Properties

Label 1550.3.d.a.1549.7
Level $1550$
Weight $3$
Character 1550.1549
Analytic conductor $42.234$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1550,3,Mod(1549,1550)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1550, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1550.1549"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1550 = 2 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1550.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2344409758\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.9265217536.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 20x^{5} + 144x^{4} - 332x^{3} + 696x^{2} - 868x + 961 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 62)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1549.7
Root \(-2.35291 + 2.38882i\) of defining polynomial
Character \(\chi\) \(=\) 1550.1549
Dual form 1550.3.d.a.1549.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} +3.34239 q^{3} -2.00000 q^{4} +4.72685i q^{6} -1.58579i q^{7} -2.82843i q^{8} +2.17157 q^{9} -2.76893i q^{11} -6.68478 q^{12} -14.7540 q^{13} +2.24264 q^{14} +4.00000 q^{16} +17.5230 q^{17} +3.07107i q^{18} +12.2132 q^{19} -5.30032i q^{21} +3.91585 q^{22} +22.2498 q^{23} -9.45371i q^{24} -20.8653i q^{26} -22.8233 q^{27} +3.17157i q^{28} -14.7540i q^{29} +(21.5858 - 22.2498i) q^{31} +5.65685i q^{32} -9.25483i q^{33} +24.7812i q^{34} -4.34315 q^{36} +8.30678 q^{37} +17.2721i q^{38} -49.3137 q^{39} +5.34315 q^{41} +7.49578 q^{42} +60.0646 q^{43} +5.53785i q^{44} +31.4660i q^{46} +39.7401i q^{47} +13.3696 q^{48} +46.4853 q^{49} +58.5685 q^{51} +29.5080 q^{52} +92.9151 q^{53} -32.2770i q^{54} -4.48528 q^{56} +40.8213 q^{57} +20.8653 q^{58} -13.7868 q^{59} -69.8543i q^{61} +(31.4660 + 30.5269i) q^{62} -3.44365i q^{63} -8.00000 q^{64} +13.0883 q^{66} -109.054i q^{67} -35.0459 q^{68} +74.3675 q^{69} +2.75736 q^{71} -6.14214i q^{72} -74.0077 q^{73} +11.7476i q^{74} -24.4264 q^{76} -4.39093 q^{77} -69.7401i q^{78} +102.942i q^{79} -95.8284 q^{81} +7.55635i q^{82} +110.872 q^{83} +10.6006i q^{84} +84.9442i q^{86} -49.3137i q^{87} -7.83171 q^{88} +50.4718i q^{89} +23.3967i q^{91} -44.4996 q^{92} +(72.1481 - 74.3675i) q^{93} -56.2010 q^{94} +18.9074i q^{96} -113.711i q^{97} +65.7401i q^{98} -6.01293i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{4} + 40 q^{9} - 16 q^{14} + 32 q^{16} - 72 q^{19} + 184 q^{31} - 80 q^{36} - 304 q^{39} + 88 q^{41} + 304 q^{49} + 16 q^{51} + 32 q^{56} - 280 q^{59} - 64 q^{64} + 512 q^{66} - 16 q^{69} + 56 q^{71}+ \cdots - 608 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1550\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(1427\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 3.34239 1.11413 0.557065 0.830469i \(-0.311927\pi\)
0.557065 + 0.830469i \(0.311927\pi\)
\(4\) −2.00000 −0.500000
\(5\) 0 0
\(6\) 4.72685i 0.787809i
\(7\) 1.58579i 0.226541i −0.993564 0.113270i \(-0.963867\pi\)
0.993564 0.113270i \(-0.0361327\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 2.17157 0.241286
\(10\) 0 0
\(11\) 2.76893i 0.251721i −0.992048 0.125860i \(-0.959831\pi\)
0.992048 0.125860i \(-0.0401691\pi\)
\(12\) −6.68478 −0.557065
\(13\) −14.7540 −1.13492 −0.567462 0.823399i \(-0.692075\pi\)
−0.567462 + 0.823399i \(0.692075\pi\)
\(14\) 2.24264 0.160189
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) 17.5230 1.03076 0.515381 0.856961i \(-0.327650\pi\)
0.515381 + 0.856961i \(0.327650\pi\)
\(18\) 3.07107i 0.170615i
\(19\) 12.2132 0.642800 0.321400 0.946943i \(-0.395847\pi\)
0.321400 + 0.946943i \(0.395847\pi\)
\(20\) 0 0
\(21\) 5.30032i 0.252396i
\(22\) 3.91585 0.177993
\(23\) 22.2498 0.967383 0.483691 0.875239i \(-0.339296\pi\)
0.483691 + 0.875239i \(0.339296\pi\)
\(24\) 9.45371i 0.393904i
\(25\) 0 0
\(26\) 20.8653i 0.802513i
\(27\) −22.8233 −0.845306
\(28\) 3.17157i 0.113270i
\(29\) 14.7540i 0.508759i −0.967104 0.254380i \(-0.918129\pi\)
0.967104 0.254380i \(-0.0818713\pi\)
\(30\) 0 0
\(31\) 21.5858 22.2498i 0.696316 0.717736i
\(32\) 5.65685i 0.176777i
\(33\) 9.25483i 0.280450i
\(34\) 24.7812i 0.728859i
\(35\) 0 0
\(36\) −4.34315 −0.120643
\(37\) 8.30678 0.224508 0.112254 0.993680i \(-0.464193\pi\)
0.112254 + 0.993680i \(0.464193\pi\)
\(38\) 17.2721i 0.454528i
\(39\) −49.3137 −1.26445
\(40\) 0 0
\(41\) 5.34315 0.130321 0.0651603 0.997875i \(-0.479244\pi\)
0.0651603 + 0.997875i \(0.479244\pi\)
\(42\) 7.49578 0.178471
\(43\) 60.0646 1.39685 0.698426 0.715682i \(-0.253884\pi\)
0.698426 + 0.715682i \(0.253884\pi\)
\(44\) 5.53785i 0.125860i
\(45\) 0 0
\(46\) 31.4660i 0.684043i
\(47\) 39.7401i 0.845534i 0.906238 + 0.422767i \(0.138941\pi\)
−0.906238 + 0.422767i \(0.861059\pi\)
\(48\) 13.3696 0.278533
\(49\) 46.4853 0.948679
\(50\) 0 0
\(51\) 58.5685 1.14840
\(52\) 29.5080 0.567462
\(53\) 92.9151 1.75311 0.876557 0.481298i \(-0.159834\pi\)
0.876557 + 0.481298i \(0.159834\pi\)
\(54\) 32.2770i 0.597722i
\(55\) 0 0
\(56\) −4.48528 −0.0800943
\(57\) 40.8213 0.716163
\(58\) 20.8653 0.359747
\(59\) −13.7868 −0.233675 −0.116837 0.993151i \(-0.537276\pi\)
−0.116837 + 0.993151i \(0.537276\pi\)
\(60\) 0 0
\(61\) 69.8543i 1.14515i −0.819852 0.572576i \(-0.805944\pi\)
0.819852 0.572576i \(-0.194056\pi\)
\(62\) 31.4660 + 30.5269i 0.507516 + 0.492370i
\(63\) 3.44365i 0.0546611i
\(64\) −8.00000 −0.125000
\(65\) 0 0
\(66\) 13.0883 0.198308
\(67\) 109.054i 1.62767i −0.581097 0.813835i \(-0.697376\pi\)
0.581097 0.813835i \(-0.302624\pi\)
\(68\) −35.0459 −0.515381
\(69\) 74.3675 1.07779
\(70\) 0 0
\(71\) 2.75736 0.0388360 0.0194180 0.999811i \(-0.493819\pi\)
0.0194180 + 0.999811i \(0.493819\pi\)
\(72\) 6.14214i 0.0853074i
\(73\) −74.0077 −1.01380 −0.506902 0.862004i \(-0.669209\pi\)
−0.506902 + 0.862004i \(0.669209\pi\)
\(74\) 11.7476i 0.158751i
\(75\) 0 0
\(76\) −24.4264 −0.321400
\(77\) −4.39093 −0.0570250
\(78\) 69.7401i 0.894104i
\(79\) 102.942i 1.30307i 0.758620 + 0.651533i \(0.225874\pi\)
−0.758620 + 0.651533i \(0.774126\pi\)
\(80\) 0 0
\(81\) −95.8284 −1.18307
\(82\) 7.55635i 0.0921506i
\(83\) 110.872 1.33581 0.667906 0.744246i \(-0.267191\pi\)
0.667906 + 0.744246i \(0.267191\pi\)
\(84\) 10.6006i 0.126198i
\(85\) 0 0
\(86\) 84.9442i 0.987723i
\(87\) 49.3137i 0.566824i
\(88\) −7.83171 −0.0889967
\(89\) 50.4718i 0.567099i 0.958958 + 0.283549i \(0.0915120\pi\)
−0.958958 + 0.283549i \(0.908488\pi\)
\(90\) 0 0
\(91\) 23.3967i 0.257107i
\(92\) −44.4996 −0.483691
\(93\) 72.1481 74.3675i 0.775786 0.799651i
\(94\) −56.2010 −0.597883
\(95\) 0 0
\(96\) 18.9074i 0.196952i
\(97\) 113.711i 1.17228i −0.810212 0.586138i \(-0.800648\pi\)
0.810212 0.586138i \(-0.199352\pi\)
\(98\) 65.7401i 0.670818i
\(99\) 6.01293i 0.0607366i
\(100\) 0 0
\(101\) 172.255 1.70549 0.852747 0.522325i \(-0.174935\pi\)
0.852747 + 0.522325i \(0.174935\pi\)
\(102\) 82.8284i 0.812043i
\(103\) 3.75231i 0.0364302i 0.999834 + 0.0182151i \(0.00579836\pi\)
−0.999834 + 0.0182151i \(0.994202\pi\)
\(104\) 41.7307i 0.401257i
\(105\) 0 0
\(106\) 131.402i 1.23964i
\(107\) 4.81623i 0.0450115i 0.999747 + 0.0225058i \(0.00716441\pi\)
−0.999747 + 0.0225058i \(0.992836\pi\)
\(108\) 45.6465 0.422653
\(109\) −80.6812 −0.740195 −0.370097 0.928993i \(-0.620676\pi\)
−0.370097 + 0.928993i \(0.620676\pi\)
\(110\) 0 0
\(111\) 27.7645 0.250131
\(112\) 6.34315i 0.0566352i
\(113\) 175.853i 1.55622i −0.628128 0.778110i \(-0.716179\pi\)
0.628128 0.778110i \(-0.283821\pi\)
\(114\) 57.7300i 0.506404i
\(115\) 0 0
\(116\) 29.5080i 0.254380i
\(117\) −32.0394 −0.273841
\(118\) 19.4975i 0.165233i
\(119\) 27.7877i 0.233510i
\(120\) 0 0
\(121\) 113.333 0.936637
\(122\) 98.7889 0.809745
\(123\) 17.8589 0.145194
\(124\) −43.1716 + 44.4996i −0.348158 + 0.358868i
\(125\) 0 0
\(126\) 4.87006 0.0386513
\(127\) −105.810 −0.833146 −0.416573 0.909102i \(-0.636769\pi\)
−0.416573 + 0.909102i \(0.636769\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 200.759 1.55627
\(130\) 0 0
\(131\) −169.848 −1.29655 −0.648274 0.761407i \(-0.724509\pi\)
−0.648274 + 0.761407i \(0.724509\pi\)
\(132\) 18.5097i 0.140225i
\(133\) 19.3675i 0.145621i
\(134\) 154.225 1.15094
\(135\) 0 0
\(136\) 49.5624i 0.364429i
\(137\) −1.85954 −0.0135733 −0.00678663 0.999977i \(-0.502160\pi\)
−0.00678663 + 0.999977i \(0.502160\pi\)
\(138\) 105.172i 0.762113i
\(139\) 24.4453i 0.175865i 0.996126 + 0.0879326i \(0.0280260\pi\)
−0.996126 + 0.0879326i \(0.971974\pi\)
\(140\) 0 0
\(141\) 132.827i 0.942035i
\(142\) 3.89949i 0.0274612i
\(143\) 40.8528i 0.285684i
\(144\) 8.68629 0.0603215
\(145\) 0 0
\(146\) 104.663i 0.716867i
\(147\) 155.372 1.05695
\(148\) −16.6136 −0.112254
\(149\) 62.0244 0.416271 0.208136 0.978100i \(-0.433260\pi\)
0.208136 + 0.978100i \(0.433260\pi\)
\(150\) 0 0
\(151\) 28.2627i 0.187170i −0.995611 0.0935852i \(-0.970167\pi\)
0.995611 0.0935852i \(-0.0298328\pi\)
\(152\) 34.5442i 0.227264i
\(153\) 38.0524 0.248708
\(154\) 6.20971i 0.0403228i
\(155\) 0 0
\(156\) 98.6274 0.632227
\(157\) 179.569i 1.14375i 0.820341 + 0.571874i \(0.193784\pi\)
−0.820341 + 0.571874i \(0.806216\pi\)
\(158\) −145.582 −0.921407
\(159\) 310.558 1.95320
\(160\) 0 0
\(161\) 35.2834i 0.219152i
\(162\) 135.522i 0.836555i
\(163\) 263.718i 1.61790i −0.587877 0.808950i \(-0.700036\pi\)
0.587877 0.808950i \(-0.299964\pi\)
\(164\) −10.6863 −0.0651603
\(165\) 0 0
\(166\) 156.797i 0.944561i
\(167\) 125.192 0.749653 0.374826 0.927095i \(-0.377702\pi\)
0.374826 + 0.927095i \(0.377702\pi\)
\(168\) −14.9916 −0.0892355
\(169\) 48.6812 0.288055
\(170\) 0 0
\(171\) 26.5219 0.155099
\(172\) −120.129 −0.698426
\(173\) 134.711i 0.778674i −0.921095 0.389337i \(-0.872704\pi\)
0.921095 0.389337i \(-0.127296\pi\)
\(174\) 69.7401 0.400805
\(175\) 0 0
\(176\) 11.0757i 0.0629302i
\(177\) −46.0809 −0.260344
\(178\) −71.3779 −0.400999
\(179\) 316.183i 1.76639i 0.469008 + 0.883194i \(0.344611\pi\)
−0.469008 + 0.883194i \(0.655389\pi\)
\(180\) 0 0
\(181\) 329.217i 1.81888i 0.415837 + 0.909439i \(0.363489\pi\)
−0.415837 + 0.909439i \(0.636511\pi\)
\(182\) −33.0880 −0.181802
\(183\) 233.480i 1.27585i
\(184\) 62.9320i 0.342021i
\(185\) 0 0
\(186\) 105.172 + 102.033i 0.565439 + 0.548564i
\(187\) 48.5198i 0.259464i
\(188\) 79.4802i 0.422767i
\(189\) 36.1928i 0.191496i
\(190\) 0 0
\(191\) −250.213 −1.31002 −0.655008 0.755622i \(-0.727335\pi\)
−0.655008 + 0.755622i \(0.727335\pi\)
\(192\) −26.7391 −0.139266
\(193\) 70.3970i 0.364751i 0.983229 + 0.182376i \(0.0583787\pi\)
−0.983229 + 0.182376i \(0.941621\pi\)
\(194\) 160.811 0.828924
\(195\) 0 0
\(196\) −92.9706 −0.474340
\(197\) −321.623 −1.63260 −0.816302 0.577626i \(-0.803979\pi\)
−0.816302 + 0.577626i \(0.803979\pi\)
\(198\) 8.50356 0.0429473
\(199\) 107.235i 0.538868i −0.963019 0.269434i \(-0.913163\pi\)
0.963019 0.269434i \(-0.0868366\pi\)
\(200\) 0 0
\(201\) 364.500i 1.81344i
\(202\) 243.605i 1.20597i
\(203\) −23.3967 −0.115255
\(204\) −117.137 −0.574201
\(205\) 0 0
\(206\) −5.30657 −0.0257600
\(207\) 48.3171 0.233416
\(208\) −59.0161 −0.283731
\(209\) 33.8175i 0.161806i
\(210\) 0 0
\(211\) −55.0172 −0.260745 −0.130373 0.991465i \(-0.541617\pi\)
−0.130373 + 0.991465i \(0.541617\pi\)
\(212\) −185.830 −0.876557
\(213\) 9.21617 0.0432684
\(214\) −6.81118 −0.0318280
\(215\) 0 0
\(216\) 64.5540i 0.298861i
\(217\) −35.2834 34.2304i −0.162596 0.157744i
\(218\) 114.101i 0.523397i
\(219\) −247.362 −1.12951
\(220\) 0 0
\(221\) −258.534 −1.16984
\(222\) 39.2649i 0.176869i
\(223\) 209.522 0.939561 0.469780 0.882783i \(-0.344333\pi\)
0.469780 + 0.882783i \(0.344333\pi\)
\(224\) 8.97056 0.0400472
\(225\) 0 0
\(226\) 248.693 1.10041
\(227\) 173.515i 0.764382i −0.924083 0.382191i \(-0.875170\pi\)
0.924083 0.382191i \(-0.124830\pi\)
\(228\) −81.6426 −0.358082
\(229\) 38.4867i 0.168064i −0.996463 0.0840321i \(-0.973220\pi\)
0.996463 0.0840321i \(-0.0267798\pi\)
\(230\) 0 0
\(231\) −14.6762 −0.0635333
\(232\) −41.7307 −0.179874
\(233\) 136.019i 0.583774i −0.956453 0.291887i \(-0.905717\pi\)
0.956453 0.291887i \(-0.0942831\pi\)
\(234\) 45.3106i 0.193635i
\(235\) 0 0
\(236\) 27.5736 0.116837
\(237\) 344.073i 1.45179i
\(238\) 39.2977 0.165116
\(239\) 396.876i 1.66057i 0.557340 + 0.830284i \(0.311822\pi\)
−0.557340 + 0.830284i \(0.688178\pi\)
\(240\) 0 0
\(241\) 152.406i 0.632391i −0.948694 0.316196i \(-0.897594\pi\)
0.948694 0.316196i \(-0.102406\pi\)
\(242\) 160.277i 0.662302i
\(243\) −114.887 −0.472784
\(244\) 139.709i 0.572576i
\(245\) 0 0
\(246\) 25.2563i 0.102668i
\(247\) −180.194 −0.729530
\(248\) −62.9320 61.0538i −0.253758 0.246185i
\(249\) 370.579 1.48827
\(250\) 0 0
\(251\) 148.589i 0.591987i 0.955190 + 0.295994i \(0.0956507\pi\)
−0.955190 + 0.295994i \(0.904349\pi\)
\(252\) 6.88730i 0.0273306i
\(253\) 61.6081i 0.243510i
\(254\) 149.637i 0.589123i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 383.818i 1.49346i −0.665129 0.746728i \(-0.731624\pi\)
0.665129 0.746728i \(-0.268376\pi\)
\(258\) 283.917i 1.10045i
\(259\) 13.1728i 0.0508602i
\(260\) 0 0
\(261\) 32.0394i 0.122756i
\(262\) 240.201i 0.916798i
\(263\) 194.710 0.740344 0.370172 0.928963i \(-0.379299\pi\)
0.370172 + 0.928963i \(0.379299\pi\)
\(264\) −26.1766 −0.0991539
\(265\) 0 0
\(266\) 27.3898 0.102969
\(267\) 168.696i 0.631822i
\(268\) 218.108i 0.813835i
\(269\) 180.686i 0.671695i 0.941916 + 0.335847i \(0.109023\pi\)
−0.941916 + 0.335847i \(0.890977\pi\)
\(270\) 0 0
\(271\) 48.9889i 0.180771i −0.995907 0.0903855i \(-0.971190\pi\)
0.995907 0.0903855i \(-0.0288099\pi\)
\(272\) 70.0918 0.257690
\(273\) 78.2010i 0.286451i
\(274\) 2.62978i 0.00959774i
\(275\) 0 0
\(276\) −148.735 −0.538895
\(277\) 359.397 1.29746 0.648731 0.761018i \(-0.275300\pi\)
0.648731 + 0.761018i \(0.275300\pi\)
\(278\) −34.5708 −0.124356
\(279\) 46.8751 48.3171i 0.168011 0.173179i
\(280\) 0 0
\(281\) 203.333 0.723605 0.361803 0.932255i \(-0.382161\pi\)
0.361803 + 0.932255i \(0.382161\pi\)
\(282\) −187.846 −0.666120
\(283\) 347.789i 1.22894i 0.788942 + 0.614468i \(0.210629\pi\)
−0.788942 + 0.614468i \(0.789371\pi\)
\(284\) −5.51472 −0.0194180
\(285\) 0 0
\(286\) −57.7746 −0.202009
\(287\) 8.47309i 0.0295230i
\(288\) 12.2843i 0.0426537i
\(289\) 18.0538 0.0624700
\(290\) 0 0
\(291\) 380.065i 1.30607i
\(292\) 148.015 0.506902
\(293\) 73.4071i 0.250536i −0.992123 0.125268i \(-0.960021\pi\)
0.992123 0.125268i \(-0.0399791\pi\)
\(294\) 219.729i 0.747378i
\(295\) 0 0
\(296\) 23.4951i 0.0793754i
\(297\) 63.1960i 0.212781i
\(298\) 87.7157i 0.294348i
\(299\) −328.274 −1.09791
\(300\) 0 0
\(301\) 95.2497i 0.316444i
\(302\) 39.9695 0.132349
\(303\) 575.743 1.90014
\(304\) 48.8528 0.160700
\(305\) 0 0
\(306\) 53.8142i 0.175863i
\(307\) 340.532i 1.10922i 0.832109 + 0.554612i \(0.187133\pi\)
−0.832109 + 0.554612i \(0.812867\pi\)
\(308\) 8.78185 0.0285125
\(309\) 12.5417i 0.0405880i
\(310\) 0 0
\(311\) −318.252 −1.02332 −0.511659 0.859189i \(-0.670969\pi\)
−0.511659 + 0.859189i \(0.670969\pi\)
\(312\) 139.480i 0.447052i
\(313\) −380.123 −1.21445 −0.607225 0.794530i \(-0.707718\pi\)
−0.607225 + 0.794530i \(0.707718\pi\)
\(314\) −253.948 −0.808752
\(315\) 0 0
\(316\) 205.884i 0.651533i
\(317\) 384.470i 1.21284i 0.795145 + 0.606420i \(0.207395\pi\)
−0.795145 + 0.606420i \(0.792605\pi\)
\(318\) 439.196i 1.38112i
\(319\) −40.8528 −0.128065
\(320\) 0 0
\(321\) 16.0977i 0.0501487i
\(322\) 49.8983 0.154964
\(323\) 214.011 0.662574
\(324\) 191.657 0.591534
\(325\) 0 0
\(326\) 372.953 1.14403
\(327\) −269.668 −0.824673
\(328\) 15.1127i 0.0460753i
\(329\) 63.0193 0.191548
\(330\) 0 0
\(331\) 409.000i 1.23565i 0.786316 + 0.617825i \(0.211986\pi\)
−0.786316 + 0.617825i \(0.788014\pi\)
\(332\) −221.745 −0.667906
\(333\) 18.0388 0.0541705
\(334\) 177.048i 0.530085i
\(335\) 0 0
\(336\) 21.2013i 0.0630990i
\(337\) 113.404 0.336510 0.168255 0.985744i \(-0.446187\pi\)
0.168255 + 0.985744i \(0.446187\pi\)
\(338\) 68.8457i 0.203685i
\(339\) 587.769i 1.73383i
\(340\) 0 0
\(341\) −61.6081 59.7695i −0.180669 0.175277i
\(342\) 37.5076i 0.109671i
\(343\) 151.419i 0.441456i
\(344\) 169.888i 0.493862i
\(345\) 0 0
\(346\) 190.510 0.550606
\(347\) 143.329 0.413053 0.206526 0.978441i \(-0.433784\pi\)
0.206526 + 0.978441i \(0.433784\pi\)
\(348\) 98.6274i 0.283412i
\(349\) −52.9361 −0.151679 −0.0758396 0.997120i \(-0.524164\pi\)
−0.0758396 + 0.997120i \(0.524164\pi\)
\(350\) 0 0
\(351\) 336.735 0.959359
\(352\) 15.6634 0.0444983
\(353\) 598.746 1.69616 0.848082 0.529865i \(-0.177757\pi\)
0.848082 + 0.529865i \(0.177757\pi\)
\(354\) 65.1682i 0.184091i
\(355\) 0 0
\(356\) 100.944i 0.283549i
\(357\) 92.8772i 0.260160i
\(358\) −447.151 −1.24902
\(359\) −370.806 −1.03289 −0.516443 0.856322i \(-0.672744\pi\)
−0.516443 + 0.856322i \(0.672744\pi\)
\(360\) 0 0
\(361\) −211.838 −0.586808
\(362\) −465.583 −1.28614
\(363\) 378.803 1.04354
\(364\) 46.7935i 0.128553i
\(365\) 0 0
\(366\) 330.191 0.902161
\(367\) 489.217 1.33302 0.666509 0.745497i \(-0.267788\pi\)
0.666509 + 0.745497i \(0.267788\pi\)
\(368\) 88.9992 0.241846
\(369\) 11.6030 0.0314445
\(370\) 0 0
\(371\) 147.343i 0.397152i
\(372\) −144.296 + 148.735i −0.387893 + 0.399825i
\(373\) 423.461i 1.13528i 0.823276 + 0.567642i \(0.192144\pi\)
−0.823276 + 0.567642i \(0.807856\pi\)
\(374\) 68.6173 0.183469
\(375\) 0 0
\(376\) 112.402 0.298942
\(377\) 217.681i 0.577404i
\(378\) −51.1844 −0.135408
\(379\) −208.711 −0.550688 −0.275344 0.961346i \(-0.588792\pi\)
−0.275344 + 0.961346i \(0.588792\pi\)
\(380\) 0 0
\(381\) −353.657 −0.928233
\(382\) 353.855i 0.926322i
\(383\) −716.500 −1.87076 −0.935379 0.353648i \(-0.884941\pi\)
−0.935379 + 0.353648i \(0.884941\pi\)
\(384\) 37.8148i 0.0984761i
\(385\) 0 0
\(386\) −99.5563 −0.257918
\(387\) 130.435 0.337041
\(388\) 227.421i 0.586138i
\(389\) 70.1733i 0.180394i 0.995924 + 0.0901971i \(0.0287497\pi\)
−0.995924 + 0.0901971i \(0.971250\pi\)
\(390\) 0 0
\(391\) 389.882 0.997141
\(392\) 131.480i 0.335409i
\(393\) −567.698 −1.44452
\(394\) 454.843i 1.15442i
\(395\) 0 0
\(396\) 12.0259i 0.0303683i
\(397\) 484.696i 1.22090i −0.792057 0.610448i \(-0.790990\pi\)
0.792057 0.610448i \(-0.209010\pi\)
\(398\) 151.653 0.381037
\(399\) 64.7339i 0.162240i
\(400\) 0 0
\(401\) 424.819i 1.05940i −0.848185 0.529700i \(-0.822304\pi\)
0.848185 0.529700i \(-0.177696\pi\)
\(402\) 515.481 1.28229
\(403\) −318.477 + 328.274i −0.790266 + 0.814576i
\(404\) −344.510 −0.852747
\(405\) 0 0
\(406\) 33.0880i 0.0814975i
\(407\) 23.0009i 0.0565132i
\(408\) 165.657i 0.406022i
\(409\) 644.352i 1.57543i 0.616038 + 0.787716i \(0.288737\pi\)
−0.616038 + 0.787716i \(0.711263\pi\)
\(410\) 0 0
\(411\) −6.21530 −0.0151224
\(412\) 7.50462i 0.0182151i
\(413\) 21.8629i 0.0529368i
\(414\) 68.3307i 0.165050i
\(415\) 0 0
\(416\) 83.4614i 0.200628i
\(417\) 81.7056i 0.195937i
\(418\) 47.8251 0.114414
\(419\) 522.037 1.24591 0.622955 0.782257i \(-0.285932\pi\)
0.622955 + 0.782257i \(0.285932\pi\)
\(420\) 0 0
\(421\) −584.127 −1.38748 −0.693738 0.720228i \(-0.744037\pi\)
−0.693738 + 0.720228i \(0.744037\pi\)
\(422\) 77.8061i 0.184375i
\(423\) 86.2986i 0.204016i
\(424\) 262.804i 0.619820i
\(425\) 0 0
\(426\) 13.0336i 0.0305954i
\(427\) −110.774 −0.259424
\(428\) 9.63247i 0.0225058i
\(429\) 136.546i 0.318289i
\(430\) 0 0
\(431\) −401.172 −0.930793 −0.465396 0.885102i \(-0.654088\pi\)
−0.465396 + 0.885102i \(0.654088\pi\)
\(432\) −91.2931 −0.211327
\(433\) 47.5876 0.109902 0.0549510 0.998489i \(-0.482500\pi\)
0.0549510 + 0.998489i \(0.482500\pi\)
\(434\) 48.4092 49.8983i 0.111542 0.114973i
\(435\) 0 0
\(436\) 161.362 0.370097
\(437\) 271.741 0.621834
\(438\) 349.823i 0.798684i
\(439\) −189.434 −0.431512 −0.215756 0.976447i \(-0.569221\pi\)
−0.215756 + 0.976447i \(0.569221\pi\)
\(440\) 0 0
\(441\) 100.946 0.228903
\(442\) 365.622i 0.827200i
\(443\) 145.115i 0.327573i 0.986496 + 0.163786i \(0.0523708\pi\)
−0.986496 + 0.163786i \(0.947629\pi\)
\(444\) −55.5290 −0.125065
\(445\) 0 0
\(446\) 296.309i 0.664370i
\(447\) 207.310 0.463780
\(448\) 12.6863i 0.0283176i
\(449\) 749.924i 1.67021i −0.550091 0.835105i \(-0.685407\pi\)
0.550091 0.835105i \(-0.314593\pi\)
\(450\) 0 0
\(451\) 14.7948i 0.0328044i
\(452\) 351.706i 0.778110i
\(453\) 94.4651i 0.208532i
\(454\) 245.387 0.540500
\(455\) 0 0
\(456\) 115.460i 0.253202i
\(457\) −689.761 −1.50932 −0.754662 0.656114i \(-0.772199\pi\)
−0.754662 + 0.656114i \(0.772199\pi\)
\(458\) 54.4284 0.118839
\(459\) −399.931 −0.871309
\(460\) 0 0
\(461\) 193.465i 0.419664i −0.977737 0.209832i \(-0.932708\pi\)
0.977737 0.209832i \(-0.0672917\pi\)
\(462\) 20.7553i 0.0449248i
\(463\) −174.951 −0.377864 −0.188932 0.981990i \(-0.560503\pi\)
−0.188932 + 0.981990i \(0.560503\pi\)
\(464\) 59.0161i 0.127190i
\(465\) 0 0
\(466\) 192.360 0.412791
\(467\) 778.144i 1.66626i −0.553076 0.833131i \(-0.686546\pi\)
0.553076 0.833131i \(-0.313454\pi\)
\(468\) 64.0789 0.136921
\(469\) −172.936 −0.368734
\(470\) 0 0
\(471\) 600.188i 1.27428i
\(472\) 38.9949i 0.0826164i
\(473\) 166.315i 0.351616i
\(474\) −486.593 −1.02657
\(475\) 0 0
\(476\) 55.5753i 0.116755i
\(477\) 201.772 0.423002
\(478\) −561.267 −1.17420
\(479\) −670.335 −1.39945 −0.699724 0.714414i \(-0.746693\pi\)
−0.699724 + 0.714414i \(0.746693\pi\)
\(480\) 0 0
\(481\) −122.558 −0.254799
\(482\) 215.535 0.447168
\(483\) 117.931i 0.244164i
\(484\) −226.666 −0.468318
\(485\) 0 0
\(486\) 162.474i 0.334309i
\(487\) 570.402 1.17126 0.585628 0.810580i \(-0.300848\pi\)
0.585628 + 0.810580i \(0.300848\pi\)
\(488\) −197.578 −0.404872
\(489\) 881.448i 1.80255i
\(490\) 0 0
\(491\) 410.147i 0.835330i −0.908601 0.417665i \(-0.862849\pi\)
0.908601 0.417665i \(-0.137151\pi\)
\(492\) −35.7178 −0.0725971
\(493\) 258.534i 0.524410i
\(494\) 254.833i 0.515856i
\(495\) 0 0
\(496\) 86.3431 88.9992i 0.174079 0.179434i
\(497\) 4.37258i 0.00879795i
\(498\) 524.077i 1.05236i
\(499\) 204.181i 0.409180i −0.978848 0.204590i \(-0.934414\pi\)
0.978848 0.204590i \(-0.0655862\pi\)
\(500\) 0 0
\(501\) 418.441 0.835211
\(502\) −210.136 −0.418598
\(503\) 391.101i 0.777536i −0.921336 0.388768i \(-0.872901\pi\)
0.921336 0.388768i \(-0.127099\pi\)
\(504\) −9.74012 −0.0193256
\(505\) 0 0
\(506\) 87.1270 0.172188
\(507\) 162.712 0.320930
\(508\) 211.619 0.416573
\(509\) 218.066i 0.428421i −0.976788 0.214211i \(-0.931282\pi\)
0.976788 0.214211i \(-0.0687179\pi\)
\(510\) 0 0
\(511\) 117.360i 0.229668i
\(512\) 22.6274i 0.0441942i
\(513\) −278.745 −0.543363
\(514\) 542.801 1.05603
\(515\) 0 0
\(516\) −401.519 −0.778137
\(517\) 110.037 0.212838
\(518\) 18.6291 0.0359636
\(519\) 450.256i 0.867545i
\(520\) 0 0
\(521\) 64.7006 0.124185 0.0620927 0.998070i \(-0.480223\pi\)
0.0620927 + 0.998070i \(0.480223\pi\)
\(522\) 45.3106 0.0868019
\(523\) 949.222 1.81496 0.907478 0.420100i \(-0.138005\pi\)
0.907478 + 0.420100i \(0.138005\pi\)
\(524\) 339.696 0.648274
\(525\) 0 0
\(526\) 275.362i 0.523502i
\(527\) 378.247 389.882i 0.717736 0.739815i
\(528\) 37.0193i 0.0701124i
\(529\) −33.9462 −0.0641705
\(530\) 0 0
\(531\) −29.9390 −0.0563824
\(532\) 38.7351i 0.0728103i
\(533\) −78.8329 −0.147904
\(534\) −238.573 −0.446765
\(535\) 0 0
\(536\) −308.451 −0.575468
\(537\) 1056.81i 1.96799i
\(538\) −255.528 −0.474960
\(539\) 128.714i 0.238802i
\(540\) 0 0
\(541\) 655.337 1.21134 0.605672 0.795714i \(-0.292904\pi\)
0.605672 + 0.795714i \(0.292904\pi\)
\(542\) 69.2808 0.127824
\(543\) 1100.37i 2.02647i
\(544\) 99.1248i 0.182215i
\(545\) 0 0
\(546\) −110.593 −0.202551
\(547\) 661.947i 1.21014i −0.796172 0.605071i \(-0.793145\pi\)
0.796172 0.605071i \(-0.206855\pi\)
\(548\) 3.71907 0.00678663
\(549\) 151.694i 0.276309i
\(550\) 0 0
\(551\) 180.194i 0.327031i
\(552\) 210.343i 0.381056i
\(553\) 163.244 0.295198
\(554\) 508.264i 0.917444i
\(555\) 0 0
\(556\) 48.8905i 0.0879326i
\(557\) −46.9902 −0.0843631 −0.0421815 0.999110i \(-0.513431\pi\)
−0.0421815 + 0.999110i \(0.513431\pi\)
\(558\) 68.3307 + 66.2914i 0.122456 + 0.118802i
\(559\) −886.195 −1.58532
\(560\) 0 0
\(561\) 162.172i 0.289077i
\(562\) 287.556i 0.511666i
\(563\) 486.556i 0.864221i 0.901821 + 0.432110i \(0.142231\pi\)
−0.901821 + 0.432110i \(0.857769\pi\)
\(564\) 265.654i 0.471018i
\(565\) 0 0
\(566\) −491.848 −0.868989
\(567\) 151.963i 0.268013i
\(568\) 7.79899i 0.0137306i
\(569\) 435.542i 0.765452i −0.923862 0.382726i \(-0.874985\pi\)
0.923862 0.382726i \(-0.125015\pi\)
\(570\) 0 0
\(571\) 19.8744i 0.0348064i −0.999849 0.0174032i \(-0.994460\pi\)
0.999849 0.0174032i \(-0.00553989\pi\)
\(572\) 81.7056i 0.142842i
\(573\) −836.310 −1.45953
\(574\) 11.9828 0.0208759
\(575\) 0 0
\(576\) −17.3726 −0.0301607
\(577\) 193.622i 0.335567i 0.985824 + 0.167784i \(0.0536610\pi\)
−0.985824 + 0.167784i \(0.946339\pi\)
\(578\) 25.5320i 0.0441729i
\(579\) 235.294i 0.406380i
\(580\) 0 0
\(581\) 175.820i 0.302616i
\(582\) 537.494 0.923529
\(583\) 257.275i 0.441295i
\(584\) 209.325i 0.358434i
\(585\) 0 0
\(586\) 103.813 0.177156
\(587\) −212.488 −0.361989 −0.180995 0.983484i \(-0.557932\pi\)
−0.180995 + 0.983484i \(0.557932\pi\)
\(588\) −310.744 −0.528476
\(589\) 263.632 271.741i 0.447592 0.461361i
\(590\) 0 0
\(591\) −1074.99 −1.81893
\(592\) 33.2271 0.0561269
\(593\) 1018.91i 1.71822i −0.511788 0.859112i \(-0.671017\pi\)
0.511788 0.859112i \(-0.328983\pi\)
\(594\) −89.3726 −0.150459
\(595\) 0 0
\(596\) −124.049 −0.208136
\(597\) 358.420i 0.600369i
\(598\) 464.250i 0.776337i
\(599\) −177.090 −0.295643 −0.147822 0.989014i \(-0.547226\pi\)
−0.147822 + 0.989014i \(0.547226\pi\)
\(600\) 0 0
\(601\) 640.354i 1.06548i 0.846278 + 0.532741i \(0.178838\pi\)
−0.846278 + 0.532741i \(0.821162\pi\)
\(602\) 134.703 0.223760
\(603\) 236.818i 0.392734i
\(604\) 56.5255i 0.0935852i
\(605\) 0 0
\(606\) 814.223i 1.34360i
\(607\) 870.583i 1.43424i −0.696950 0.717119i \(-0.745460\pi\)
0.696950 0.717119i \(-0.254540\pi\)
\(608\) 69.0883i 0.113632i
\(609\) −78.2010 −0.128409
\(610\) 0 0
\(611\) 586.327i 0.959618i
\(612\) −76.1047 −0.124354
\(613\) −812.069 −1.32475 −0.662373 0.749175i \(-0.730450\pi\)
−0.662373 + 0.749175i \(0.730450\pi\)
\(614\) −481.585 −0.784340
\(615\) 0 0
\(616\) 12.4194i 0.0201614i
\(617\) 674.975i 1.09396i −0.837145 0.546981i \(-0.815777\pi\)
0.837145 0.546981i \(-0.184223\pi\)
\(618\) −17.7366 −0.0287000
\(619\) 145.820i 0.235573i −0.993039 0.117787i \(-0.962420\pi\)
0.993039 0.117787i \(-0.0375799\pi\)
\(620\) 0 0
\(621\) −507.813 −0.817735
\(622\) 450.076i 0.723595i
\(623\) 80.0375 0.128471
\(624\) −197.255 −0.316114
\(625\) 0 0
\(626\) 537.575i 0.858746i
\(627\) 113.031i 0.180273i
\(628\) 359.137i 0.571874i
\(629\) 145.559 0.231414
\(630\) 0 0
\(631\) 688.302i 1.09081i 0.838172 + 0.545406i \(0.183624\pi\)
−0.838172 + 0.545406i \(0.816376\pi\)
\(632\) 291.165 0.460704
\(633\) −183.889 −0.290504
\(634\) −543.723 −0.857607
\(635\) 0 0
\(636\) −621.117 −0.976599
\(637\) −685.845 −1.07668
\(638\) 57.7746i 0.0905558i
\(639\) 5.98781 0.00937059
\(640\) 0 0
\(641\) 315.020i 0.491450i 0.969340 + 0.245725i \(0.0790260\pi\)
−0.969340 + 0.245725i \(0.920974\pi\)
\(642\) −22.7656 −0.0354605
\(643\) −1101.41 −1.71293 −0.856465 0.516204i \(-0.827344\pi\)
−0.856465 + 0.516204i \(0.827344\pi\)
\(644\) 70.5669i 0.109576i
\(645\) 0 0
\(646\) 302.658i 0.468510i
\(647\) −42.7961 −0.0661454 −0.0330727 0.999453i \(-0.510529\pi\)
−0.0330727 + 0.999453i \(0.510529\pi\)
\(648\) 271.044i 0.418277i
\(649\) 38.1746i 0.0588207i
\(650\) 0 0
\(651\) −117.931 114.412i −0.181154 0.175747i
\(652\) 527.436i 0.808950i
\(653\) 1084.35i 1.66056i 0.557345 + 0.830281i \(0.311820\pi\)
−0.557345 + 0.830281i \(0.688180\pi\)
\(654\) 381.368i 0.583132i
\(655\) 0 0
\(656\) 21.3726 0.0325802
\(657\) −160.713 −0.244616
\(658\) 89.1228i 0.135445i
\(659\) −56.4445 −0.0856518 −0.0428259 0.999083i \(-0.513636\pi\)
−0.0428259 + 0.999083i \(0.513636\pi\)
\(660\) 0 0
\(661\) 594.200 0.898941 0.449471 0.893295i \(-0.351613\pi\)
0.449471 + 0.893295i \(0.351613\pi\)
\(662\) −578.413 −0.873736
\(663\) −864.122 −1.30335
\(664\) 313.594i 0.472281i
\(665\) 0 0
\(666\) 25.5107i 0.0383043i
\(667\) 328.274i 0.492165i
\(668\) −250.384 −0.374826
\(669\) 700.304 1.04679
\(670\) 0 0
\(671\) −193.421 −0.288258
\(672\) 29.9831 0.0446177
\(673\) 420.707 0.625122 0.312561 0.949898i \(-0.398813\pi\)
0.312561 + 0.949898i \(0.398813\pi\)
\(674\) 160.377i 0.237948i
\(675\) 0 0
\(676\) −97.3625 −0.144027
\(677\) −895.449 −1.32267 −0.661336 0.750090i \(-0.730010\pi\)
−0.661336 + 0.750090i \(0.730010\pi\)
\(678\) 831.231 1.22600
\(679\) −180.321 −0.265568
\(680\) 0 0
\(681\) 579.954i 0.851621i
\(682\) 84.5268 87.1270i 0.123940 0.127752i
\(683\) 518.934i 0.759786i −0.925030 0.379893i \(-0.875961\pi\)
0.925030 0.379893i \(-0.124039\pi\)
\(684\) −53.0437 −0.0775493
\(685\) 0 0
\(686\) 214.139 0.312156
\(687\) 128.638i 0.187245i
\(688\) 240.259 0.349213
\(689\) −1370.87 −1.98965
\(690\) 0 0
\(691\) 677.247 0.980097 0.490048 0.871695i \(-0.336979\pi\)
0.490048 + 0.871695i \(0.336979\pi\)
\(692\) 269.421i 0.389337i
\(693\) −9.53522 −0.0137593
\(694\) 202.698i 0.292072i
\(695\) 0 0
\(696\) −139.480 −0.200403
\(697\) 93.6277 0.134330
\(698\) 74.8629i 0.107253i
\(699\) 454.630i 0.650400i
\(700\) 0 0
\(701\) −333.382 −0.475580 −0.237790 0.971317i \(-0.576423\pi\)
−0.237790 + 0.971317i \(0.576423\pi\)
\(702\) 476.215i 0.678369i
\(703\) 101.452 0.144314
\(704\) 22.1514i 0.0314651i
\(705\) 0 0
\(706\) 846.755i 1.19937i
\(707\) 273.159i 0.386364i
\(708\) 92.1617 0.130172
\(709\) 1028.87i 1.45115i 0.688143 + 0.725575i \(0.258426\pi\)
−0.688143 + 0.725575i \(0.741574\pi\)
\(710\) 0 0
\(711\) 223.547i 0.314412i
\(712\) 142.756 0.200500
\(713\) 480.280 495.054i 0.673604 0.694325i
\(714\) 131.348 0.183961
\(715\) 0 0
\(716\) 632.367i 0.883194i
\(717\) 1326.51i 1.85009i
\(718\) 524.399i 0.730361i
\(719\) 59.1145i 0.0822176i 0.999155 + 0.0411088i \(0.0130890\pi\)
−0.999155 + 0.0411088i \(0.986911\pi\)
\(720\) 0 0
\(721\) 5.95036 0.00825293
\(722\) 299.584i 0.414936i
\(723\) 509.401i 0.704566i
\(724\) 658.434i 0.909439i
\(725\) 0 0
\(726\) 535.709i 0.737891i
\(727\) 622.217i 0.855870i 0.903810 + 0.427935i \(0.140759\pi\)
−0.903810 + 0.427935i \(0.859241\pi\)
\(728\) 66.1760 0.0909010
\(729\) 478.460 0.656324
\(730\) 0 0
\(731\) 1052.51 1.43982
\(732\) 466.960i 0.637924i
\(733\) 995.965i 1.35875i 0.733791 + 0.679376i \(0.237749\pi\)
−0.733791 + 0.679376i \(0.762251\pi\)
\(734\) 691.858i 0.942586i
\(735\) 0 0
\(736\) 125.864i 0.171011i
\(737\) −301.962 −0.409718
\(738\) 16.4092i 0.0222346i
\(739\) 217.418i 0.294206i −0.989121 0.147103i \(-0.953005\pi\)
0.989121 0.147103i \(-0.0469949\pi\)
\(740\) 0 0
\(741\) −602.278 −0.812791
\(742\) 208.375 0.280829
\(743\) 1045.54 1.40719 0.703596 0.710600i \(-0.251576\pi\)
0.703596 + 0.710600i \(0.251576\pi\)
\(744\) −210.343 204.066i −0.282719 0.274282i
\(745\) 0 0
\(746\) −598.864 −0.802767
\(747\) 240.767 0.322312
\(748\) 97.0395i 0.129732i
\(749\) 7.63752 0.0101970
\(750\) 0 0
\(751\) −617.458 −0.822181 −0.411091 0.911595i \(-0.634852\pi\)
−0.411091 + 0.911595i \(0.634852\pi\)
\(752\) 158.960i 0.211384i
\(753\) 496.642i 0.659551i
\(754\) −307.848 −0.408286
\(755\) 0 0
\(756\) 72.3857i 0.0957482i
\(757\) −703.565 −0.929412 −0.464706 0.885465i \(-0.653840\pi\)
−0.464706 + 0.885465i \(0.653840\pi\)
\(758\) 295.161i 0.389395i
\(759\) 205.918i 0.271302i
\(760\) 0 0
\(761\) 702.343i 0.922922i 0.887161 + 0.461461i \(0.152674\pi\)
−0.887161 + 0.461461i \(0.847326\pi\)
\(762\) 500.146i 0.656360i
\(763\) 127.943i 0.167684i
\(764\) 500.426 0.655008
\(765\) 0 0
\(766\) 1013.28i 1.32283i
\(767\) 203.411 0.265203
\(768\) 53.4782 0.0696331
\(769\) 686.734 0.893022 0.446511 0.894778i \(-0.352666\pi\)
0.446511 + 0.894778i \(0.352666\pi\)
\(770\) 0 0
\(771\) 1282.87i 1.66390i
\(772\) 140.794i 0.182376i
\(773\) −850.908 −1.10079 −0.550393 0.834905i \(-0.685522\pi\)
−0.550393 + 0.834905i \(0.685522\pi\)
\(774\) 184.463i 0.238324i
\(775\) 0 0
\(776\) −321.622 −0.414462
\(777\) 44.0286i 0.0566648i
\(778\) −99.2401 −0.127558
\(779\) 65.2569 0.0837701
\(780\) 0 0
\(781\) 7.63493i 0.00977583i
\(782\) 551.377i 0.705085i
\(783\) 336.735i 0.430058i
\(784\) 185.941 0.237170
\(785\) 0 0
\(786\) 802.846i 1.02143i
\(787\) −303.486 −0.385623 −0.192812 0.981236i \(-0.561761\pi\)
−0.192812 + 0.981236i \(0.561761\pi\)
\(788\) 643.246 0.816302
\(789\) 650.798 0.824839
\(790\) 0 0
\(791\) −278.865 −0.352547
\(792\) −17.0071 −0.0214736
\(793\) 1030.63i 1.29966i
\(794\) 685.463 0.863304
\(795\) 0 0
\(796\) 214.470i 0.269434i
\(797\) 728.804 0.914434 0.457217 0.889355i \(-0.348846\pi\)
0.457217 + 0.889355i \(0.348846\pi\)
\(798\) 91.5475 0.114721
\(799\) 696.364i 0.871545i
\(800\) 0 0
\(801\) 109.603i 0.136833i
\(802\) 600.785 0.749109
\(803\) 204.922i 0.255195i
\(804\) 729.001i 0.906718i
\(805\) 0 0
\(806\) −464.250 450.395i −0.575992 0.558802i
\(807\) 603.923i 0.748355i
\(808\) 487.210i 0.602983i
\(809\) 698.264i 0.863120i −0.902084 0.431560i \(-0.857963\pi\)
0.902084 0.431560i \(-0.142037\pi\)
\(810\) 0 0
\(811\) 796.317 0.981895 0.490948 0.871189i \(-0.336651\pi\)
0.490948 + 0.871189i \(0.336651\pi\)
\(812\) 46.7935 0.0576274
\(813\) 163.740i 0.201402i
\(814\) 32.5281 0.0399609
\(815\) 0 0
\(816\) 234.274 0.287101
\(817\) 733.582 0.897897
\(818\) −911.251 −1.11400
\(819\) 50.8077i 0.0620363i
\(820\) 0 0
\(821\) 1071.39i 1.30498i −0.757796 0.652491i \(-0.773724\pi\)
0.757796 0.652491i \(-0.226276\pi\)
\(822\) 8.78976i 0.0106931i
\(823\) −671.508 −0.815928 −0.407964 0.912998i \(-0.633761\pi\)
−0.407964 + 0.912998i \(0.633761\pi\)
\(824\) 10.6131 0.0128800
\(825\) 0 0
\(826\) −30.9188 −0.0374320
\(827\) −1029.64 −1.24503 −0.622513 0.782610i \(-0.713888\pi\)
−0.622513 + 0.782610i \(0.713888\pi\)
\(828\) −96.6341 −0.116708
\(829\) 633.432i 0.764092i 0.924143 + 0.382046i \(0.124780\pi\)
−0.924143 + 0.382046i \(0.875220\pi\)
\(830\) 0 0
\(831\) 1201.24 1.44554
\(832\) 118.032 0.141866
\(833\) 814.559 0.977862
\(834\) −115.549 −0.138548
\(835\) 0 0
\(836\) 67.6349i 0.0809030i
\(837\) −492.658 + 507.813i −0.588600 + 0.606706i
\(838\) 738.271i 0.880992i
\(839\) 491.720 0.586079 0.293039 0.956100i \(-0.405333\pi\)
0.293039 + 0.956100i \(0.405333\pi\)
\(840\) 0 0
\(841\) 623.319 0.741164
\(842\) 826.080i 0.981093i
\(843\) 679.618 0.806190
\(844\) 110.034 0.130373
\(845\) 0 0
\(846\) −122.045 −0.144261
\(847\) 179.722i 0.212187i
\(848\) 371.660 0.438279
\(849\) 1162.45i 1.36919i
\(850\) 0 0
\(851\) 184.824 0.217185
\(852\) −18.4323 −0.0216342
\(853\) 663.523i 0.777870i −0.921265 0.388935i \(-0.872843\pi\)
0.921265 0.388935i \(-0.127157\pi\)
\(854\) 156.658i 0.183440i
\(855\) 0 0
\(856\) 13.6224 0.0159140
\(857\) 852.250i 0.994457i 0.867620 + 0.497229i \(0.165649\pi\)
−0.867620 + 0.497229i \(0.834351\pi\)
\(858\) −193.105 −0.225064
\(859\) 168.429i 0.196076i 0.995183 + 0.0980381i \(0.0312567\pi\)
−0.995183 + 0.0980381i \(0.968743\pi\)
\(860\) 0 0
\(861\) 28.3204i 0.0328924i
\(862\) 567.342i 0.658170i
\(863\) 905.754 1.04954 0.524771 0.851244i \(-0.324151\pi\)
0.524771 + 0.851244i \(0.324151\pi\)
\(864\) 129.108i 0.149430i
\(865\) 0 0
\(866\) 67.2990i 0.0777125i
\(867\) 60.3429 0.0695997
\(868\) 70.5669 + 68.4609i 0.0812982 + 0.0788720i
\(869\) 285.040 0.328009
\(870\) 0 0
\(871\) 1608.98i 1.84728i
\(872\) 228.201i 0.261698i
\(873\) 246.931i 0.282853i
\(874\) 384.300i 0.439703i
\(875\) 0 0
\(876\) 494.725 0.564755
\(877\) 839.258i 0.956965i −0.878097 0.478482i \(-0.841187\pi\)
0.878097 0.478482i \(-0.158813\pi\)
\(878\) 267.899i 0.305125i
\(879\) 245.355i 0.279130i
\(880\) 0 0
\(881\) 1139.46i 1.29337i −0.762757 0.646686i \(-0.776155\pi\)
0.762757 0.646686i \(-0.223845\pi\)
\(882\) 142.759i 0.161859i
\(883\) 342.234 0.387581 0.193790 0.981043i \(-0.437922\pi\)
0.193790 + 0.981043i \(0.437922\pi\)
\(884\) 517.068 0.584919
\(885\) 0 0
\(886\) −205.223 −0.231629
\(887\) 1128.08i 1.27179i 0.771775 + 0.635896i \(0.219369\pi\)
−0.771775 + 0.635896i \(0.780631\pi\)
\(888\) 78.5299i 0.0884345i
\(889\) 167.791i 0.188742i
\(890\) 0 0
\(891\) 265.342i 0.297802i
\(892\) −419.044 −0.469780
\(893\) 485.354i 0.543510i
\(894\) 293.180i 0.327942i
\(895\) 0 0
\(896\) −17.9411 −0.0200236
\(897\) −1097.22 −1.22321
\(898\) 1060.55 1.18102
\(899\) −328.274 318.477i −0.365155 0.354257i
\(900\) 0 0
\(901\) 1628.15 1.80704
\(902\) 20.9230 0.0231962
\(903\) 318.362i 0.352560i
\(904\) −497.387 −0.550207
\(905\) 0 0
\(906\) 133.594 0.147455
\(907\) 508.301i 0.560420i −0.959939 0.280210i \(-0.909596\pi\)
0.959939 0.280210i \(-0.0904040\pi\)
\(908\) 347.029i 0.382191i
\(909\) 374.064 0.411511
\(910\) 0 0
\(911\) 752.710i 0.826246i 0.910675 + 0.413123i \(0.135562\pi\)
−0.910675 + 0.413123i \(0.864438\pi\)
\(912\) 163.285 0.179041
\(913\) 306.997i 0.336251i
\(914\) 975.469i 1.06725i
\(915\) 0 0
\(916\) 76.9734i 0.0840321i
\(917\) 269.342i 0.293721i
\(918\) 565.588i 0.616109i
\(919\) 910.396 0.990638 0.495319 0.868711i \(-0.335051\pi\)
0.495319 + 0.868711i \(0.335051\pi\)
\(920\) 0 0
\(921\) 1138.19i 1.23582i
\(922\) 273.601 0.296747
\(923\) −40.6821 −0.0440760
\(924\) 29.3524 0.0317666
\(925\) 0 0
\(926\) 247.418i 0.267190i
\(927\) 8.14841i 0.00879009i
\(928\) 83.4614 0.0899368
\(929\) 961.821i 1.03533i 0.855583 + 0.517665i \(0.173199\pi\)
−0.855583 + 0.517665i \(0.826801\pi\)
\(930\) 0 0
\(931\) 567.734 0.609811
\(932\) 272.039i 0.291887i
\(933\) −1063.72 −1.14011
\(934\) 1100.46 1.17822
\(935\) 0 0
\(936\) 90.6212i 0.0968175i
\(937\) 515.024i 0.549652i −0.961494 0.274826i \(-0.911380\pi\)
0.961494 0.274826i \(-0.0886202\pi\)
\(938\) 244.569i 0.260734i
\(939\) −1270.52 −1.35306
\(940\) 0 0
\(941\) 736.670i 0.782858i 0.920208 + 0.391429i \(0.128019\pi\)
−0.920208 + 0.391429i \(0.871981\pi\)
\(942\) −848.794 −0.901055
\(943\) 118.884 0.126070
\(944\) −55.1472 −0.0584186
\(945\) 0 0
\(946\) 235.204 0.248630
\(947\) 348.443 0.367945 0.183972 0.982931i \(-0.441104\pi\)
0.183972 + 0.982931i \(0.441104\pi\)
\(948\) 688.146i 0.725893i
\(949\) 1091.91 1.15059
\(950\) 0 0
\(951\) 1285.05i 1.35126i
\(952\) −78.5954 −0.0825582
\(953\) −617.497 −0.647951 −0.323976 0.946065i \(-0.605020\pi\)
−0.323976 + 0.946065i \(0.605020\pi\)
\(954\) 285.348i 0.299107i
\(955\) 0 0
\(956\) 793.752i 0.830284i
\(957\) −136.546 −0.142681
\(958\) 947.997i 0.989558i
\(959\) 2.94883i 0.00307490i
\(960\) 0 0
\(961\) −29.1076 960.559i −0.0302889 0.999541i
\(962\) 173.324i 0.180170i
\(963\) 10.4588i 0.0108606i
\(964\) 304.812i 0.316196i
\(965\) 0 0
\(966\) 166.780 0.172650
\(967\) 1058.96 1.09510 0.547551 0.836772i \(-0.315560\pi\)
0.547551 + 0.836772i \(0.315560\pi\)
\(968\) 320.554i 0.331151i
\(969\) 715.310 0.738194
\(970\) 0 0
\(971\) −1112.85 −1.14609 −0.573043 0.819526i \(-0.694237\pi\)
−0.573043 + 0.819526i \(0.694237\pi\)
\(972\) 229.773 0.236392
\(973\) 38.7650 0.0398407
\(974\) 806.670i 0.828203i
\(975\) 0 0
\(976\) 279.417i 0.286288i
\(977\) 1859.00i 1.90277i 0.308008 + 0.951384i \(0.400338\pi\)
−0.308008 + 0.951384i \(0.599662\pi\)
\(978\) 1246.56 1.27460
\(979\) 139.753 0.142750
\(980\) 0 0
\(981\) −175.205 −0.178599
\(982\) 580.035 0.590667
\(983\) 922.826 0.938785 0.469393 0.882990i \(-0.344473\pi\)
0.469393 + 0.882990i \(0.344473\pi\)
\(984\) 50.5125i 0.0513339i
\(985\) 0 0
\(986\) 365.622 0.370814
\(987\) 210.635 0.213410
\(988\) 360.388 0.364765
\(989\) 1336.43 1.35129
\(990\) 0 0
\(991\) 1536.86i 1.55082i −0.631461 0.775408i \(-0.717544\pi\)
0.631461 0.775408i \(-0.282456\pi\)
\(992\) 125.864 + 122.108i 0.126879 + 0.123092i
\(993\) 1367.04i 1.37667i
\(994\) 6.18377 0.00622109
\(995\) 0 0
\(996\) −741.157 −0.744134
\(997\) 1334.88i 1.33890i 0.742858 + 0.669449i \(0.233470\pi\)
−0.742858 + 0.669449i \(0.766530\pi\)
\(998\) 288.756 0.289334
\(999\) −189.588 −0.189778
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1550.3.d.a.1549.7 8
5.2 odd 4 1550.3.c.a.1301.1 4
5.3 odd 4 62.3.b.a.61.4 yes 4
5.4 even 2 inner 1550.3.d.a.1549.2 8
15.8 even 4 558.3.d.a.433.2 4
20.3 even 4 496.3.e.d.433.2 4
31.30 odd 2 inner 1550.3.d.a.1549.6 8
155.92 even 4 1550.3.c.a.1301.2 4
155.123 even 4 62.3.b.a.61.3 4
155.154 odd 2 inner 1550.3.d.a.1549.3 8
465.278 odd 4 558.3.d.a.433.1 4
620.123 odd 4 496.3.e.d.433.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
62.3.b.a.61.3 4 155.123 even 4
62.3.b.a.61.4 yes 4 5.3 odd 4
496.3.e.d.433.2 4 20.3 even 4
496.3.e.d.433.3 4 620.123 odd 4
558.3.d.a.433.1 4 465.278 odd 4
558.3.d.a.433.2 4 15.8 even 4
1550.3.c.a.1301.1 4 5.2 odd 4
1550.3.c.a.1301.2 4 155.92 even 4
1550.3.d.a.1549.2 8 5.4 even 2 inner
1550.3.d.a.1549.3 8 155.154 odd 2 inner
1550.3.d.a.1549.6 8 31.30 odd 2 inner
1550.3.d.a.1549.7 8 1.1 even 1 trivial