Defining parameters
Level: | \( N \) | \(=\) | \( 155 = 5 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 155.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(32\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(155))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 18 | 11 | 7 |
Cusp forms | 15 | 11 | 4 |
Eisenstein series | 3 | 0 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(31\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(5\) |
\(-\) | \(+\) | \(-\) | \(4\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(2\) | |
Minus space | \(-\) | \(9\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(155))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 5 | 31 | |||||||
155.2.a.a | $1$ | $1.238$ | \(\Q\) | None | \(-2\) | \(-1\) | \(1\) | \(-2\) | $-$ | $-$ | \(q-2q^{2}-q^{3}+2q^{4}+q^{5}+2q^{6}-2q^{7}+\cdots\) | |
155.2.a.b | $1$ | $1.238$ | \(\Q\) | None | \(-1\) | \(2\) | \(-1\) | \(4\) | $+$ | $-$ | \(q-q^{2}+2q^{3}-q^{4}-q^{5}-2q^{6}+4q^{7}+\cdots\) | |
155.2.a.c | $1$ | $1.238$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(0\) | $+$ | $+$ | \(q-q^{3}-2q^{4}-q^{5}-2q^{9}-4q^{11}+\cdots\) | |
155.2.a.d | $4$ | $1.238$ | 4.4.20308.1 | None | \(-1\) | \(-1\) | \(-4\) | \(0\) | $+$ | $-$ | \(q-\beta _{1}q^{2}+\beta _{3}q^{3}+(2+\beta _{1}+\beta _{2})q^{4}+\cdots\) | |
155.2.a.e | $4$ | $1.238$ | 4.4.8468.1 | None | \(1\) | \(1\) | \(4\) | \(2\) | $-$ | $+$ | \(q-\beta _{2}q^{2}+\beta _{1}q^{3}+(1+\beta _{1}-\beta _{2}+\beta _{3})q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(155))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(155)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 2}\)