449 + 60.3667i 0.326779 + 0.271922i
\(223\) −260.917 + 260.917i −1.17003 + 1.17003i −0.187829 + 0.982202i \(0.560145\pi\)
−0.982202 + 0.187829i \(0.939855\pi\)
\(224\) −38.5759 118.747i −0.172214 0.530120i
\(225\) −238.615 + 195.107i −1.06051 + 0.867144i
\(226\) 100.671 + 170.230i 0.445447 + 0.753229i
\(227\) −68.1176 68.1176i −0.300077 0.300077i 0.540967 0.841044i \(-0.318059\pi\)
−0.841044 + 0.540967i \(0.818059\pi\)
\(228\) 266.223 + 42.9539i 1.16764 + 0.188394i
\(229\) −153.346 + 153.346i −0.669631 + 0.669631i −0.957631 0.287999i \(-0.907010\pi\)
0.287999 + 0.957631i \(0.407010\pi\)
\(230\) −465.441 119.510i −2.02366 0.519611i
\(231\) 51.2255 108.055i 0.221756 0.467771i
\(232\) 240.420 7.54743i 1.03629 0.0325320i
\(233\) 316.762 1.35949 0.679746 0.733448i \(-0.262090\pi\)
0.679746 + 0.733448i \(0.262090\pi\)
\(234\) −130.801 + 194.029i −0.558977 + 0.829183i
\(235\) 456.941i 1.94443i
\(236\) 4.36134 + 15.0131i 0.0184803 + 0.0636148i
\(237\) 161.089 + 76.3670i 0.679698 + 0.322224i
\(238\) −78.7095 20.2101i −0.330712 0.0849164i
\(239\) −92.0182 92.0182i −0.385013 0.385013i 0.487891 0.872905i \(-0.337766\pi\)
−0.872905 + 0.487891i \(0.837766\pi\)
\(240\) −227.298 + 291.276i −0.947074 + 1.21365i
\(241\) 277.003 277.003i 1.14939 1.14939i 0.162716 0.986673i \(-0.447974\pi\)
0.986673 0.162716i \(-0.0520255\pi\)
\(242\) −16.9304 28.6286i −0.0699605 0.118300i
\(243\) −194.525 145.634i −0.800513 0.599315i
\(244\) −69.0139 + 125.529i −0.282844 + 0.514464i
\(245\) 183.837 + 183.837i 0.750357 + 0.750357i
\(246\) 188.956 + 157.236i 0.768114 + 0.639170i
\(247\) 151.090 + 250.032i 0.611702 + 1.01228i
\(248\) −226.465 212.679i −0.913166 0.857578i
\(249\) 18.2318 6.50491i 0.0732202 0.0261242i
\(250\) −137.887 35.4051i −0.551549 0.141620i
\(251\) 298.102i 1.18766i −0.804591 0.593829i \(-0.797616\pi\)
0.804591 0.593829i \(-0.202384\pi\)
\(252\) 115.718 + 79.6187i 0.459197 + 0.315947i
\(253\) −225.495 225.495i −0.891284 0.891284i
\(254\) −178.554 + 105.594i −0.702967 + 0.415723i
\(255\) 80.8074 + 226.485i 0.316892 + 0.888178i
\(256\) −109.020 + 231.626i −0.425860 + 0.904789i
\(257\) −54.4517 −0.211874 −0.105937 0.994373i \(-0.533784\pi\)
−0.105937 + 0.994373i \(0.533784\pi\)
\(258\) 42.1460 + 459.977i 0.163357 + 1.78285i
\(259\) 61.3720 0.236958
\(260\) −399.922 + 16.3605i −1.53816 + 0.0629249i
\(261\) −209.490 + 171.293i −0.802646 + 0.656295i
\(262\) 96.6210 57.1400i 0.368782 0.218092i
\(263\) −522.069 −1.98505 −0.992526 0.122032i \(-0.961059\pi\)
−0.992526 + 0.122032i \(0.961059\pi\)
\(264\) −228.231 + 89.5984i −0.864510 + 0.339388i
\(265\) −164.263 164.263i −0.619861 0.619861i
\(266\) 150.941 89.2642i 0.567449 0.335580i
\(267\) 117.709 41.9971i 0.440856 0.157292i
\(268\) −88.7399 305.470i −0.331119 1.13981i
\(269\) 393.339i 1.46223i 0.682255 + 0.731114i \(0.260999\pi\)
−0.682255 + 0.731114i \(0.739001\pi\)
\(270\) 3.57750 415.636i 0.0132500 1.53939i
\(271\) −200.463 200.463i −0.739715 0.739715i 0.232808 0.972523i \(-0.425209\pi\)
−0.972523 + 0.232808i \(0.925209\pi\)
\(272\) 89.2724 + 140.685i 0.328207 + 0.517223i
\(273\) 15.3240 + 151.394i 0.0561317 + 0.554558i
\(274\) −205.487 52.7626i −0.749953 0.192564i
\(275\) −247.401 247.401i −0.899640 0.899640i
\(276\) 303.676 219.297i 1.10028 0.794554i
\(277\) 179.237i 0.647064i −0.946217 0.323532i \(-0.895130\pi\)
0.946217 0.323532i \(-0.104870\pi\)
\(278\) 176.178 + 297.909i 0.633734 + 1.07161i
\(279\) 347.764 + 34.8852i 1.24647 + 0.125037i
\(280\) 7.53871 + 240.143i 0.0269240 + 0.857652i
\(281\) 176.486 + 176.486i 0.628066 + 0.628066i 0.947581 0.319515i \(-0.103520\pi\)
−0.319515 + 0.947581i \(0.603520\pi\)
\(282\) 273.791 + 227.830i 0.970892 + 0.807907i
\(283\) 400.184 1.41408 0.707039 0.707174i \(-0.250030\pi\)
0.707039 + 0.707174i \(0.250030\pi\)
\(284\) −44.5127 + 12.9311i −0.156735 + 0.0455319i
\(285\) −468.898 222.290i −1.64526 0.779964i
\(286\) −233.968 125.751i −0.818068 0.439688i
\(287\) 159.854 0.556984
\(288\) −61.1978 281.423i −0.212492 0.977163i
\(289\) −180.556 −0.624760
\(290\) −448.328 115.116i −1.54596 0.396953i
\(291\) 294.713 105.150i 1.01276 0.361341i
\(292\) 32.9374 + 113.381i 0.112799 + 0.388291i
\(293\) −286.353 286.353i −0.977314 0.977314i 0.0224343 0.999748i \(-0.492858\pi\)
−0.999748 + 0.0224343i \(0.992858\pi\)
\(294\) −201.813 + 18.4914i −0.686439 + 0.0628960i
\(295\) 30.0842i 0.101980i
\(296\) −91.7270 86.1432i −0.309889 0.291024i
\(297\) 142.448 236.208i 0.479622 0.795314i
\(298\) 97.1479 378.349i 0.326000 1.26963i
\(299\) 393.987 + 97.1816i 1.31768 + 0.325022i
\(300\) 333.178 240.601i 1.11059 0.802003i
\(301\) 212.394 + 212.394i 0.705629 + 0.705629i
\(302\) 291.927 + 74.9575i 0.966644 + 0.248204i
\(303\) 22.7330 47.9529i 0.0750263 0.158260i
\(304\) −350.891 78.4500i −1.15425 0.258059i
\(305\) 194.919 194.919i 0.639078 0.639078i
\(306\) −175.997 64.5066i −0.575153 0.210806i
\(307\) 289.250 + 289.250i 0.942184 + 0.942184i 0.998418 0.0562339i \(-0.0179092\pi\)
−0.0562339 + 0.998418i \(0.517909\pi\)
\(308\) −76.8155 + 139.719i −0.249401 + 0.453634i
\(309\) 41.6144 87.7813i 0.134674 0.284082i
\(310\) 304.317 + 514.585i 0.981668 + 1.65995i
\(311\) 217.935i 0.700755i 0.936608 + 0.350378i \(0.113947\pi\)
−0.936608 + 0.350378i \(0.886053\pi\)
\(312\) 189.597 247.784i 0.607684 0.794179i
\(313\) −394.594 −1.26068 −0.630341 0.776318i \(-0.717085\pi\)
−0.630341 + 0.776318i \(0.717085\pi\)
\(314\) −256.076 + 151.439i −0.815530 + 0.482291i
\(315\) −171.095 209.249i −0.543160 0.664282i
\(316\) −208.294 114.517i −0.659158 0.362394i
\(317\) 343.861 343.861i 1.08473 1.08473i 0.0886734 0.996061i \(-0.471737\pi\)
0.996061 0.0886734i \(-0.0282627\pi\)
\(318\) 180.325 16.5225i 0.567060 0.0519577i
\(319\) −217.204 217.204i −0.680890 0.680890i
\(320\) 325.802 369.500i 1.01813 1.15469i
\(321\) 109.526 231.035i 0.341203 0.719734i
\(322\) 60.5800 235.932i 0.188137 0.732710i
\(323\) −165.475 + 165.475i −0.512307 + 0.512307i
\(324\) 247.258 + 209.379i 0.763143 + 0.646230i
\(325\) 432.262 + 106.623i 1.33004 + 0.328069i
\(326\) −100.437 25.7890i −0.308089 0.0791075i
\(327\) −514.299 + 183.496i −1.57278 + 0.561150i
\(328\) −238.919 224.375i −0.728412 0.684071i
\(329\) 231.624 0.704024
\(330\) 469.849 43.0506i 1.42379 0.130456i
\(331\) −35.0496 + 35.0496i −0.105890 + 0.105890i −0.758067 0.652177i \(-0.773856\pi\)
0.652177 + 0.758067i \(0.273856\pi\)
\(332\) −24.7854 + 7.20021i −0.0746547 + 0.0216874i
\(333\) 140.858 + 14.1298i 0.422996 + 0.0424319i
\(334\) −47.1934 + 183.798i −0.141298 + 0.550292i
\(335\) 612.121i 1.82723i
\(336\) −147.648 115.218i −0.439430 0.342909i
\(337\) 221.657i 0.657737i 0.944376 + 0.328869i \(0.106667\pi\)
−0.944376 + 0.328869i \(0.893333\pi\)
\(338\) 337.571 17.0248i 0.998731 0.0503691i
\(339\) 268.058 + 127.078i 0.790731 + 0.374861i
\(340\) −89.4448 307.897i −0.263073 0.905579i
\(341\) 396.738i 1.16346i
\(342\) 366.984 170.123i 1.07305 0.497435i
\(343\) −228.376 + 228.376i −0.665818 + 0.665818i
\(344\) −19.3243 615.568i −0.0561753 1.78944i
\(345\) −678.892 + 242.221i −1.96780 + 0.702090i
\(346\) −1.85236 + 1.09546i −0.00535365 + 0.00316606i
\(347\) 214.860 0.619194 0.309597 0.950868i \(-0.399806\pi\)
0.309597 + 0.950868i \(0.399806\pi\)
\(348\) 292.511 211.234i 0.840549 0.606994i
\(349\) −179.091 + 179.091i −0.513156 + 0.513156i −0.915492 0.402336i \(-0.868198\pi\)
0.402336 + 0.915492i \(0.368198\pi\)
\(350\) 66.4652 258.853i 0.189900 0.739579i
\(351\) 0.314828 + 351.000i 0.000896945 + 1.00000i
\(352\) 310.922 101.006i 0.883302 0.286948i
\(353\) −323.534 + 323.534i −0.916527 + 0.916527i −0.996775 0.0802475i \(-0.974429\pi\)
0.0802475 + 0.996775i \(0.474429\pi\)
\(354\) 18.0259 + 14.9999i 0.0509207 + 0.0423726i
\(355\) 89.1975 0.251260
\(356\) −160.020 + 46.4861i −0.449493 + 0.130579i
\(357\) −114.806 + 40.9614i −0.321585 + 0.114738i
\(358\) −285.924 483.483i −0.798670 1.35051i
\(359\) −227.130 + 227.130i −0.632675 + 0.632675i −0.948738 0.316063i \(-0.897639\pi\)
0.316063 + 0.948738i \(0.397639\pi\)
\(360\) −37.9862 + 552.898i −0.105517 + 1.53583i
\(361\) 143.997i 0.398883i
\(362\) −317.506 536.886i −0.877087 1.48311i
\(363\) −45.0809 21.3715i −0.124190 0.0588745i
\(364\) −8.29314 202.721i −0.0227834 0.556925i
\(365\) 227.200i 0.622465i
\(366\) 19.6061 + 213.978i 0.0535685 + 0.584640i
\(367\) 249.013i 0.678510i 0.940694 + 0.339255i \(0.110175\pi\)
−0.940694 + 0.339255i \(0.889825\pi\)
\(368\) −421.704 + 267.595i −1.14593 + 0.727160i
\(369\) 366.889 + 36.8036i 0.994278 + 0.0997389i
\(370\) 123.260 + 208.427i 0.333135 + 0.563315i
\(371\) 83.2652 83.2652i 0.224434 0.224434i
\(372\) −460.063 74.2292i −1.23673 0.199541i
\(373\) 183.251 0.491290 0.245645 0.969360i \(-0.421000\pi\)
0.245645 + 0.969360i \(0.421000\pi\)
\(374\) 52.9173 206.090i 0.141490 0.551042i
\(375\) −201.122 + 71.7582i −0.536327 + 0.191355i
\(376\) −346.187 325.113i −0.920709 0.864661i
\(377\) 379.501 + 93.6084i 1.00663 + 0.248298i
\(378\) 210.686 + 1.81344i 0.557371 + 0.00479746i
\(379\) 147.153 147.153i 0.388266 0.388266i −0.485803 0.874069i \(-0.661473\pi\)
0.874069 + 0.485803i \(0.161473\pi\)
\(380\) 606.303 + 333.336i 1.59554 + 0.877199i
\(381\) −133.292 + 281.165i −0.349847 + 0.737967i
\(382\) −167.109 + 98.8252i −0.437457 + 0.258705i
\(383\) −291.092 291.092i −0.760031 0.760031i 0.216297 0.976328i \(-0.430602\pi\)
−0.976328 + 0.216297i \(0.930602\pi\)
\(384\) 58.9541 + 379.448i 0.153526 + 0.988145i
\(385\) 216.953 216.953i 0.563515 0.563515i
\(386\) 83.4166 324.871i 0.216105 0.841635i
\(387\) 438.576 + 536.376i 1.13327 + 1.38598i
\(388\) −400.649 + 116.389i −1.03260 + 0.299973i
\(389\) 276.916 0.711866 0.355933 0.934511i \(-0.384163\pi\)
0.355933 + 0.934511i \(0.384163\pi\)
\(390\) −483.376 + 356.103i −1.23943 + 0.913085i
\(391\) 325.063i 0.831362i
\(392\) 270.078 8.47848i 0.688976 0.0216288i
\(393\) 72.1284 152.147i 0.183533 0.387144i
\(394\) 19.8660 77.3695i 0.0504214 0.196369i
\(395\) 323.434 + 323.434i 0.818820 + 0.818820i
\(396\) −208.471 + 302.991i −0.526441 + 0.765128i
\(397\) −231.663 + 231.663i −0.583535 + 0.583535i −0.935873 0.352338i \(-0.885387\pi\)
0.352338 + 0.935873i \(0.385387\pi\)
\(398\) 163.699 96.8090i 0.411305 0.243239i
\(399\) 112.679 237.685i 0.282403 0.595701i
\(400\) −462.671 + 293.591i −1.15668 + 0.733977i
\(401\) 78.9536 + 78.9536i 0.196892 + 0.196892i 0.798666 0.601774i \(-0.205539\pi\)
−0.601774 + 0.798666i \(0.705539\pi\)
\(402\) −366.773 305.202i −0.912370 0.759209i
\(403\) −261.101 432.084i −0.647894 1.07217i
\(404\) −34.0893 + 62.0050i −0.0843796 + 0.153478i
\(405\) −344.513 519.648i −0.850649 1.28308i
\(406\) 58.3526 227.258i 0.143726 0.559748i
\(407\) 160.694i 0.394826i
\(408\) 229.084 + 99.9228i 0.561480 + 0.244909i
\(409\) 178.035 + 178.035i 0.435294 + 0.435294i 0.890425 0.455130i \(-0.150407\pi\)
−0.455130 + 0.890425i \(0.650407\pi\)
\(410\) 321.052 + 542.884i 0.783055 + 1.32411i
\(411\) −299.724 + 106.938i −0.729255 + 0.260190i
\(412\) −62.4030 + 113.505i −0.151464 + 0.275497i
\(413\) 15.2497 0.0369242
\(414\) 193.359 527.552i 0.467051 1.27428i
\(415\) 49.6665 0.119678
\(416\) −272.149 + 314.628i −0.654204 + 0.756318i
\(417\) 469.112 + 222.391i 1.12497 + 0.533312i
\(418\) 233.726 + 395.219i 0.559153 + 0.945500i
\(419\) 461.725 1.10197 0.550985 0.834515i \(-0.314252\pi\)
0.550985 + 0.834515i \(0.314252\pi\)
\(420\) 210.990 + 292.173i 0.502357 + 0.695651i
\(421\) −164.828 164.828i −0.391515 0.391515i 0.483712 0.875227i \(-0.339288\pi\)
−0.875227 + 0.483712i \(0.839288\pi\)
\(422\) 84.7891 + 143.374i 0.200922 + 0.339749i
\(423\) 531.610 + 53.3273i 1.25676 + 0.126069i
\(424\) −241.322 + 7.57572i −0.569155 + 0.0178673i
\(425\) 356.642i 0.839157i
\(426\) −44.4737 + 53.4457i −0.104398 + 0.125459i
\(427\) 98.8045 + 98.8045i 0.231392 + 0.231392i
\(428\) −164.241 + 298.737i −0.383740 + 0.697983i
\(429\) −396.405 + 40.1237i −0.924021 + 0.0935283i
\(430\) −294.742 + 1147.89i −0.685446 + 2.66951i
\(431\) −105.807 105.807i −0.245492 0.245492i 0.573626 0.819118i \(-0.305536\pi\)
−0.819118 + 0.573626i \(0.805536\pi\)
\(432\) −312.347 298.434i −0.723027 0.690820i
\(433\) 691.891i 1.59790i −0.601397 0.798950i \(-0.705389\pi\)
0.601397 0.798950i \(-0.294611\pi\)
\(434\) −260.844 + 154.259i −0.601022 + 0.355435i
\(435\) −653.930 + 233.315i −1.50329 + 0.536356i
\(436\) 699.166 203.110i 1.60359 0.465848i
\(437\) −496.013 496.013i −1.13504 1.13504i
\(438\) 136.134 + 113.281i 0.310809 + 0.258633i
\(439\) 118.062 0.268934 0.134467 0.990918i \(-0.457068\pi\)
0.134467 + 0.990918i \(0.457068\pi\)
\(440\) −628.780 + 19.7391i −1.42905 + 0.0448615i
\(441\) −235.333 + 192.424i −0.533635 + 0.436335i
\(442\) 78.0001 + 259.276i 0.176471 + 0.586598i
\(443\) −715.543 −1.61522 −0.807611 0.589716i \(-0.799240\pi\)
−0.807611 + 0.589716i \(0.799240\pi\)
\(444\) −186.343 30.0657i −0.419691 0.0677155i
\(445\) 320.657 0.720578
\(446\) 183.537 714.797i 0.411518 1.60268i
\(447\) −196.897 551.859i −0.440486 1.23458i
\(448\) 187.300 + 165.150i 0.418081 + 0.368638i
\(449\) 41.8739 + 41.8739i 0.0932604 + 0.0932604i 0.752198 0.658937i \(-0.228994\pi\)
−0.658937 + 0.752198i \(0.728994\pi\)
\(450\) 212.143 578.802i 0.471430 1.28623i
\(451\) 418.556i 0.928063i
\(452\) −346.609 190.560i −0.766835 0.421593i
\(453\) 425.804 151.922i 0.939965 0.335369i
\(454\) 186.612 + 47.9161i 0.411040 + 0.105542i
\(455\) −93.5004 + 379.063i −0.205495 + 0.833105i
\(456\) −502.031 + 197.087i −1.10094 + 0.432207i
\(457\) −81.6833 81.6833i −0.178738 0.178738i 0.612067 0.790806i \(-0.290338\pi\)
−0.790806 + 0.612067i \(0.790338\pi\)
\(458\) 107.868 420.099i 0.235520 0.917247i
\(459\) −272.926 + 67.5803i −0.594611 + 0.147234i
\(460\) 922.924 268.112i 2.00636 0.582851i
\(461\) 97.4905 97.4905i 0.211476 0.211476i −0.593418 0.804894i \(-0.702222\pi\)
0.804894 + 0.593418i \(0.202222\pi\)
\(462\) 21.8224 + 238.167i 0.0472346 + 0.515513i
\(463\) −148.096 148.096i −0.319862 0.319862i 0.528852 0.848714i \(-0.322623\pi\)
−0.848714 + 0.528852i \(0.822623\pi\)
\(464\) −406.198 + 257.756i −0.875428 + 0.555508i
\(465\) 810.308 + 384.142i 1.74260 + 0.826112i
\(466\) −545.304 + 322.483i −1.17018 + 0.692024i
\(467\) 612.990i 1.31261i −0.754495 0.656306i \(-0.772118\pi\)
0.754495 0.656306i \(-0.227882\pi\)
\(468\) 27.6390 467.183i 0.0590576 0.998255i
\(469\) −310.285 −0.661588
\(470\) 465.195 + 786.622i 0.989776 + 1.67366i
\(471\) −191.163 + 403.239i −0.405866 + 0.856134i
\(472\) −22.7923 21.4048i −0.0482888 0.0453492i
\(473\) −556.125 + 556.125i −1.17574 + 1.17574i
\(474\) −355.060 + 32.5328i −0.749071 + 0.0686347i
\(475\) −544.199 544.199i −1.14568 1.14568i
\(476\) 156.073 45.3397i 0.327885 0.0952514i
\(477\) 210.276 171.935i 0.440830 0.360451i
\(478\) 252.089 + 64.7286i 0.527384 + 0.135415i
\(479\) 565.402 565.402i 1.18038 1.18038i 0.200735 0.979646i \(-0.435667\pi\)
0.979646 0.200735i \(-0.0643330\pi\)
\(480\) 94.7543 732.835i 0.197405 1.52674i
\(481\) −105.756 175.010i −0.219867 0.363847i
\(482\) −194.853 + 758.865i −0.404258 + 1.57441i
\(483\) −122.782 344.131i −0.254207 0.712487i
\(484\) 58.2914 + 32.0477i 0.120437 + 0.0662142i
\(485\) 802.845 1.65535
\(486\) 483.138 + 52.6689i 0.994110 + 0.108372i
\(487\) 123.462 123.462i 0.253514 0.253514i −0.568895 0.822410i \(-0.692629\pi\)
0.822410 + 0.568895i \(0.192629\pi\)
\(488\) −8.98955 286.358i −0.0184212 0.586800i
\(489\) −146.497 + 52.2686i −0.299586 + 0.106889i
\(490\) −503.633 129.317i −1.02782 0.263912i
\(491\) 582.782i 1.18693i 0.804860 + 0.593464i \(0.202240\pi\)
−0.804860 + 0.593464i \(0.797760\pi\)
\(492\) −485.363 78.3114i −0.986510 0.159169i
\(493\) 313.111i 0.635113i
\(494\) −514.650 276.610i −1.04180 0.559938i
\(495\) 547.889 447.989i 1.10685 0.905029i
\(496\) 606.380 + 135.570i 1.22254 + 0.273328i
\(497\) 45.2143i 0.0909744i
\(498\) −24.7636 + 29.7593i −0.0497261 + 0.0597577i
\(499\) 58.4515 58.4515i 0.117137 0.117137i −0.646108 0.763246i \(-0.723605\pi\)
0.763246 + 0.646108i \(0.223605\pi\)
\(500\) 273.417 79.4284i 0.546834 0.158857i
\(501\) 95.6505 + 268.087i 0.190919 + 0.535104i
\(502\) 303.487 + 513.182i 0.604556 + 1.02227i
\(503\) 554.637 1.10266 0.551329 0.834288i \(-0.314121\pi\)
0.551329 + 0.834288i \(0.314121\pi\)
\(504\) −280.265 19.2552i −0.556080 0.0382049i
\(505\) 96.2800 96.2800i 0.190653 0.190653i
\(506\) 617.756 + 158.620i 1.22086 + 0.313479i
\(507\) 405.315 304.580i 0.799437 0.600750i
\(508\) 199.878 363.558i 0.393461 0.715665i
\(509\) −137.865 + 137.865i −0.270855 + 0.270855i −0.829444 0.558589i \(-0.811343\pi\)
0.558589 + 0.829444i \(0.311343\pi\)
\(510\) −369.686 307.626i −0.724875 0.603189i
\(511\) 115.168 0.225377
\(512\) −48.1321 509.733i −0.0940080 0.995571i
\(513\) 313.337 519.579i 0.610794 1.01282i
\(514\) 93.7384 55.4353i 0.182370 0.107851i
\(515\) 176.247 176.247i 0.342228 0.342228i
\(516\) −540.839 748.940i −1.04814 1.45143i
\(517\) 606.475i 1.17307i
\(518\) −105.652 + 62.4806i −0.203961 + 0.120619i
\(519\) −1.38280 + 2.91688i −0.00266436 + 0.00562020i
\(520\) 671.808 435.310i 1.29194 0.837135i
\(521\) 561.832i 1.07837i −0.842186 0.539187i \(-0.818732\pi\)
0.842186 0.539187i \(-0.181268\pi\)
\(522\) 186.250 508.155i 0.356800 0.973477i
\(523\) 457.062i 0.873924i 0.899480 + 0.436962i \(0.143946\pi\)
−0.899480 + 0.436962i \(0.856054\pi\)
\(524\) −108.160 + 196.733i −0.206413 + 0.375444i
\(525\) −134.710 377.562i −0.256591 0.719167i
\(526\) 898.739 531.499i 1.70863 1.01045i
\(527\) 285.960 285.960i 0.542618 0.542618i
\(528\) 301.681 386.597i 0.571366 0.732190i
\(529\) −445.379 −0.841925
\(530\) 450.009 + 115.548i 0.849073 + 0.218015i
\(531\) 35.0003 + 3.51098i 0.0659139 + 0.00661201i
\(532\) −168.968 + 307.336i −0.317610 + 0.577699i
\(533\) −275.460 455.846i −0.516811 0.855245i
\(534\) −159.879 + 192.133i −0.299399 + 0.359799i
\(535\) 463.872 463.872i 0.867050 0.867050i
\(536\) 463.753 + 435.523i 0.865212 + 0.812542i
\(537\) −761.333 360.924i −1.41775 0.672112i
\(538\) −400.444 677.132i −0.744320 1.25861i
\(539\) −243.998 243.998i −0.452687 0.452687i
\(540\) 416.985 + 719.157i 0.772194 + 1.33177i
\(541\) 333.836 333.836i 0.617071 0.617071i −0.327708 0.944779i \(-0.606276\pi\)
0.944779 + 0.327708i \(0.106276\pi\)
\(542\) 549.180 + 141.012i 1.01325 + 0.260170i
\(543\) −845.426 400.790i −1.55695 0.738103i
\(544\) −296.908 151.303i −0.545787 0.278131i
\(545\) −1401.03 −2.57070
\(546\) −180.509 245.024i −0.330603 0.448761i
\(547\) 790.697i 1.44551i 0.691102 + 0.722757i \(0.257126\pi\)
−0.691102 + 0.722757i \(0.742874\pi\)
\(548\) 407.461 118.368i 0.743542 0.216001i
\(549\) 204.023 + 249.519i 0.371626 + 0.454497i
\(550\) 677.770 + 174.030i 1.23231 + 0.316418i
\(551\) −477.776 477.776i −0.867106 0.867106i
\(552\) −299.520 + 686.681i −0.542608 + 1.24399i
\(553\) −163.949 + 163.949i −0.296472 + 0.296472i
\(554\) 182.474 + 308.555i 0.329376 + 0.556959i
\(555\) 328.206 + 155.592i 0.591362 + 0.280346i
\(556\) −606.580 333.488i −1.09097 0.599798i
\(557\) −62.7640 62.7640i −0.112682 0.112682i 0.648518 0.761200i \(-0.275389\pi\)
−0.761200 + 0.648518i \(0.775389\pi\)
\(558\) −634.190 + 293.991i −1.13654 + 0.526866i
\(559\) 239.674 971.668i 0.428754 1.73823i
\(560\) −257.458 405.730i −0.459747 0.724517i
\(561\) −107.252 300.603i −0.191179 0.535834i
\(562\) −483.495 124.146i −0.860312 0.220901i
\(563\) 83.6121i 0.148512i 0.997239 + 0.0742558i \(0.0236581\pi\)
−0.997239 + 0.0742558i \(0.976342\pi\)
\(564\) −703.276 113.471i −1.24694 0.201189i
\(565\) 538.207 + 538.207i 0.952579 + 0.952579i
\(566\) −688.915 + 407.413i −1.21717 + 0.719811i
\(567\) 263.410 174.634i 0.464568 0.307996i
\(568\) 63.4638 67.5776i 0.111732 0.118975i
\(569\) 70.7650 0.124367 0.0621836 0.998065i \(-0.480194\pi\)
0.0621836 + 0.998065i \(0.480194\pi\)
\(570\) 1033.51 94.6969i 1.81318 0.166135i
\(571\) 382.309 0.669543 0.334772 0.942299i \(-0.391341\pi\)
0.334772 + 0.942299i \(0.391341\pi\)
\(572\) 530.796 21.7144i 0.927966 0.0379623i
\(573\) −124.748 + 263.143i −0.217710 + 0.459238i
\(574\) −275.188 + 162.742i −0.479422 + 0.283522i
\(575\) −1069.04 −1.85919
\(576\) 391.858 + 422.165i 0.680309 + 0.732925i
\(577\) −569.733 569.733i −0.987406 0.987406i 0.0125162 0.999922i \(-0.496016\pi\)
−0.999922 + 0.0125162i \(0.996016\pi\)
\(578\) 310.826 183.817i 0.537761 0.318023i
\(579\) −169.067 473.857i −0.291998 0.818406i
\(580\) 888.989 258.254i 1.53274 0.445265i
\(581\) 25.1760i 0.0433322i
\(582\) −400.297 + 481.052i −0.687795 + 0.826549i
\(583\) 218.018 + 218.018i 0.373959 + 0.373959i
\(584\) −172.131 161.652i −0.294744 0.276802i
\(585\) −301.870 + 848.477i −0.516016 + 1.45039i
\(586\) 784.481 + 201.430i 1.33870 + 0.343737i
\(587\) −229.283 229.283i −0.390601 0.390601i 0.484301 0.874902i \(-0.339074\pi\)
−0.874902 + 0.484301i \(0.839074\pi\)
\(588\) 328.595 237.292i 0.558835 0.403557i
\(589\) 872.691i 1.48165i
\(590\) 30.6276 + 51.7898i 0.0519112 + 0.0877793i
\(591\) −40.2640 112.851i −0.0681286 0.190949i
\(592\) 245.607 + 54.9112i 0.414877 + 0.0927554i
\(593\) −352.879 352.879i −0.595075 0.595075i 0.343923 0.938998i \(-0.388244\pi\)
−0.938998 + 0.343923i \(0.888244\pi\)
\(594\) −4.74824 + 551.652i −0.00799366 + 0.928708i
\(595\) −312.749 −0.525629
\(596\) 217.943 + 750.228i 0.365677 + 1.25877i
\(597\) 122.203 257.774i 0.204695 0.431783i
\(598\) −777.184 + 233.806i −1.29964 + 0.390980i
\(599\) 1088.44 1.81710 0.908550 0.417776i \(-0.137190\pi\)
0.908550 + 0.417776i \(0.137190\pi\)
\(600\) −328.617 + 753.390i −0.547695 + 1.25565i
\(601\) −28.1338 −0.0468116 −0.0234058 0.999726i \(-0.507451\pi\)
−0.0234058 + 0.999726i \(0.507451\pi\)
\(602\) −581.867 149.405i −0.966557 0.248181i
\(603\) −712.148 71.4376i −1.18101 0.118470i
\(604\) −578.862 + 168.161i −0.958380 + 0.278412i
\(605\) −90.5135 90.5135i −0.149609 0.149609i
\(606\) 9.68439 + 105.694i 0.0159808 + 0.174413i
\(607\) 161.951i 0.266805i −0.991062 0.133403i \(-0.957410\pi\)
0.991062 0.133403i \(-0.0425904\pi\)
\(608\) 683.925 222.178i 1.12488 0.365425i
\(609\) −118.268 331.478i −0.194200 0.544299i
\(610\) −137.112 + 533.991i −0.224774 + 0.875396i
\(611\) −399.133 660.506i −0.653246 1.08102i
\(612\) 368.649 68.1280i 0.602368 0.111320i
\(613\) 703.654 + 703.654i 1.14789 + 1.14789i 0.986968 + 0.160917i \(0.0514453\pi\)
0.160917 + 0.986968i \(0.448555\pi\)
\(614\) −792.419 203.468i −1.29058 0.331381i
\(615\) 854.870 + 405.267i 1.39003 + 0.658971i
\(616\) −10.0058 318.729i −0.0162431 0.517418i
\(617\) −770.124 + 770.124i −1.24818 + 1.24818i −0.291651 + 0.956525i \(0.594204\pi\)
−0.956525 + 0.291651i \(0.905796\pi\)
\(618\) 17.7280 + 193.481i 0.0286861 + 0.313076i
\(619\) −164.734 164.734i −0.266130 0.266130i 0.561409 0.827539i \(-0.310260\pi\)
−0.827539 + 0.561409i \(0.810260\pi\)
\(620\) −1047.76 576.042i −1.68994 0.929100i
\(621\) −202.573 818.099i −0.326204 1.31739i
\(622\) −221.872 375.174i −0.356707 0.603174i
\(623\) 162.542i 0.260901i
\(624\) −74.1310 + 619.581i −0.118800 + 0.992918i
\(625\) 308.297 0.493275
\(626\) 679.291 401.722i 1.08513 0.641728i
\(627\) 622.345 + 295.034i 0.992575 + 0.470549i
\(628\) 286.659 521.404i 0.456464 0.830261i
\(629\) 115.825 115.825i 0.184141 0.184141i
\(630\) 507.568 + 186.035i 0.805664 + 0.295293i
\(631\) −202.194 202.194i −0.320434 0.320434i 0.528499 0.848934i \(-0.322755\pi\)
−0.848934 + 0.528499i \(0.822755\pi\)
\(632\) 475.162 14.9166i 0.751838 0.0236022i
\(633\) 225.769 + 107.030i 0.356665 + 0.169084i
\(634\) −241.883 + 942.027i −0.381518 + 1.48585i
\(635\) −564.525 + 564.525i −0.889015 + 0.889015i
\(636\) −293.608 + 212.026i −0.461647 + 0.333374i
\(637\) 426.316 + 105.156i 0.669256 + 0.165080i
\(638\) 595.043 + 152.788i 0.932669 + 0.239480i
\(639\) −10.4098 + 103.773i −0.0162908 + 0.162400i
\(640\) −184.693 + 967.781i −0.288582 + 1.51216i
\(641\) 158.903 0.247898 0.123949 0.992289i \(-0.460444\pi\)
0.123949 + 0.992289i \(0.460444\pi\)
\(642\) 46.6589 + 509.230i 0.0726774 + 0.793193i
\(643\) −101.002 + 101.002i −0.157079 + 0.157079i −0.781271 0.624192i \(-0.785428\pi\)
0.624192 + 0.781271i \(0.285428\pi\)
\(644\) 135.906 + 467.831i 0.211034 + 0.726446i
\(645\) 597.376 + 1674.31i 0.926165 + 2.59583i
\(646\) 116.400 453.329i 0.180186 0.701747i
\(647\) 291.993i 0.451303i −0.974208 0.225652i \(-0.927549\pi\)
0.974208 0.225652i \(-0.0724511\pi\)
\(648\) −638.815 108.720i −0.985825 0.167777i
\(649\) 39.9292i 0.0615242i
\(650\) −852.685 + 256.520i −1.31182 + 0.394646i
\(651\) −194.722 + 410.746i −0.299112 + 0.630947i
\(652\) 199.157 57.8555i 0.305455 0.0887355i
\(653\) 380.358i 0.582478i −0.956650 0.291239i \(-0.905932\pi\)
0.956650 0.291239i \(-0.0940675\pi\)
\(654\) 698.552 839.476i 1.06812 1.28360i
\(655\) 305.482 305.482i 0.466385 0.466385i
\(656\) 639.727 + 143.026i 0.975193 + 0.218027i
\(657\) 264.327 + 26.5154i 0.402324 + 0.0403583i
\(658\) −398.739 + 235.808i −0.605987 + 0.358371i
\(659\) 460.463 0.698729 0.349365 0.936987i \(-0.386397\pi\)
0.349365 + 0.936987i \(0.386397\pi\)
\(660\) −765.015 + 552.448i −1.15911 + 0.837042i
\(661\) 341.332 341.332i 0.516388 0.516388i −0.400089 0.916476i \(-0.631021\pi\)
0.916476 + 0.400089i \(0.131021\pi\)
\(662\) 24.6550 96.0204i 0.0372432 0.145046i
\(663\) 314.639 + 256.799i 0.474569 + 0.387329i
\(664\) 35.3376 37.6282i 0.0532193 0.0566690i
\(665\) 477.224 477.224i 0.717630 0.717630i
\(666\) −256.871 + 119.078i −0.385692 + 0.178795i
\(667\) −938.553 −1.40713
\(668\) −105.874 364.453i −0.158495 0.545588i
\(669\) −371.989 1042.60i −0.556037 1.55845i
\(670\) −623.178 1053.76i −0.930116 1.57278i
\(671\) −258.706 + 258.706i −0.385553 + 0.385553i
\(672\) 371.475 + 48.0311i 0.552790 + 0.0714748i
\(673\) 737.757i 1.09622i 0.836406 + 0.548110i \(0.184653\pi\)
−0.836406 + 0.548110i \(0.815347\pi\)
\(674\) −225.661 381.582i −0.334809 0.566146i
\(675\) −222.252 897.575i −0.329262 1.32974i
\(676\) −563.795 + 372.977i −0.834016 + 0.551741i
\(677\) 667.189i 0.985508i −0.870169 0.492754i \(-0.835990\pi\)
0.870169 0.492754i \(-0.164010\pi\)
\(678\) −590.834 + 54.1360i −0.871436 + 0.0798466i
\(679\) 406.963i 0.599357i
\(680\) 467.437 + 438.982i 0.687408 + 0.645562i
\(681\) 272.192 97.1152i 0.399695 0.142607i
\(682\) −403.905 682.983i −0.592236 1.00144i
\(683\) −872.580 + 872.580i −1.27757 + 1.27757i −0.335544 + 0.942024i \(0.608920\pi\)
−0.942024 + 0.335544i \(0.891080\pi\)
\(684\) −458.565 + 666.478i −0.670417 + 0.974384i
\(685\) −816.496 −1.19196
\(686\) 160.647 625.649i 0.234179 0.912024i
\(687\) −218.625 612.756i −0.318231 0.891931i
\(688\) 659.954 + 1040.02i 0.959235 + 1.51166i
\(689\) −380.924 93.9594i −0.552865 0.136371i
\(690\) 922.113 1108.14i 1.33640 1.60600i
\(691\) −273.184 + 273.184i −0.395346 + 0.395346i −0.876588 0.481242i \(-0.840186\pi\)
0.481242 + 0.876588i \(0.340186\pi\)
\(692\) 2.07359 3.77165i 0.00299652 0.00545035i
\(693\) 227.086 + 277.725i 0.327686 + 0.400758i
\(694\) −369.881 + 218.742i −0.532970 + 0.315190i
\(695\) 941.883 + 941.883i 1.35523 + 1.35523i
\(696\) −288.507 + 661.433i −0.414521 + 0.950334i
\(697\) 301.685 301.685i 0.432834 0.432834i
\(698\) 125.979 490.632i 0.180485 0.702911i
\(699\) −407.074 + 858.680i −0.582366 + 1.22844i
\(700\) 149.109 + 513.279i 0.213013 + 0.733256i
\(701\) 510.090 0.727660 0.363830 0.931465i \(-0.381469\pi\)
0.363830 + 0.931465i \(0.381469\pi\)
\(702\) −357.882 603.924i −0.509804 0.860291i
\(703\) 353.473i 0.502807i
\(704\) −432.421 + 490.419i −0.614235 + 0.696618i
\(705\) 1238.68 + 587.220i 1.75699 + 0.832936i
\(706\) 227.584 886.341i 0.322357 1.25544i
\(707\) 48.8044 + 48.8044i 0.0690303 + 0.0690303i
\(708\) −46.3024 7.47071i −0.0653989 0.0105519i
\(709\) 389.393 389.393i 0.549215 0.549215i −0.376999 0.926214i \(-0.623044\pi\)
0.926214 + 0.376999i \(0.123044\pi\)
\(710\) −153.553 + 90.8087i −0.216272 + 0.127900i
\(711\) −414.033 + 338.540i −0.582325 + 0.476147i
\(712\) 228.147 242.936i 0.320431 0.341202i
\(713\) 857.166 + 857.166i 1.20220 + 1.20220i
\(714\) 155.936 187.394i 0.218398 0.262457i
\(715\) −992.523 244.818i −1.38814 0.342402i
\(716\) 984.433 + 541.225i 1.37491 + 0.755901i
\(717\) 367.698 131.190i 0.512828 0.182971i
\(718\) 159.771 622.237i 0.222522 0.866626i
\(719\) 116.566i 0.162123i −0.996709 0.0810613i \(-0.974169\pi\)
0.996709 0.0810613i \(-0.0258310\pi\)
\(720\) −497.492 990.483i −0.690961 1.37567i
\(721\) 89.3400 + 89.3400i 0.123911 + 0.123911i
\(722\) 146.598 + 247.890i 0.203044 + 0.343337i
\(723\) 394.923 + 1106.88i 0.546228 + 1.53096i
\(724\) 1093.17 + 601.006i 1.50990 + 0.830119i
\(725\) −1029.73 −1.42032
\(726\) 99.3641 9.10437i 0.136865 0.0125405i
\(727\) 145.407 0.200009 0.100004 0.994987i \(-0.468114\pi\)
0.100004 + 0.994987i \(0.468114\pi\)
\(728\) 220.659 + 340.540i 0.303103 + 0.467775i
\(729\) 644.771 340.164i 0.884459 0.466618i
\(730\) 231.304 + 391.124i 0.316855 + 0.535786i
\(731\) 801.684 1.09669
\(732\) −251.595 348.402i −0.343709 0.475959i
\(733\) 507.751 + 507.751i 0.692703 + 0.692703i 0.962826 0.270123i \(-0.0870644\pi\)
−0.270123 + 0.962826i \(0.587064\pi\)
\(734\) −253.511 428.675i −0.345383 0.584026i
\(735\) −734.599 + 262.097i −0.999455 + 0.356594i
\(736\) 453.532 889.984i 0.616212 1.20922i
\(737\) 812.437i 1.10236i
\(738\) −669.066 + 310.159i −0.906593 + 0.420269i
\(739\) 583.034 + 583.034i 0.788950 + 0.788950i 0.981322 0.192372i \(-0.0616180\pi\)
−0.192372 + 0.981322i \(0.561618\pi\)
\(740\) −424.383 233.319i −0.573491 0.315296i
\(741\) −871.958 + 88.2586i −1.17673 + 0.119107i
\(742\) −58.5714 + 228.110i −0.0789372 + 0.307426i
\(743\) −312.769 312.769i −0.420954 0.420954i 0.464578 0.885532i \(-0.346206\pi\)
−0.885532 + 0.464578i \(0.846206\pi\)
\(744\) 867.566 340.588i 1.16608 0.457779i
\(745\) 1503.35i 2.01793i
\(746\) −315.466 + 186.561i −0.422877 + 0.250082i
\(747\) −5.79633 + 57.7826i −0.00775948 + 0.0773528i
\(748\) 118.716 + 408.656i 0.158711 + 0.546332i
\(749\) 235.137 + 235.137i 0.313935 + 0.313935i
\(750\) 273.177 328.287i 0.364236 0.437716i
\(751\) −447.999 −0.596536 −0.298268 0.954482i \(-0.596409\pi\)
−0.298268 + 0.954482i \(0.596409\pi\)
\(752\) 926.944 + 207.240i 1.23264 + 0.275585i
\(753\) 808.098 + 383.094i 1.07317 + 0.508757i
\(754\) −748.608 + 225.209i −0.992849 + 0.298686i
\(755\) 1159.96 1.53637
\(756\) −364.541 + 211.370i −0.482198 + 0.279590i
\(757\) −1256.45 −1.65978 −0.829890 0.557927i \(-0.811597\pi\)
−0.829890 + 0.557927i \(0.811597\pi\)
\(758\) −103.512 + 403.134i −0.136559 + 0.531839i
\(759\) 901.059 321.488i 1.18717 0.423568i
\(760\) −1383.11 + 43.4193i −1.81988 + 0.0571307i
\(761\) 371.292 + 371.292i 0.487900 + 0.487900i 0.907643 0.419743i \(-0.137880\pi\)
−0.419743 + 0.907643i \(0.637880\pi\)
\(762\) −56.7831 619.725i −0.0745186 0.813287i
\(763\) 710.186i 0.930781i
\(764\) 187.066 340.254i 0.244851 0.445359i
\(765\) −717.805 72.0051i −0.938307 0.0941243i
\(766\) 797.463 + 204.763i 1.04107 + 0.267315i
\(767\) −26.2782 43.4865i −0.0342610 0.0566969i
\(768\) −487.791 593.198i −0.635144 0.772393i
\(769\) −954.425 954.425i −1.24112 1.24112i −0.959535 0.281589i \(-0.909138\pi\)
−0.281589 0.959535i \(-0.590862\pi\)
\(770\) −152.612 + 594.356i −0.198197 + 0.771891i
\(771\) 69.9765 147.608i 0.0907607 0.191450i
\(772\) 187.138 + 644.188i 0.242407 + 0.834440i
\(773\) −960.080 + 960.080i −1.24202 + 1.24202i −0.282855 + 0.959163i \(0.591282\pi\)
−0.959163 + 0.282855i \(0.908718\pi\)
\(774\) −1301.07 476.871i −1.68097 0.616112i
\(775\) 940.438 + 940.438i 1.21347 + 1.21347i
\(776\) 571.223 608.250i 0.736112 0.783827i
\(777\) −78.8698 + 166.368i −0.101506 + 0.214116i
\(778\) −476.710 + 281.918i −0.612737 + 0.362363i
\(779\) 920.683i 1.18188i
\(780\) 469.594 1105.14i 0.602043 1.41684i
\(781\) −118.387 −0.151584
\(782\) −330.934 559.594i −0.423190 0.715593i
\(783\) −195.124 788.019i −0.249201 1.00641i
\(784\) −456.307 + 289.553i −0.582024 + 0.369327i
\(785\) −809.624 + 809.624i −1.03137 + 1.03137i
\(786\) 30.7271 + 335.352i 0.0390931 + 0.426657i
\(787\) 284.587 + 284.587i 0.361610 + 0.361610i 0.864406 0.502795i \(-0.167695\pi\)
−0.502795 + 0.864406i \(0.667695\pi\)
\(788\) 44.5678 + 153.416i 0.0565581 + 0.194691i
\(789\) 670.916 1415.23i 0.850337 1.79370i
\(790\) −886.066 227.514i −1.12160 0.287992i
\(791\) −272.818 + 272.818i −0.344902 + 0.344902i
\(792\) 50.4172 733.834i 0.0636581 0.926558i
\(793\) 111.495 452.014i 0.140599 0.570005i
\(794\) 162.959 634.655i 0.205238 0.799314i
\(795\) 656.382 234.190i 0.825638 0.294578i
\(796\) −183.250 + 333.312i −0.230213 + 0.418734i
\(797\) −105.582 −0.132474 −0.0662372 0.997804i \(-0.521099\pi\)
−0.0662372 + 0.997804i \(0.521099\pi\)
\(798\) 48.0020 + 523.888i 0.0601528 + 0.656501i
\(799\) 437.133 437.133i 0.547100 0.547100i
\(800\) 497.592 976.444i 0.621990 1.22055i
\(801\) −37.4223 + 373.056i −0.0467195 + 0.465738i
\(802\) −216.298 55.5385i −0.269698 0.0692500i
\(803\) 301.551i 0.375531i
\(804\) 942.112 + 152.006i 1.17178 + 0.189062i
\(805\) 937.469i 1.16456i
\(806\) 889.374 + 478.013i 1.10344 + 0.593068i
\(807\) −1066.27 505.484i −1.32127 0.626375i
\(808\) −4.44038 141.446i −0.00549552 0.175057i
\(809\) 877.283i 1.08440i −0.840248 0.542202i \(-0.817591\pi\)
0.840248 0.542202i \(-0.182409\pi\)
\(810\) 1122.11 + 543.835i 1.38532 + 0.671402i
\(811\) 519.759 519.759i 0.640886 0.640886i −0.309887 0.950773i \(-0.600291\pi\)
0.950773 + 0.309887i \(0.100291\pi\)
\(812\) 130.909 + 450.630i 0.161218 + 0.554963i
\(813\) 801.033 285.800i 0.985281 0.351537i
\(814\) −163.597 276.634i −0.200979 0.339845i
\(815\) −399.083 −0.489672
\(816\) −496.094 + 61.2051i −0.607959 + 0.0750062i
\(817\) −1223.29 + 1223.29i −1.49729 + 1.49729i
\(818\) −487.738 125.236i −0.596257 0.153100i
\(819\) −430.094 153.018i −0.525145 0.186835i
\(820\) −1105.38 607.720i −1.34803 0.741122i
\(821\) −744.139 + 744.139i −0.906382 + 0.906382i −0.995978 0.0895965i \(-0.971442\pi\)
0.0895965 + 0.995978i \(0.471442\pi\)
\(822\) 407.103 489.231i 0.495259 0.595172i
\(823\) 1435.48 1.74421 0.872104 0.489320i \(-0.162755\pi\)
0.872104 + 0.489320i \(0.162755\pi\)
\(824\) −8.12843 258.928i −0.00986460 0.314233i
\(825\) 988.595 352.720i 1.19830 0.427539i
\(826\) −26.2523 + 15.5252i −0.0317824 + 0.0187956i
\(827\) −365.654 + 365.654i −0.442145 + 0.442145i −0.892732 0.450587i \(-0.851215\pi\)
0.450587 + 0.892732i \(0.351215\pi\)
\(828\) 204.214 + 1105.03i 0.246636 + 1.33458i
\(829\) 25.9567i 0.0313108i −0.999877 0.0156554i \(-0.995017\pi\)
0.999877 0.0156554i \(-0.00498348\pi\)
\(830\) −85.5006 + 50.5636i −0.103013 + 0.0609201i
\(831\) 485.877 + 230.339i 0.584689 + 0.277183i
\(832\) 148.191 818.696i 0.178114 0.984010i
\(833\) 351.736i 0.422252i
\(834\) −1033.98 + 94.7400i −1.23979 + 0.113597i
\(835\) 730.314i 0.874627i
\(836\) −804.716 442.420i −0.962579 0.529210i
\(837\) −541.482 + 897.891i −0.646932 + 1.07275i
\(838\) −794.858 + 470.066i −0.948518 + 0.560937i
\(839\) 13.1071 13.1071i 0.0156223 0.0156223i −0.699253 0.714875i \(-0.746484\pi\)
0.714875 + 0.699253i \(0.246484\pi\)
\(840\) −660.669 288.174i −0.786511 0.343064i
\(841\) −63.0439 −0.0749630
\(842\) 451.555 + 115.945i 0.536289 + 0.137702i
\(843\) −705.226 + 251.617i −0.836567 + 0.298478i
\(844\) −291.928 160.497i −0.345886 0.190163i
\(845\) 1242.07 386.571i 1.46990 0.457480i
\(846\) −969.455 + 449.410i −1.14593 + 0.531218i
\(847\) 45.8814 45.8814i 0.0541693 0.0541693i
\(848\) 407.721 258.722i 0.480804 0.305097i
\(849\) −514.281 + 1084.82i −0.605749 + 1.27777i
\(850\) −363.084 613.957i −0.427157 0.722302i
\(851\) 347.185 + 347.185i 0.407973 + 0.407973i
\(852\) 22.1501 137.283i 0.0259978 0.161131i
\(853\) 605.976 605.976i 0.710405 0.710405i −0.256215 0.966620i \(-0.582475\pi\)
0.966620 + 0.256215i \(0.0824754\pi\)
\(854\) −270.681 69.5023i −0.316957 0.0813844i
\(855\) 1205.17 985.426i 1.40956 1.15255i
\(856\) −21.3935 681.481i −0.0249924 0.796123i
\(857\) 860.293 1.00384 0.501921 0.864913i \(-0.332627\pi\)
0.501921 + 0.864913i \(0.332627\pi\)
\(858\) 641.561 472.638i 0.747740 0.550860i
\(859\) 103.438i 0.120417i −0.998186 0.0602083i \(-0.980824\pi\)
0.998186 0.0602083i \(-0.0191765\pi\)
\(860\) −661.229 2276.15i −0.768871 2.64669i
\(861\) −205.430 + 433.335i −0.238595 + 0.503292i
\(862\) 289.864 + 74.4280i 0.336270 + 0.0863434i
\(863\) −672.167 672.167i −0.778873 0.778873i 0.200766 0.979639i \(-0.435657\pi\)
−0.979639 + 0.200766i \(0.935657\pi\)
\(864\) 841.530 + 195.764i 0.973993 + 0.226578i
\(865\) −5.85653 + 5.85653i −0.00677055 + 0.00677055i
\(866\) 704.389 + 1191.09i 0.813382 + 1.37539i
\(867\) 232.034 489.452i 0.267629 0.564536i
\(868\) 291.996 531.111i 0.336401 0.611879i
\(869\) −429.278 429.278i −0.493990 0.493990i
\(870\) 888.209 1067.39i 1.02093 1.22689i
\(871\) 534.681 + 884.817i 0.613870 + 1.01586i
\(872\) −996.833 + 1061.45i −1.14316 + 1.21726i
\(873\) −93.6961 + 934.039i −0.107327 + 1.06992i
\(874\) 1358.86 + 348.911i 1.55476 + 0.399212i
\(875\) 277.726i 0.317401i
\(876\) −349.682 56.4198i −0.399181 0.0644062i
\(877\) 113.938 + 113.938i 0.129918 + 0.129918i 0.769076 0.639158i \(-0.220717\pi\)
−0.639158 + 0.769076i \(0.720717\pi\)
\(878\) −203.243 + 120.194i −0.231484 + 0.136896i
\(879\) 1144.24 408.253i 1.30176 0.464452i
\(880\) 1062.35 674.119i 1.20721 0.766044i
\(881\) 1133.08 1.28613 0.643064 0.765813i \(-0.277663\pi\)
0.643064 + 0.765813i \(0.277663\pi\)
\(882\) 209.226 570.841i 0.237217 0.647212i
\(883\) −1121.07 −1.26961 −0.634806 0.772671i \(-0.718920\pi\)
−0.634806 + 0.772671i \(0.718920\pi\)
\(884\) −398.237 366.934i −0.450494 0.415084i
\(885\) 81.5525 + 38.6615i 0.0921497 + 0.0436853i
\(886\) 1231.80 728.468i 1.39030 0.822199i
\(887\) −1215.46 −1.37030 −0.685151 0.728401i \(-0.740264\pi\)
−0.685151 + 0.728401i \(0.740264\pi\)
\(888\) 351.397 137.951i 0.395718 0.155350i
\(889\) −286.158 286.158i −0.321888 0.321888i
\(890\) −552.010 + 326.449i −0.620236 + 0.366797i
\(891\) 457.254 + 689.703i 0.513192 + 0.774077i
\(892\) 411.750 + 1417.37i 0.461604 + 1.58898i
\(893\) 1334.04i 1.49389i
\(894\) 900.785 + 749.569i 1.00759 + 0.838444i
\(895\) −1528.61 1528.61i −1.70794 1.70794i
\(896\) −490.569 93.6209i −0.547510 0.104488i
\(897\) −769.758 + 943.135i −0.858147 + 1.05143i
\(898\) −114.716 29.4555i −0.127746 0.0328012i
\(899\) 825.650 + 825.650i 0.918410 + 0.918410i
\(900\) 224.053 + 1212.38i 0.248948 + 1.34709i
\(901\) 314.285i 0.348818i
\(902\) −426.117 720.543i −0.472413 0.798828i
\(903\) −848.711 + 302.811i −0.939879 + 0.335338i
\(904\) 790.689 24.8218i 0.874655 0.0274578i
\(905\) −1697.45 1697.45i −1.87563 1.87563i
\(906\) −578.353 + 695.029i −0.638359 + 0.767140i
\(907\) −705.040 −0.777332 −0.388666 0.921379i \(-0.627064\pi\)
−0.388666 + 0.921379i \(0.627064\pi\)
\(908\) −370.034 + 107.496i −0.407526 + 0.118387i
\(909\) 100.777 + 123.250i 0.110866 + 0.135588i
\(910\) −224.950 747.744i −0.247197 0.821697i
\(911\) −1360.01 −1.49288 −0.746438 0.665455i \(-0.768238\pi\)
−0.746438 + 0.665455i \(0.768238\pi\)
\(912\) 663.597 850.383i 0.727628 0.932437i
\(913\) −65.9199 −0.0722014
\(914\) 223.776 + 57.4587i 0.244832 + 0.0628651i
\(915\) 277.896 + 778.880i 0.303711 + 0.851235i
\(916\) 241.993 + 833.015i 0.264185 + 0.909405i
\(917\) 154.849 + 154.849i 0.168865 + 0.168865i
\(918\) 401.040 394.195i 0.436863 0.429407i
\(919\) 288.668i 0.314110i 0.987590 + 0.157055i \(0.0502001\pi\)
−0.987590 + 0.157055i \(0.949800\pi\)
\(920\) −1315.85 + 1401.15i −1.43028 + 1.52299i
\(921\) −1155.82 + 412.384i −1.25496 + 0.447757i
\(922\) −68.5780 + 267.081i −0.0743796 + 0.289676i
\(923\) 128.935 77.9131i 0.139691 0.0844129i
\(924\) −280.036 387.787i −0.303070 0.419683i
\(925\) 380.913 + 380.913i 0.411798 + 0.411798i
\(926\) 405.718 + 104.176i 0.438141 + 0.112501i
\(927\) 184.479 + 225.617i 0.199007 + 0.243384i
\(928\) 436.857 857.261i 0.470751 0.923773i
\(929\) −15.1256 + 15.1256i −0.0162816 + 0.0162816i −0.715201 0.698919i \(-0.753665\pi\)
0.698919 + 0.715201i \(0.253665\pi\)
\(930\) −1786.02 + 163.647i −1.92046 + 0.175964i
\(931\) −536.714 536.714i −0.576492 0.576492i
\(932\) 610.429 1110.31i 0.654967 1.19132i
\(933\) −590.780 280.070i −0.633205 0.300183i
\(934\) 624.063 + 1055.26i 0.668161 + 1.12983i
\(935\) 818.891i 0.875819i
\(936\) 428.042 + 832.392i 0.457310 + 0.889308i
\(937\) 908.180 0.969242 0.484621 0.874724i \(-0.338957\pi\)
0.484621 + 0.874724i \(0.338957\pi\)
\(938\) 534.154 315.889i 0.569460 0.336769i
\(939\) 507.097 1069.67i 0.540039 1.13916i
\(940\) −1601.66 880.568i −1.70390 0.936774i
\(941\) 155.836 155.836i 0.165607 0.165607i −0.619439 0.785045i \(-0.712640\pi\)
0.785045 + 0.619439i \(0.212640\pi\)
\(942\) −81.4367 888.791i −0.0864508 0.943514i
\(943\) 904.305 + 904.305i 0.958966 + 0.958966i
\(944\) 61.0283 + 13.6443i 0.0646487 + 0.0144537i
\(945\) 787.110 194.899i 0.832920 0.206243i
\(946\) 391.196 1523.54i 0.413527 1.61051i
\(947\) 347.766 347.766i 0.367230 0.367230i −0.499236 0.866466i \(-0.666386\pi\)
0.866466 + 0.499236i \(0.166386\pi\)
\(948\) 578.113 417.478i 0.609824 0.440378i
\(949\) −198.457 328.416i −0.209122 0.346066i
\(950\) 1490.87 + 382.807i 1.56933 + 0.402955i
\(951\) 490.242 + 1374.04i 0.515502 + 1.44484i
\(952\) −222.521 + 236.944i −0.233740 + 0.248891i
\(953\) 855.448 0.897637 0.448818 0.893623i \(-0.351845\pi\)
0.448818 + 0.893623i \(0.351845\pi\)
\(954\) −186.948 + 510.060i −0.195962 + 0.534654i
\(955\) −528.339 + 528.339i −0.553235 + 0.553235i
\(956\) −499.868 + 145.213i −0.522875 + 0.151897i
\(957\) 867.929 309.667i 0.906927 0.323581i
\(958\) −397.722 + 1548.95i −0.415159 + 1.61686i
\(959\) 413.883i 0.431577i
\(960\) 582.953 + 1358.04i 0.607243 + 1.41462i
\(961\) 547.109i 0.569312i
\(962\) 360.230 + 193.613i 0.374460 + 0.201261i
\(963\) 485.538 + 593.810i 0.504193 + 0.616625i
\(964\) −437.135 1504.76i −0.453460 1.56095i
\(965\) 1290.86i 1.33768i
\(966\) 561.716 + 467.420i 0.581487 + 0.483872i
\(967\) 128.444 128.444i 0.132827 0.132827i −0.637567 0.770395i \(-0.720059\pi\)
0.770395 + 0.637567i \(0.220059\pi\)
\(968\) −132.975 + 4.17443i −0.137371 + 0.00431243i
\(969\) −235.918 661.225i −0.243465 0.682379i
\(970\) −1382.09 + 817.347i −1.42484 + 0.842626i
\(971\) −214.511 −0.220918 −0.110459 0.993881i \(-0.535232\pi\)
−0.110459 + 0.993881i \(0.535232\pi\)
\(972\) −885.340 + 401.196i −0.910843 + 0.412753i
\(973\) −477.442 + 477.442i −0.490690 + 0.490690i
\(974\) −86.8468 + 338.230i −0.0891651 + 0.347259i
\(975\) −844.537 + 1034.76i −0.866192 + 1.06129i
\(976\) 307.006 + 483.813i 0.314556 + 0.495710i
\(977\) 1135.10 1135.10i 1.16182 1.16182i 0.177739 0.984078i \(-0.443122\pi\)
0.984078 0.177739i \(-0.0568784\pi\)
\(978\) 198.982 239.124i 0.203458 0.244503i
\(979\) −425.592 −0.434722
\(980\) 998.655 290.112i 1.01904 0.296033i
\(981\) 163.508 1629.98i 0.166675 1.66155i
\(982\) −593.309 1003.26i −0.604184 1.02165i
\(983\) 1008.71 1008.71i 1.02615 1.02615i 0.0265010 0.999649i \(-0.491563\pi\)
0.999649 0.0265010i \(-0.00843653\pi\)
\(984\) 915.276 359.318i 0.930159 0.365160i
\(985\) 307.425i 0.312107i
\(986\) −318.767 539.019i −0.323293 0.546672i
\(987\) −297.662 + 627.888i −0.301583 + 0.636158i
\(988\) 1167.57 47.7645i 1.18176 0.0483446i
\(989\) 2403.06i 2.42978i
\(990\) −487.106 + 1329.00i −0.492026 + 1.34242i
\(991\) 1656.57i 1.67162i −0.549020 0.835809i \(-0.684999\pi\)
0.549020 0.835809i \(-0.315001\pi\)
\(992\) −1181.90 + 383.949i −1.19143 + 0.387046i
\(993\) −49.9702 140.055i −0.0503224 0.141043i
\(994\) −46.0310 77.8362i −0.0463089 0.0783060i
\(995\) 517.560 517.560i 0.520161 0.520161i
\(996\) 12.3335 76.4415i 0.0123831 0.0767485i
\(997\) −215.724 −0.216373 −0.108187 0.994131i \(-0.534504\pi\)
−0.108187 + 0.994131i \(0.534504\pi\)
\(998\) −41.1166 + 160.131i −0.0411990 + 0.160452i
\(999\) −219.321 + 363.680i −0.219541 + 0.364044i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 156.3.l.c.47.9 96
3.2 odd 2 inner 156.3.l.c.47.40 yes 96
4.3 odd 2 inner 156.3.l.c.47.16 yes 96
12.11 even 2 inner 156.3.l.c.47.33 yes 96
13.5 odd 4 inner 156.3.l.c.83.33 yes 96
39.5 even 4 inner 156.3.l.c.83.16 yes 96
52.31 even 4 inner 156.3.l.c.83.40 yes 96
156.83 odd 4 inner 156.3.l.c.83.9 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.3.l.c.47.9 96 1.1 even 1 trivial
156.3.l.c.47.16 yes 96 4.3 odd 2 inner
156.3.l.c.47.33 yes 96 12.11 even 2 inner
156.3.l.c.47.40 yes 96 3.2 odd 2 inner
156.3.l.c.83.9 yes 96 156.83 odd 4 inner
156.3.l.c.83.16 yes 96 39.5 even 4 inner
156.3.l.c.83.33 yes 96 13.5 odd 4 inner
156.3.l.c.83.40 yes 96 52.31 even 4 inner