Properties

Label 1547.2.a.i.1.8
Level $1547$
Weight $2$
Character 1547.1
Self dual yes
Analytic conductor $12.353$
Analytic rank $1$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1547,2,Mod(1,1547)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1547.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1547, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1547 = 7 \cdot 13 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1547.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.3528571927\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - x^{13} - 20 x^{12} + 19 x^{11} + 151 x^{10} - 133 x^{9} - 536 x^{8} + 404 x^{7} + 924 x^{6} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-0.0757200\) of defining polynomial
Character \(\chi\) \(=\) 1547.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.0757200 q^{2} +2.32101 q^{3} -1.99427 q^{4} -2.99129 q^{5} -0.175747 q^{6} -1.00000 q^{7} +0.302446 q^{8} +2.38707 q^{9} +0.226501 q^{10} +5.73437 q^{11} -4.62871 q^{12} -1.00000 q^{13} +0.0757200 q^{14} -6.94281 q^{15} +3.96563 q^{16} -1.00000 q^{17} -0.180749 q^{18} +1.36989 q^{19} +5.96543 q^{20} -2.32101 q^{21} -0.434207 q^{22} -5.46282 q^{23} +0.701979 q^{24} +3.94783 q^{25} +0.0757200 q^{26} -1.42261 q^{27} +1.99427 q^{28} -4.59566 q^{29} +0.525710 q^{30} -10.0303 q^{31} -0.905170 q^{32} +13.3095 q^{33} +0.0757200 q^{34} +2.99129 q^{35} -4.76046 q^{36} -8.50525 q^{37} -0.103728 q^{38} -2.32101 q^{39} -0.904704 q^{40} -10.0541 q^{41} +0.175747 q^{42} +7.65461 q^{43} -11.4359 q^{44} -7.14043 q^{45} +0.413645 q^{46} -1.53575 q^{47} +9.20426 q^{48} +1.00000 q^{49} -0.298930 q^{50} -2.32101 q^{51} +1.99427 q^{52} +7.05436 q^{53} +0.107720 q^{54} -17.1532 q^{55} -0.302446 q^{56} +3.17952 q^{57} +0.347983 q^{58} +1.73896 q^{59} +13.8458 q^{60} -11.0594 q^{61} +0.759494 q^{62} -2.38707 q^{63} -7.86272 q^{64} +2.99129 q^{65} -1.00780 q^{66} +9.80006 q^{67} +1.99427 q^{68} -12.6792 q^{69} -0.226501 q^{70} -12.7742 q^{71} +0.721960 q^{72} -11.6203 q^{73} +0.644018 q^{74} +9.16293 q^{75} -2.73192 q^{76} -5.73437 q^{77} +0.175747 q^{78} +8.10592 q^{79} -11.8624 q^{80} -10.4631 q^{81} +0.761293 q^{82} -6.79580 q^{83} +4.62871 q^{84} +2.99129 q^{85} -0.579607 q^{86} -10.6665 q^{87} +1.73434 q^{88} +9.94229 q^{89} +0.540673 q^{90} +1.00000 q^{91} +10.8943 q^{92} -23.2804 q^{93} +0.116287 q^{94} -4.09774 q^{95} -2.10091 q^{96} -9.21971 q^{97} -0.0757200 q^{98} +13.6884 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + q^{2} - 4 q^{3} + 13 q^{4} - 9 q^{5} - 10 q^{6} - 14 q^{7} + 18 q^{9} - 9 q^{10} + 3 q^{11} - 16 q^{12} - 14 q^{13} - q^{14} - q^{15} + 11 q^{16} - 14 q^{17} + 5 q^{18} - 17 q^{19} - 24 q^{20}+ \cdots + 33 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0757200 −0.0535422 −0.0267711 0.999642i \(-0.508523\pi\)
−0.0267711 + 0.999642i \(0.508523\pi\)
\(3\) 2.32101 1.34003 0.670017 0.742346i \(-0.266287\pi\)
0.670017 + 0.742346i \(0.266287\pi\)
\(4\) −1.99427 −0.997133
\(5\) −2.99129 −1.33775 −0.668873 0.743377i \(-0.733223\pi\)
−0.668873 + 0.743377i \(0.733223\pi\)
\(6\) −0.175747 −0.0717483
\(7\) −1.00000 −0.377964
\(8\) 0.302446 0.106931
\(9\) 2.38707 0.795691
\(10\) 0.226501 0.0716258
\(11\) 5.73437 1.72898 0.864489 0.502651i \(-0.167642\pi\)
0.864489 + 0.502651i \(0.167642\pi\)
\(12\) −4.62871 −1.33619
\(13\) −1.00000 −0.277350
\(14\) 0.0757200 0.0202370
\(15\) −6.94281 −1.79263
\(16\) 3.96563 0.991408
\(17\) −1.00000 −0.242536
\(18\) −0.180749 −0.0426030
\(19\) 1.36989 0.314274 0.157137 0.987577i \(-0.449774\pi\)
0.157137 + 0.987577i \(0.449774\pi\)
\(20\) 5.96543 1.33391
\(21\) −2.32101 −0.506485
\(22\) −0.434207 −0.0925732
\(23\) −5.46282 −1.13908 −0.569538 0.821965i \(-0.692878\pi\)
−0.569538 + 0.821965i \(0.692878\pi\)
\(24\) 0.701979 0.143291
\(25\) 3.94783 0.789565
\(26\) 0.0757200 0.0148499
\(27\) −1.42261 −0.273782
\(28\) 1.99427 0.376881
\(29\) −4.59566 −0.853392 −0.426696 0.904395i \(-0.640323\pi\)
−0.426696 + 0.904395i \(0.640323\pi\)
\(30\) 0.525710 0.0959810
\(31\) −10.0303 −1.80149 −0.900747 0.434344i \(-0.856980\pi\)
−0.900747 + 0.434344i \(0.856980\pi\)
\(32\) −0.905170 −0.160013
\(33\) 13.3095 2.31689
\(34\) 0.0757200 0.0129859
\(35\) 2.99129 0.505621
\(36\) −4.76046 −0.793410
\(37\) −8.50525 −1.39825 −0.699127 0.714997i \(-0.746428\pi\)
−0.699127 + 0.714997i \(0.746428\pi\)
\(38\) −0.103728 −0.0168269
\(39\) −2.32101 −0.371659
\(40\) −0.904704 −0.143046
\(41\) −10.0541 −1.57018 −0.785089 0.619382i \(-0.787383\pi\)
−0.785089 + 0.619382i \(0.787383\pi\)
\(42\) 0.175747 0.0271183
\(43\) 7.65461 1.16732 0.583658 0.811999i \(-0.301621\pi\)
0.583658 + 0.811999i \(0.301621\pi\)
\(44\) −11.4359 −1.72402
\(45\) −7.14043 −1.06443
\(46\) 0.413645 0.0609886
\(47\) −1.53575 −0.224012 −0.112006 0.993708i \(-0.535728\pi\)
−0.112006 + 0.993708i \(0.535728\pi\)
\(48\) 9.20426 1.32852
\(49\) 1.00000 0.142857
\(50\) −0.298930 −0.0422750
\(51\) −2.32101 −0.325006
\(52\) 1.99427 0.276555
\(53\) 7.05436 0.968991 0.484495 0.874794i \(-0.339003\pi\)
0.484495 + 0.874794i \(0.339003\pi\)
\(54\) 0.107720 0.0146589
\(55\) −17.1532 −2.31293
\(56\) −0.302446 −0.0404160
\(57\) 3.17952 0.421138
\(58\) 0.347983 0.0456924
\(59\) 1.73896 0.226394 0.113197 0.993573i \(-0.463891\pi\)
0.113197 + 0.993573i \(0.463891\pi\)
\(60\) 13.8458 1.78749
\(61\) −11.0594 −1.41600 −0.708002 0.706210i \(-0.750403\pi\)
−0.708002 + 0.706210i \(0.750403\pi\)
\(62\) 0.759494 0.0964559
\(63\) −2.38707 −0.300743
\(64\) −7.86272 −0.982840
\(65\) 2.99129 0.371024
\(66\) −1.00780 −0.124051
\(67\) 9.80006 1.19727 0.598634 0.801023i \(-0.295711\pi\)
0.598634 + 0.801023i \(0.295711\pi\)
\(68\) 1.99427 0.241840
\(69\) −12.6792 −1.52640
\(70\) −0.226501 −0.0270720
\(71\) −12.7742 −1.51601 −0.758007 0.652246i \(-0.773827\pi\)
−0.758007 + 0.652246i \(0.773827\pi\)
\(72\) 0.721960 0.0850838
\(73\) −11.6203 −1.36006 −0.680028 0.733186i \(-0.738032\pi\)
−0.680028 + 0.733186i \(0.738032\pi\)
\(74\) 0.644018 0.0748655
\(75\) 9.16293 1.05804
\(76\) −2.73192 −0.313373
\(77\) −5.73437 −0.653492
\(78\) 0.175747 0.0198994
\(79\) 8.10592 0.911987 0.455993 0.889983i \(-0.349284\pi\)
0.455993 + 0.889983i \(0.349284\pi\)
\(80\) −11.8624 −1.32625
\(81\) −10.4631 −1.16257
\(82\) 0.761293 0.0840708
\(83\) −6.79580 −0.745936 −0.372968 0.927844i \(-0.621660\pi\)
−0.372968 + 0.927844i \(0.621660\pi\)
\(84\) 4.62871 0.505033
\(85\) 2.99129 0.324451
\(86\) −0.579607 −0.0625007
\(87\) −10.6665 −1.14357
\(88\) 1.73434 0.184881
\(89\) 9.94229 1.05388 0.526940 0.849902i \(-0.323339\pi\)
0.526940 + 0.849902i \(0.323339\pi\)
\(90\) 0.540673 0.0569920
\(91\) 1.00000 0.104828
\(92\) 10.8943 1.13581
\(93\) −23.2804 −2.41406
\(94\) 0.116287 0.0119941
\(95\) −4.09774 −0.420419
\(96\) −2.10091 −0.214423
\(97\) −9.21971 −0.936119 −0.468060 0.883697i \(-0.655047\pi\)
−0.468060 + 0.883697i \(0.655047\pi\)
\(98\) −0.0757200 −0.00764888
\(99\) 13.6884 1.37573
\(100\) −7.87302 −0.787302
\(101\) 2.90274 0.288833 0.144417 0.989517i \(-0.453869\pi\)
0.144417 + 0.989517i \(0.453869\pi\)
\(102\) 0.175747 0.0174015
\(103\) −0.911312 −0.0897942 −0.0448971 0.998992i \(-0.514296\pi\)
−0.0448971 + 0.998992i \(0.514296\pi\)
\(104\) −0.302446 −0.0296573
\(105\) 6.94281 0.677549
\(106\) −0.534156 −0.0518818
\(107\) −12.0437 −1.16431 −0.582154 0.813078i \(-0.697790\pi\)
−0.582154 + 0.813078i \(0.697790\pi\)
\(108\) 2.83706 0.272997
\(109\) 19.3367 1.85212 0.926060 0.377376i \(-0.123174\pi\)
0.926060 + 0.377376i \(0.123174\pi\)
\(110\) 1.29884 0.123840
\(111\) −19.7407 −1.87371
\(112\) −3.96563 −0.374717
\(113\) 4.08481 0.384267 0.192133 0.981369i \(-0.438459\pi\)
0.192133 + 0.981369i \(0.438459\pi\)
\(114\) −0.240754 −0.0225486
\(115\) 16.3409 1.52379
\(116\) 9.16496 0.850946
\(117\) −2.38707 −0.220685
\(118\) −0.131674 −0.0121216
\(119\) 1.00000 0.0916698
\(120\) −2.09982 −0.191687
\(121\) 21.8830 1.98937
\(122\) 0.837414 0.0758159
\(123\) −23.3355 −2.10409
\(124\) 20.0031 1.79633
\(125\) 3.14736 0.281508
\(126\) 0.180749 0.0161024
\(127\) −14.6296 −1.29817 −0.649083 0.760717i \(-0.724847\pi\)
−0.649083 + 0.760717i \(0.724847\pi\)
\(128\) 2.40571 0.212636
\(129\) 17.7664 1.56424
\(130\) −0.226501 −0.0198654
\(131\) 11.4907 1.00395 0.501975 0.864882i \(-0.332607\pi\)
0.501975 + 0.864882i \(0.332607\pi\)
\(132\) −26.5427 −2.31025
\(133\) −1.36989 −0.118784
\(134\) −0.742061 −0.0641043
\(135\) 4.25544 0.366250
\(136\) −0.302446 −0.0259345
\(137\) −5.20377 −0.444588 −0.222294 0.974980i \(-0.571355\pi\)
−0.222294 + 0.974980i \(0.571355\pi\)
\(138\) 0.960072 0.0817268
\(139\) 2.88701 0.244873 0.122437 0.992476i \(-0.460929\pi\)
0.122437 + 0.992476i \(0.460929\pi\)
\(140\) −5.96543 −0.504171
\(141\) −3.56449 −0.300184
\(142\) 0.967261 0.0811707
\(143\) −5.73437 −0.479532
\(144\) 9.46625 0.788854
\(145\) 13.7469 1.14162
\(146\) 0.879892 0.0728203
\(147\) 2.32101 0.191433
\(148\) 16.9617 1.39425
\(149\) −5.38643 −0.441274 −0.220637 0.975356i \(-0.570814\pi\)
−0.220637 + 0.975356i \(0.570814\pi\)
\(150\) −0.693818 −0.0566500
\(151\) −4.55246 −0.370474 −0.185237 0.982694i \(-0.559305\pi\)
−0.185237 + 0.982694i \(0.559305\pi\)
\(152\) 0.414318 0.0336056
\(153\) −2.38707 −0.192983
\(154\) 0.434207 0.0349894
\(155\) 30.0035 2.40994
\(156\) 4.62871 0.370593
\(157\) 10.7817 0.860475 0.430237 0.902716i \(-0.358430\pi\)
0.430237 + 0.902716i \(0.358430\pi\)
\(158\) −0.613780 −0.0488297
\(159\) 16.3732 1.29848
\(160\) 2.70763 0.214057
\(161\) 5.46282 0.430530
\(162\) 0.792267 0.0622463
\(163\) 5.09298 0.398913 0.199457 0.979907i \(-0.436082\pi\)
0.199457 + 0.979907i \(0.436082\pi\)
\(164\) 20.0505 1.56568
\(165\) −39.8127 −3.09941
\(166\) 0.514578 0.0399390
\(167\) 9.28546 0.718531 0.359265 0.933235i \(-0.383027\pi\)
0.359265 + 0.933235i \(0.383027\pi\)
\(168\) −0.701979 −0.0541589
\(169\) 1.00000 0.0769231
\(170\) −0.226501 −0.0173718
\(171\) 3.27002 0.250065
\(172\) −15.2653 −1.16397
\(173\) 24.0491 1.82842 0.914209 0.405243i \(-0.132813\pi\)
0.914209 + 0.405243i \(0.132813\pi\)
\(174\) 0.807671 0.0612294
\(175\) −3.94783 −0.298428
\(176\) 22.7404 1.71412
\(177\) 4.03615 0.303375
\(178\) −0.752830 −0.0564270
\(179\) −3.07531 −0.229860 −0.114930 0.993374i \(-0.536664\pi\)
−0.114930 + 0.993374i \(0.536664\pi\)
\(180\) 14.2399 1.06138
\(181\) 0.176809 0.0131421 0.00657105 0.999978i \(-0.497908\pi\)
0.00657105 + 0.999978i \(0.497908\pi\)
\(182\) −0.0757200 −0.00561274
\(183\) −25.6688 −1.89749
\(184\) −1.65221 −0.121802
\(185\) 25.4417 1.87051
\(186\) 1.76279 0.129254
\(187\) −5.73437 −0.419339
\(188\) 3.06270 0.223370
\(189\) 1.42261 0.103480
\(190\) 0.310281 0.0225101
\(191\) 9.32070 0.674422 0.337211 0.941429i \(-0.390516\pi\)
0.337211 + 0.941429i \(0.390516\pi\)
\(192\) −18.2494 −1.31704
\(193\) −21.3127 −1.53412 −0.767059 0.641576i \(-0.778281\pi\)
−0.767059 + 0.641576i \(0.778281\pi\)
\(194\) 0.698117 0.0501218
\(195\) 6.94281 0.497185
\(196\) −1.99427 −0.142448
\(197\) 13.0175 0.927457 0.463729 0.885977i \(-0.346511\pi\)
0.463729 + 0.885977i \(0.346511\pi\)
\(198\) −1.03648 −0.0736596
\(199\) −7.70115 −0.545920 −0.272960 0.962025i \(-0.588003\pi\)
−0.272960 + 0.962025i \(0.588003\pi\)
\(200\) 1.19400 0.0844289
\(201\) 22.7460 1.60438
\(202\) −0.219795 −0.0154648
\(203\) 4.59566 0.322552
\(204\) 4.62871 0.324074
\(205\) 30.0746 2.10050
\(206\) 0.0690046 0.00480778
\(207\) −13.0401 −0.906352
\(208\) −3.96563 −0.274967
\(209\) 7.85546 0.543373
\(210\) −0.525710 −0.0362774
\(211\) −8.55109 −0.588681 −0.294341 0.955701i \(-0.595100\pi\)
−0.294341 + 0.955701i \(0.595100\pi\)
\(212\) −14.0683 −0.966213
\(213\) −29.6489 −2.03151
\(214\) 0.911949 0.0623396
\(215\) −22.8972 −1.56157
\(216\) −0.430263 −0.0292757
\(217\) 10.0303 0.680901
\(218\) −1.46418 −0.0991665
\(219\) −26.9709 −1.82252
\(220\) 34.2080 2.30630
\(221\) 1.00000 0.0672673
\(222\) 1.49477 0.100322
\(223\) −22.1333 −1.48215 −0.741077 0.671420i \(-0.765685\pi\)
−0.741077 + 0.671420i \(0.765685\pi\)
\(224\) 0.905170 0.0604792
\(225\) 9.42375 0.628250
\(226\) −0.309302 −0.0205745
\(227\) −23.0070 −1.52703 −0.763515 0.645790i \(-0.776528\pi\)
−0.763515 + 0.645790i \(0.776528\pi\)
\(228\) −6.34082 −0.419931
\(229\) 2.47261 0.163395 0.0816974 0.996657i \(-0.473966\pi\)
0.0816974 + 0.996657i \(0.473966\pi\)
\(230\) −1.23733 −0.0815873
\(231\) −13.3095 −0.875702
\(232\) −1.38994 −0.0912539
\(233\) −6.48271 −0.424696 −0.212348 0.977194i \(-0.568111\pi\)
−0.212348 + 0.977194i \(0.568111\pi\)
\(234\) 0.180749 0.0118159
\(235\) 4.59388 0.299672
\(236\) −3.46796 −0.225745
\(237\) 18.8139 1.22209
\(238\) −0.0757200 −0.00490820
\(239\) −8.28300 −0.535783 −0.267892 0.963449i \(-0.586327\pi\)
−0.267892 + 0.963449i \(0.586327\pi\)
\(240\) −27.5326 −1.77722
\(241\) −11.8887 −0.765820 −0.382910 0.923786i \(-0.625078\pi\)
−0.382910 + 0.923786i \(0.625078\pi\)
\(242\) −1.65698 −0.106515
\(243\) −20.0171 −1.28410
\(244\) 22.0553 1.41195
\(245\) −2.99129 −0.191107
\(246\) 1.76697 0.112658
\(247\) −1.36989 −0.0871640
\(248\) −3.03362 −0.192635
\(249\) −15.7731 −0.999580
\(250\) −0.238318 −0.0150726
\(251\) −3.58705 −0.226412 −0.113206 0.993572i \(-0.536112\pi\)
−0.113206 + 0.993572i \(0.536112\pi\)
\(252\) 4.76046 0.299881
\(253\) −31.3258 −1.96944
\(254\) 1.10775 0.0695066
\(255\) 6.94281 0.434776
\(256\) 15.5433 0.971455
\(257\) 7.95989 0.496524 0.248262 0.968693i \(-0.420141\pi\)
0.248262 + 0.968693i \(0.420141\pi\)
\(258\) −1.34527 −0.0837530
\(259\) 8.50525 0.528490
\(260\) −5.96543 −0.369960
\(261\) −10.9702 −0.679036
\(262\) −0.870078 −0.0537536
\(263\) 26.0672 1.60737 0.803686 0.595054i \(-0.202869\pi\)
0.803686 + 0.595054i \(0.202869\pi\)
\(264\) 4.02541 0.247747
\(265\) −21.1016 −1.29626
\(266\) 0.103728 0.00635998
\(267\) 23.0761 1.41223
\(268\) −19.5439 −1.19384
\(269\) −4.01367 −0.244718 −0.122359 0.992486i \(-0.539046\pi\)
−0.122359 + 0.992486i \(0.539046\pi\)
\(270\) −0.322222 −0.0196098
\(271\) −27.8789 −1.69352 −0.846762 0.531972i \(-0.821451\pi\)
−0.846762 + 0.531972i \(0.821451\pi\)
\(272\) −3.96563 −0.240452
\(273\) 2.32101 0.140474
\(274\) 0.394030 0.0238042
\(275\) 22.6383 1.36514
\(276\) 25.2858 1.52202
\(277\) 9.76388 0.586655 0.293327 0.956012i \(-0.405237\pi\)
0.293327 + 0.956012i \(0.405237\pi\)
\(278\) −0.218605 −0.0131110
\(279\) −23.9430 −1.43343
\(280\) 0.904704 0.0540664
\(281\) −12.0792 −0.720586 −0.360293 0.932839i \(-0.617323\pi\)
−0.360293 + 0.932839i \(0.617323\pi\)
\(282\) 0.269903 0.0160725
\(283\) −7.61619 −0.452736 −0.226368 0.974042i \(-0.572685\pi\)
−0.226368 + 0.974042i \(0.572685\pi\)
\(284\) 25.4751 1.51167
\(285\) −9.51088 −0.563376
\(286\) 0.434207 0.0256752
\(287\) 10.0541 0.593472
\(288\) −2.16071 −0.127321
\(289\) 1.00000 0.0588235
\(290\) −1.04092 −0.0611249
\(291\) −21.3990 −1.25443
\(292\) 23.1740 1.35616
\(293\) 28.6461 1.67352 0.836762 0.547567i \(-0.184446\pi\)
0.836762 + 0.547567i \(0.184446\pi\)
\(294\) −0.175747 −0.0102498
\(295\) −5.20175 −0.302857
\(296\) −2.57238 −0.149516
\(297\) −8.15778 −0.473362
\(298\) 0.407861 0.0236267
\(299\) 5.46282 0.315923
\(300\) −18.2733 −1.05501
\(301\) −7.65461 −0.441204
\(302\) 0.344713 0.0198360
\(303\) 6.73727 0.387046
\(304\) 5.43248 0.311574
\(305\) 33.0817 1.89426
\(306\) 0.180749 0.0103327
\(307\) −20.7760 −1.18575 −0.592874 0.805295i \(-0.702007\pi\)
−0.592874 + 0.805295i \(0.702007\pi\)
\(308\) 11.4359 0.651619
\(309\) −2.11516 −0.120327
\(310\) −2.27187 −0.129033
\(311\) 15.2296 0.863591 0.431796 0.901971i \(-0.357880\pi\)
0.431796 + 0.901971i \(0.357880\pi\)
\(312\) −0.701979 −0.0397417
\(313\) 25.2651 1.42807 0.714033 0.700112i \(-0.246867\pi\)
0.714033 + 0.700112i \(0.246867\pi\)
\(314\) −0.816392 −0.0460717
\(315\) 7.14043 0.402318
\(316\) −16.1654 −0.909373
\(317\) −23.4025 −1.31441 −0.657206 0.753711i \(-0.728262\pi\)
−0.657206 + 0.753711i \(0.728262\pi\)
\(318\) −1.23978 −0.0695234
\(319\) −26.3532 −1.47550
\(320\) 23.5197 1.31479
\(321\) −27.9535 −1.56021
\(322\) −0.413645 −0.0230515
\(323\) −1.36989 −0.0762227
\(324\) 20.8662 1.15923
\(325\) −3.94783 −0.218986
\(326\) −0.385641 −0.0213587
\(327\) 44.8806 2.48190
\(328\) −3.04081 −0.167901
\(329\) 1.53575 0.0846687
\(330\) 3.01462 0.165949
\(331\) 30.7142 1.68821 0.844104 0.536180i \(-0.180133\pi\)
0.844104 + 0.536180i \(0.180133\pi\)
\(332\) 13.5526 0.743798
\(333\) −20.3026 −1.11258
\(334\) −0.703095 −0.0384717
\(335\) −29.3148 −1.60164
\(336\) −9.20426 −0.502133
\(337\) −12.8963 −0.702506 −0.351253 0.936281i \(-0.614244\pi\)
−0.351253 + 0.936281i \(0.614244\pi\)
\(338\) −0.0757200 −0.00411863
\(339\) 9.48087 0.514930
\(340\) −5.96543 −0.323521
\(341\) −57.5174 −3.11474
\(342\) −0.247606 −0.0133890
\(343\) −1.00000 −0.0539949
\(344\) 2.31511 0.124822
\(345\) 37.9273 2.04194
\(346\) −1.82100 −0.0978974
\(347\) −14.4989 −0.778340 −0.389170 0.921166i \(-0.627238\pi\)
−0.389170 + 0.921166i \(0.627238\pi\)
\(348\) 21.2719 1.14030
\(349\) −9.18303 −0.491556 −0.245778 0.969326i \(-0.579043\pi\)
−0.245778 + 0.969326i \(0.579043\pi\)
\(350\) 0.298930 0.0159785
\(351\) 1.42261 0.0759333
\(352\) −5.19058 −0.276659
\(353\) 13.6724 0.727706 0.363853 0.931456i \(-0.381461\pi\)
0.363853 + 0.931456i \(0.381461\pi\)
\(354\) −0.305617 −0.0162434
\(355\) 38.2113 2.02804
\(356\) −19.8276 −1.05086
\(357\) 2.32101 0.122841
\(358\) 0.232863 0.0123072
\(359\) −0.0660933 −0.00348827 −0.00174414 0.999998i \(-0.500555\pi\)
−0.00174414 + 0.999998i \(0.500555\pi\)
\(360\) −2.15959 −0.113821
\(361\) −17.1234 −0.901232
\(362\) −0.0133880 −0.000703656 0
\(363\) 50.7907 2.66582
\(364\) −1.99427 −0.104528
\(365\) 34.7598 1.81941
\(366\) 1.94364 0.101596
\(367\) 9.16434 0.478375 0.239187 0.970973i \(-0.423119\pi\)
0.239187 + 0.970973i \(0.423119\pi\)
\(368\) −21.6635 −1.12929
\(369\) −23.9997 −1.24938
\(370\) −1.92645 −0.100151
\(371\) −7.05436 −0.366244
\(372\) 46.4273 2.40714
\(373\) 13.4621 0.697041 0.348520 0.937301i \(-0.386684\pi\)
0.348520 + 0.937301i \(0.386684\pi\)
\(374\) 0.434207 0.0224523
\(375\) 7.30504 0.377230
\(376\) −0.464482 −0.0239538
\(377\) 4.59566 0.236688
\(378\) −0.107720 −0.00554053
\(379\) −28.9867 −1.48895 −0.744473 0.667652i \(-0.767299\pi\)
−0.744473 + 0.667652i \(0.767299\pi\)
\(380\) 8.17198 0.419214
\(381\) −33.9554 −1.73959
\(382\) −0.705764 −0.0361100
\(383\) 1.78626 0.0912737 0.0456368 0.998958i \(-0.485468\pi\)
0.0456368 + 0.998958i \(0.485468\pi\)
\(384\) 5.58366 0.284940
\(385\) 17.1532 0.874207
\(386\) 1.61380 0.0821400
\(387\) 18.2721 0.928823
\(388\) 18.3866 0.933436
\(389\) 35.8791 1.81914 0.909571 0.415548i \(-0.136410\pi\)
0.909571 + 0.415548i \(0.136410\pi\)
\(390\) −0.525710 −0.0266203
\(391\) 5.46282 0.276267
\(392\) 0.302446 0.0152758
\(393\) 26.6701 1.34533
\(394\) −0.985684 −0.0496581
\(395\) −24.2472 −1.22001
\(396\) −27.2982 −1.37179
\(397\) −21.3999 −1.07403 −0.537016 0.843572i \(-0.680449\pi\)
−0.537016 + 0.843572i \(0.680449\pi\)
\(398\) 0.583131 0.0292297
\(399\) −3.17952 −0.159175
\(400\) 15.6556 0.782781
\(401\) −6.61412 −0.330293 −0.165147 0.986269i \(-0.552810\pi\)
−0.165147 + 0.986269i \(0.552810\pi\)
\(402\) −1.72233 −0.0859019
\(403\) 10.0303 0.499645
\(404\) −5.78883 −0.288005
\(405\) 31.2982 1.55522
\(406\) −0.347983 −0.0172701
\(407\) −48.7723 −2.41755
\(408\) −0.701979 −0.0347531
\(409\) −9.57071 −0.473241 −0.236620 0.971602i \(-0.576040\pi\)
−0.236620 + 0.971602i \(0.576040\pi\)
\(410\) −2.27725 −0.112465
\(411\) −12.0780 −0.595763
\(412\) 1.81740 0.0895368
\(413\) −1.73896 −0.0855688
\(414\) 0.987400 0.0485280
\(415\) 20.3282 0.997873
\(416\) 0.905170 0.0443796
\(417\) 6.70077 0.328138
\(418\) −0.594816 −0.0290934
\(419\) 15.1697 0.741086 0.370543 0.928815i \(-0.379172\pi\)
0.370543 + 0.928815i \(0.379172\pi\)
\(420\) −13.8458 −0.675606
\(421\) 10.7852 0.525637 0.262818 0.964845i \(-0.415348\pi\)
0.262818 + 0.964845i \(0.415348\pi\)
\(422\) 0.647489 0.0315193
\(423\) −3.66595 −0.178245
\(424\) 2.13356 0.103615
\(425\) −3.94783 −0.191498
\(426\) 2.24502 0.108771
\(427\) 11.0594 0.535199
\(428\) 24.0183 1.16097
\(429\) −13.3095 −0.642590
\(430\) 1.73377 0.0836100
\(431\) 21.5974 1.04031 0.520155 0.854072i \(-0.325874\pi\)
0.520155 + 0.854072i \(0.325874\pi\)
\(432\) −5.64155 −0.271429
\(433\) 24.3800 1.17163 0.585815 0.810445i \(-0.300774\pi\)
0.585815 + 0.810445i \(0.300774\pi\)
\(434\) −0.759494 −0.0364569
\(435\) 31.9068 1.52981
\(436\) −38.5625 −1.84681
\(437\) −7.48346 −0.357982
\(438\) 2.04223 0.0975817
\(439\) −14.2310 −0.679206 −0.339603 0.940569i \(-0.610293\pi\)
−0.339603 + 0.940569i \(0.610293\pi\)
\(440\) −5.18791 −0.247324
\(441\) 2.38707 0.113670
\(442\) −0.0757200 −0.00360163
\(443\) −18.0860 −0.859290 −0.429645 0.902998i \(-0.641361\pi\)
−0.429645 + 0.902998i \(0.641361\pi\)
\(444\) 39.3683 1.86834
\(445\) −29.7403 −1.40982
\(446\) 1.67593 0.0793577
\(447\) −12.5019 −0.591321
\(448\) 7.86272 0.371479
\(449\) 24.0201 1.13358 0.566788 0.823864i \(-0.308186\pi\)
0.566788 + 0.823864i \(0.308186\pi\)
\(450\) −0.713566 −0.0336378
\(451\) −57.6537 −2.71481
\(452\) −8.14620 −0.383165
\(453\) −10.5663 −0.496448
\(454\) 1.74209 0.0817604
\(455\) −2.99129 −0.140234
\(456\) 0.961634 0.0450326
\(457\) −33.5221 −1.56810 −0.784050 0.620698i \(-0.786849\pi\)
−0.784050 + 0.620698i \(0.786849\pi\)
\(458\) −0.187226 −0.00874851
\(459\) 1.42261 0.0664018
\(460\) −32.5881 −1.51943
\(461\) 31.4992 1.46706 0.733531 0.679656i \(-0.237871\pi\)
0.733531 + 0.679656i \(0.237871\pi\)
\(462\) 1.00780 0.0468870
\(463\) −22.9898 −1.06842 −0.534212 0.845350i \(-0.679392\pi\)
−0.534212 + 0.845350i \(0.679392\pi\)
\(464\) −18.2247 −0.846060
\(465\) 69.6384 3.22940
\(466\) 0.490871 0.0227392
\(467\) −14.7676 −0.683364 −0.341682 0.939816i \(-0.610997\pi\)
−0.341682 + 0.939816i \(0.610997\pi\)
\(468\) 4.76046 0.220052
\(469\) −9.80006 −0.452525
\(470\) −0.347849 −0.0160451
\(471\) 25.0244 1.15306
\(472\) 0.525943 0.0242085
\(473\) 43.8944 2.01827
\(474\) −1.42459 −0.0654335
\(475\) 5.40809 0.248140
\(476\) −1.99427 −0.0914071
\(477\) 16.8393 0.771017
\(478\) 0.627189 0.0286870
\(479\) −4.52156 −0.206595 −0.103298 0.994650i \(-0.532939\pi\)
−0.103298 + 0.994650i \(0.532939\pi\)
\(480\) 6.28442 0.286843
\(481\) 8.50525 0.387806
\(482\) 0.900214 0.0410036
\(483\) 12.6792 0.576925
\(484\) −43.6406 −1.98366
\(485\) 27.5788 1.25229
\(486\) 1.51570 0.0687534
\(487\) −10.9106 −0.494404 −0.247202 0.968964i \(-0.579511\pi\)
−0.247202 + 0.968964i \(0.579511\pi\)
\(488\) −3.34486 −0.151415
\(489\) 11.8208 0.534557
\(490\) 0.226501 0.0102323
\(491\) 10.6414 0.480240 0.240120 0.970743i \(-0.422813\pi\)
0.240120 + 0.970743i \(0.422813\pi\)
\(492\) 46.5372 2.09806
\(493\) 4.59566 0.206978
\(494\) 0.103728 0.00466695
\(495\) −40.9459 −1.84038
\(496\) −39.7765 −1.78602
\(497\) 12.7742 0.573000
\(498\) 1.19434 0.0535196
\(499\) 36.6406 1.64026 0.820130 0.572177i \(-0.193901\pi\)
0.820130 + 0.572177i \(0.193901\pi\)
\(500\) −6.27667 −0.280701
\(501\) 21.5516 0.962855
\(502\) 0.271611 0.0121226
\(503\) −4.06832 −0.181397 −0.0906987 0.995878i \(-0.528910\pi\)
−0.0906987 + 0.995878i \(0.528910\pi\)
\(504\) −0.721960 −0.0321587
\(505\) −8.68294 −0.386386
\(506\) 2.37199 0.105448
\(507\) 2.32101 0.103080
\(508\) 29.1753 1.29445
\(509\) 25.9423 1.14987 0.574936 0.818198i \(-0.305027\pi\)
0.574936 + 0.818198i \(0.305027\pi\)
\(510\) −0.525710 −0.0232788
\(511\) 11.6203 0.514053
\(512\) −5.98835 −0.264650
\(513\) −1.94882 −0.0860425
\(514\) −0.602723 −0.0265850
\(515\) 2.72600 0.120122
\(516\) −35.4309 −1.55976
\(517\) −8.80657 −0.387313
\(518\) −0.644018 −0.0282965
\(519\) 55.8181 2.45014
\(520\) 0.904704 0.0396739
\(521\) −22.6821 −0.993723 −0.496861 0.867830i \(-0.665514\pi\)
−0.496861 + 0.867830i \(0.665514\pi\)
\(522\) 0.830661 0.0363570
\(523\) 12.6502 0.553157 0.276578 0.960991i \(-0.410799\pi\)
0.276578 + 0.960991i \(0.410799\pi\)
\(524\) −22.9156 −1.00107
\(525\) −9.16293 −0.399903
\(526\) −1.97381 −0.0860621
\(527\) 10.0303 0.436926
\(528\) 52.7806 2.29698
\(529\) 6.84237 0.297494
\(530\) 1.59782 0.0694047
\(531\) 4.15103 0.180139
\(532\) 2.73192 0.118444
\(533\) 10.0541 0.435489
\(534\) −1.74732 −0.0756141
\(535\) 36.0262 1.55755
\(536\) 2.96399 0.128025
\(537\) −7.13782 −0.308020
\(538\) 0.303915 0.0131027
\(539\) 5.73437 0.246997
\(540\) −8.48649 −0.365200
\(541\) 32.3156 1.38936 0.694679 0.719320i \(-0.255547\pi\)
0.694679 + 0.719320i \(0.255547\pi\)
\(542\) 2.11099 0.0906749
\(543\) 0.410374 0.0176108
\(544\) 0.905170 0.0388088
\(545\) −57.8417 −2.47767
\(546\) −0.175747 −0.00752126
\(547\) 39.6861 1.69685 0.848427 0.529313i \(-0.177550\pi\)
0.848427 + 0.529313i \(0.177550\pi\)
\(548\) 10.3777 0.443314
\(549\) −26.3995 −1.12670
\(550\) −1.71417 −0.0730926
\(551\) −6.29554 −0.268199
\(552\) −3.83478 −0.163219
\(553\) −8.10592 −0.344699
\(554\) −0.739322 −0.0314108
\(555\) 59.0503 2.50655
\(556\) −5.75747 −0.244171
\(557\) 26.3554 1.11671 0.558356 0.829601i \(-0.311432\pi\)
0.558356 + 0.829601i \(0.311432\pi\)
\(558\) 1.81297 0.0767490
\(559\) −7.65461 −0.323755
\(560\) 11.8624 0.501276
\(561\) −13.3095 −0.561928
\(562\) 0.914639 0.0385817
\(563\) 18.8598 0.794847 0.397423 0.917635i \(-0.369904\pi\)
0.397423 + 0.917635i \(0.369904\pi\)
\(564\) 7.10854 0.299324
\(565\) −12.2189 −0.514051
\(566\) 0.576698 0.0242404
\(567\) 10.4631 0.439409
\(568\) −3.86350 −0.162109
\(569\) 13.2685 0.556247 0.278123 0.960545i \(-0.410288\pi\)
0.278123 + 0.960545i \(0.410288\pi\)
\(570\) 0.720164 0.0301644
\(571\) −26.4268 −1.10593 −0.552964 0.833205i \(-0.686503\pi\)
−0.552964 + 0.833205i \(0.686503\pi\)
\(572\) 11.4359 0.478158
\(573\) 21.6334 0.903748
\(574\) −0.761293 −0.0317758
\(575\) −21.5663 −0.899375
\(576\) −18.7689 −0.782037
\(577\) −41.5319 −1.72900 −0.864498 0.502636i \(-0.832364\pi\)
−0.864498 + 0.502636i \(0.832364\pi\)
\(578\) −0.0757200 −0.00314954
\(579\) −49.4668 −2.05577
\(580\) −27.4151 −1.13835
\(581\) 6.79580 0.281937
\(582\) 1.62033 0.0671650
\(583\) 40.4523 1.67536
\(584\) −3.51452 −0.145432
\(585\) 7.14043 0.295220
\(586\) −2.16909 −0.0896041
\(587\) −26.6959 −1.10186 −0.550929 0.834552i \(-0.685727\pi\)
−0.550929 + 0.834552i \(0.685727\pi\)
\(588\) −4.62871 −0.190885
\(589\) −13.7404 −0.566163
\(590\) 0.393876 0.0162156
\(591\) 30.2137 1.24282
\(592\) −33.7287 −1.38624
\(593\) −31.6804 −1.30096 −0.650478 0.759525i \(-0.725431\pi\)
−0.650478 + 0.759525i \(0.725431\pi\)
\(594\) 0.617707 0.0253448
\(595\) −2.99129 −0.122631
\(596\) 10.7420 0.440008
\(597\) −17.8744 −0.731551
\(598\) −0.413645 −0.0169152
\(599\) 26.4182 1.07942 0.539709 0.841852i \(-0.318534\pi\)
0.539709 + 0.841852i \(0.318534\pi\)
\(600\) 2.77129 0.113138
\(601\) 22.7366 0.927443 0.463722 0.885981i \(-0.346514\pi\)
0.463722 + 0.885981i \(0.346514\pi\)
\(602\) 0.579607 0.0236230
\(603\) 23.3934 0.952654
\(604\) 9.07883 0.369412
\(605\) −65.4585 −2.66127
\(606\) −0.510147 −0.0207233
\(607\) −3.03701 −0.123268 −0.0616341 0.998099i \(-0.519631\pi\)
−0.0616341 + 0.998099i \(0.519631\pi\)
\(608\) −1.23998 −0.0502879
\(609\) 10.6665 0.432230
\(610\) −2.50495 −0.101422
\(611\) 1.53575 0.0621299
\(612\) 4.76046 0.192430
\(613\) −5.17686 −0.209091 −0.104546 0.994520i \(-0.533339\pi\)
−0.104546 + 0.994520i \(0.533339\pi\)
\(614\) 1.57316 0.0634875
\(615\) 69.8033 2.81474
\(616\) −1.73434 −0.0698785
\(617\) 6.93458 0.279176 0.139588 0.990210i \(-0.455422\pi\)
0.139588 + 0.990210i \(0.455422\pi\)
\(618\) 0.160160 0.00644258
\(619\) 39.1133 1.57210 0.786049 0.618165i \(-0.212123\pi\)
0.786049 + 0.618165i \(0.212123\pi\)
\(620\) −59.8350 −2.40303
\(621\) 7.77146 0.311858
\(622\) −1.15319 −0.0462385
\(623\) −9.94229 −0.398329
\(624\) −9.20426 −0.368465
\(625\) −29.1538 −1.16615
\(626\) −1.91307 −0.0764617
\(627\) 18.2326 0.728139
\(628\) −21.5016 −0.858008
\(629\) 8.50525 0.339126
\(630\) −0.540673 −0.0215409
\(631\) 35.1958 1.40112 0.700561 0.713592i \(-0.252933\pi\)
0.700561 + 0.713592i \(0.252933\pi\)
\(632\) 2.45160 0.0975195
\(633\) −19.8471 −0.788853
\(634\) 1.77203 0.0703765
\(635\) 43.7614 1.73662
\(636\) −32.6525 −1.29476
\(637\) −1.00000 −0.0396214
\(638\) 1.99547 0.0790013
\(639\) −30.4929 −1.20628
\(640\) −7.19617 −0.284453
\(641\) −17.1347 −0.676778 −0.338389 0.941006i \(-0.609882\pi\)
−0.338389 + 0.941006i \(0.609882\pi\)
\(642\) 2.11664 0.0835371
\(643\) −7.90036 −0.311560 −0.155780 0.987792i \(-0.549789\pi\)
−0.155780 + 0.987792i \(0.549789\pi\)
\(644\) −10.8943 −0.429296
\(645\) −53.1445 −2.09256
\(646\) 0.103728 0.00408113
\(647\) −21.3512 −0.839401 −0.419701 0.907663i \(-0.637865\pi\)
−0.419701 + 0.907663i \(0.637865\pi\)
\(648\) −3.16452 −0.124314
\(649\) 9.97186 0.391430
\(650\) 0.298930 0.0117250
\(651\) 23.2804 0.912430
\(652\) −10.1568 −0.397770
\(653\) −3.23913 −0.126757 −0.0633785 0.997990i \(-0.520188\pi\)
−0.0633785 + 0.997990i \(0.520188\pi\)
\(654\) −3.39836 −0.132886
\(655\) −34.3721 −1.34303
\(656\) −39.8707 −1.55669
\(657\) −27.7386 −1.08218
\(658\) −0.116287 −0.00453335
\(659\) −25.8976 −1.00883 −0.504413 0.863463i \(-0.668291\pi\)
−0.504413 + 0.863463i \(0.668291\pi\)
\(660\) 79.3970 3.09053
\(661\) −13.7035 −0.533003 −0.266502 0.963834i \(-0.585868\pi\)
−0.266502 + 0.963834i \(0.585868\pi\)
\(662\) −2.32568 −0.0903903
\(663\) 2.32101 0.0901404
\(664\) −2.05536 −0.0797636
\(665\) 4.09774 0.158904
\(666\) 1.53732 0.0595698
\(667\) 25.1052 0.972078
\(668\) −18.5177 −0.716471
\(669\) −51.3715 −1.98614
\(670\) 2.21972 0.0857553
\(671\) −63.4184 −2.44824
\(672\) 2.10091 0.0810442
\(673\) 8.37425 0.322804 0.161402 0.986889i \(-0.448399\pi\)
0.161402 + 0.986889i \(0.448399\pi\)
\(674\) 0.976507 0.0376137
\(675\) −5.61622 −0.216168
\(676\) −1.99427 −0.0767026
\(677\) 50.3790 1.93622 0.968111 0.250520i \(-0.0806015\pi\)
0.968111 + 0.250520i \(0.0806015\pi\)
\(678\) −0.717892 −0.0275705
\(679\) 9.21971 0.353820
\(680\) 0.904704 0.0346938
\(681\) −53.3994 −2.04627
\(682\) 4.35522 0.166770
\(683\) −0.0471964 −0.00180592 −0.000902960 1.00000i \(-0.500287\pi\)
−0.000902960 1.00000i \(0.500287\pi\)
\(684\) −6.52130 −0.249348
\(685\) 15.5660 0.594746
\(686\) 0.0757200 0.00289100
\(687\) 5.73895 0.218955
\(688\) 30.3554 1.15729
\(689\) −7.05436 −0.268750
\(690\) −2.87186 −0.109330
\(691\) −13.9710 −0.531482 −0.265741 0.964044i \(-0.585617\pi\)
−0.265741 + 0.964044i \(0.585617\pi\)
\(692\) −47.9603 −1.82318
\(693\) −13.6884 −0.519978
\(694\) 1.09786 0.0416740
\(695\) −8.63590 −0.327578
\(696\) −3.22606 −0.122283
\(697\) 10.0541 0.380824
\(698\) 0.695339 0.0263190
\(699\) −15.0464 −0.569107
\(700\) 7.87302 0.297572
\(701\) 42.5199 1.60595 0.802977 0.596010i \(-0.203248\pi\)
0.802977 + 0.596010i \(0.203248\pi\)
\(702\) −0.107720 −0.00406563
\(703\) −11.6513 −0.439435
\(704\) −45.0878 −1.69931
\(705\) 10.6624 0.401570
\(706\) −1.03527 −0.0389630
\(707\) −2.90274 −0.109169
\(708\) −8.04915 −0.302506
\(709\) −1.01010 −0.0379351 −0.0189675 0.999820i \(-0.506038\pi\)
−0.0189675 + 0.999820i \(0.506038\pi\)
\(710\) −2.89336 −0.108586
\(711\) 19.3494 0.725659
\(712\) 3.00700 0.112692
\(713\) 54.7937 2.05204
\(714\) −0.175747 −0.00657716
\(715\) 17.1532 0.641493
\(716\) 6.13299 0.229201
\(717\) −19.2249 −0.717967
\(718\) 0.00500459 0.000186770 0
\(719\) 0.820627 0.0306042 0.0153021 0.999883i \(-0.495129\pi\)
0.0153021 + 0.999883i \(0.495129\pi\)
\(720\) −28.3163 −1.05529
\(721\) 0.911312 0.0339390
\(722\) 1.29658 0.0482539
\(723\) −27.5938 −1.02622
\(724\) −0.352604 −0.0131044
\(725\) −18.1429 −0.673809
\(726\) −3.84587 −0.142734
\(727\) −27.4611 −1.01848 −0.509238 0.860626i \(-0.670073\pi\)
−0.509238 + 0.860626i \(0.670073\pi\)
\(728\) 0.302446 0.0112094
\(729\) −15.0705 −0.558167
\(730\) −2.63201 −0.0974152
\(731\) −7.65461 −0.283116
\(732\) 51.1905 1.89205
\(733\) 5.58661 0.206346 0.103173 0.994663i \(-0.467100\pi\)
0.103173 + 0.994663i \(0.467100\pi\)
\(734\) −0.693925 −0.0256132
\(735\) −6.94281 −0.256089
\(736\) 4.94478 0.182267
\(737\) 56.1972 2.07005
\(738\) 1.81726 0.0668943
\(739\) 24.4714 0.900194 0.450097 0.892980i \(-0.351389\pi\)
0.450097 + 0.892980i \(0.351389\pi\)
\(740\) −50.7375 −1.86515
\(741\) −3.17952 −0.116803
\(742\) 0.534156 0.0196095
\(743\) −13.4500 −0.493433 −0.246717 0.969088i \(-0.579352\pi\)
−0.246717 + 0.969088i \(0.579352\pi\)
\(744\) −7.04106 −0.258138
\(745\) 16.1124 0.590312
\(746\) −1.01935 −0.0373211
\(747\) −16.2221 −0.593534
\(748\) 11.4359 0.418137
\(749\) 12.0437 0.440067
\(750\) −0.553138 −0.0201977
\(751\) 33.0213 1.20497 0.602483 0.798132i \(-0.294178\pi\)
0.602483 + 0.798132i \(0.294178\pi\)
\(752\) −6.09023 −0.222088
\(753\) −8.32556 −0.303400
\(754\) −0.347983 −0.0126728
\(755\) 13.6177 0.495601
\(756\) −2.83706 −0.103183
\(757\) −39.8309 −1.44768 −0.723839 0.689969i \(-0.757624\pi\)
−0.723839 + 0.689969i \(0.757624\pi\)
\(758\) 2.19487 0.0797214
\(759\) −72.7075 −2.63911
\(760\) −1.23934 −0.0449558
\(761\) −24.7185 −0.896046 −0.448023 0.894022i \(-0.647872\pi\)
−0.448023 + 0.894022i \(0.647872\pi\)
\(762\) 2.57110 0.0931413
\(763\) −19.3367 −0.700036
\(764\) −18.5880 −0.672489
\(765\) 7.14043 0.258163
\(766\) −0.135256 −0.00488699
\(767\) −1.73896 −0.0627903
\(768\) 36.0761 1.30178
\(769\) −48.0567 −1.73297 −0.866484 0.499205i \(-0.833626\pi\)
−0.866484 + 0.499205i \(0.833626\pi\)
\(770\) −1.29884 −0.0468069
\(771\) 18.4750 0.665359
\(772\) 42.5031 1.52972
\(773\) 31.8597 1.14591 0.572956 0.819586i \(-0.305797\pi\)
0.572956 + 0.819586i \(0.305797\pi\)
\(774\) −1.38356 −0.0497312
\(775\) −39.5979 −1.42240
\(776\) −2.78846 −0.100100
\(777\) 19.7407 0.708195
\(778\) −2.71677 −0.0974008
\(779\) −13.7729 −0.493467
\(780\) −13.8458 −0.495760
\(781\) −73.2519 −2.62116
\(782\) −0.413645 −0.0147919
\(783\) 6.53783 0.233643
\(784\) 3.96563 0.141630
\(785\) −32.2513 −1.15110
\(786\) −2.01946 −0.0720317
\(787\) 45.8356 1.63386 0.816932 0.576734i \(-0.195673\pi\)
0.816932 + 0.576734i \(0.195673\pi\)
\(788\) −25.9603 −0.924798
\(789\) 60.5021 2.15393
\(790\) 1.83600 0.0653218
\(791\) −4.08481 −0.145239
\(792\) 4.13999 0.147108
\(793\) 11.0594 0.392729
\(794\) 1.62040 0.0575060
\(795\) −48.9771 −1.73704
\(796\) 15.3581 0.544355
\(797\) −20.5434 −0.727686 −0.363843 0.931460i \(-0.618536\pi\)
−0.363843 + 0.931460i \(0.618536\pi\)
\(798\) 0.240754 0.00852258
\(799\) 1.53575 0.0543310
\(800\) −3.57345 −0.126341
\(801\) 23.7329 0.838562
\(802\) 0.500821 0.0176846
\(803\) −66.6353 −2.35151
\(804\) −45.3616 −1.59978
\(805\) −16.3409 −0.575940
\(806\) −0.759494 −0.0267520
\(807\) −9.31575 −0.327930
\(808\) 0.877921 0.0308852
\(809\) −32.0530 −1.12692 −0.563462 0.826142i \(-0.690531\pi\)
−0.563462 + 0.826142i \(0.690531\pi\)
\(810\) −2.36990 −0.0832698
\(811\) −46.3431 −1.62733 −0.813663 0.581337i \(-0.802530\pi\)
−0.813663 + 0.581337i \(0.802530\pi\)
\(812\) −9.16496 −0.321627
\(813\) −64.7071 −2.26938
\(814\) 3.69304 0.129441
\(815\) −15.2346 −0.533645
\(816\) −9.20426 −0.322213
\(817\) 10.4860 0.366858
\(818\) 0.724694 0.0253383
\(819\) 2.38707 0.0834110
\(820\) −59.9768 −2.09448
\(821\) −12.4633 −0.434972 −0.217486 0.976063i \(-0.569786\pi\)
−0.217486 + 0.976063i \(0.569786\pi\)
\(822\) 0.914546 0.0318985
\(823\) −21.6700 −0.755370 −0.377685 0.925934i \(-0.623280\pi\)
−0.377685 + 0.925934i \(0.623280\pi\)
\(824\) −0.275623 −0.00960177
\(825\) 52.5437 1.82934
\(826\) 0.131674 0.00458154
\(827\) 37.9405 1.31932 0.659660 0.751564i \(-0.270700\pi\)
0.659660 + 0.751564i \(0.270700\pi\)
\(828\) 26.0055 0.903754
\(829\) 0.654152 0.0227196 0.0113598 0.999935i \(-0.496384\pi\)
0.0113598 + 0.999935i \(0.496384\pi\)
\(830\) −1.53925 −0.0534283
\(831\) 22.6620 0.786137
\(832\) 7.86272 0.272591
\(833\) −1.00000 −0.0346479
\(834\) −0.507383 −0.0175692
\(835\) −27.7755 −0.961212
\(836\) −15.6659 −0.541816
\(837\) 14.2692 0.493216
\(838\) −1.14865 −0.0396793
\(839\) −41.2676 −1.42471 −0.712357 0.701817i \(-0.752372\pi\)
−0.712357 + 0.701817i \(0.752372\pi\)
\(840\) 2.09982 0.0724508
\(841\) −7.87994 −0.271722
\(842\) −0.816653 −0.0281437
\(843\) −28.0360 −0.965610
\(844\) 17.0531 0.586994
\(845\) −2.99129 −0.102904
\(846\) 0.277586 0.00954360
\(847\) −21.8830 −0.751910
\(848\) 27.9750 0.960665
\(849\) −17.6772 −0.606681
\(850\) 0.298930 0.0102532
\(851\) 46.4626 1.59272
\(852\) 59.1279 2.02569
\(853\) −6.65736 −0.227944 −0.113972 0.993484i \(-0.536357\pi\)
−0.113972 + 0.993484i \(0.536357\pi\)
\(854\) −0.837414 −0.0286557
\(855\) −9.78160 −0.334524
\(856\) −3.64257 −0.124500
\(857\) −56.2615 −1.92186 −0.960928 0.276798i \(-0.910727\pi\)
−0.960928 + 0.276798i \(0.910727\pi\)
\(858\) 1.00780 0.0344056
\(859\) −15.9034 −0.542617 −0.271309 0.962492i \(-0.587456\pi\)
−0.271309 + 0.962492i \(0.587456\pi\)
\(860\) 45.6631 1.55710
\(861\) 23.3355 0.795272
\(862\) −1.63536 −0.0557005
\(863\) 4.58670 0.156133 0.0780666 0.996948i \(-0.475125\pi\)
0.0780666 + 0.996948i \(0.475125\pi\)
\(864\) 1.28770 0.0438086
\(865\) −71.9378 −2.44596
\(866\) −1.84606 −0.0627316
\(867\) 2.32101 0.0788255
\(868\) −20.0031 −0.678949
\(869\) 46.4824 1.57681
\(870\) −2.41598 −0.0819094
\(871\) −9.80006 −0.332062
\(872\) 5.84831 0.198049
\(873\) −22.0081 −0.744861
\(874\) 0.566648 0.0191671
\(875\) −3.14736 −0.106400
\(876\) 53.7871 1.81730
\(877\) −57.0868 −1.92768 −0.963842 0.266475i \(-0.914141\pi\)
−0.963842 + 0.266475i \(0.914141\pi\)
\(878\) 1.07757 0.0363662
\(879\) 66.4878 2.24258
\(880\) −68.0232 −2.29306
\(881\) 41.0451 1.38285 0.691423 0.722450i \(-0.256984\pi\)
0.691423 + 0.722450i \(0.256984\pi\)
\(882\) −0.180749 −0.00608614
\(883\) −32.4847 −1.09320 −0.546599 0.837395i \(-0.684078\pi\)
−0.546599 + 0.837395i \(0.684078\pi\)
\(884\) −1.99427 −0.0670744
\(885\) −12.0733 −0.405839
\(886\) 1.36947 0.0460082
\(887\) −0.597957 −0.0200774 −0.0100387 0.999950i \(-0.503195\pi\)
−0.0100387 + 0.999950i \(0.503195\pi\)
\(888\) −5.97051 −0.200357
\(889\) 14.6296 0.490661
\(890\) 2.25193 0.0754850
\(891\) −59.9993 −2.01005
\(892\) 44.1397 1.47790
\(893\) −2.10381 −0.0704013
\(894\) 0.946647 0.0316606
\(895\) 9.19916 0.307494
\(896\) −2.40571 −0.0803690
\(897\) 12.6792 0.423347
\(898\) −1.81880 −0.0606941
\(899\) 46.0958 1.53738
\(900\) −18.7935 −0.626449
\(901\) −7.05436 −0.235015
\(902\) 4.36554 0.145357
\(903\) −17.7664 −0.591229
\(904\) 1.23543 0.0410900
\(905\) −0.528887 −0.0175808
\(906\) 0.800080 0.0265809
\(907\) −32.9138 −1.09288 −0.546442 0.837497i \(-0.684018\pi\)
−0.546442 + 0.837497i \(0.684018\pi\)
\(908\) 45.8821 1.52265
\(909\) 6.92904 0.229822
\(910\) 0.226501 0.00750843
\(911\) 33.8544 1.12165 0.560823 0.827935i \(-0.310485\pi\)
0.560823 + 0.827935i \(0.310485\pi\)
\(912\) 12.6088 0.417520
\(913\) −38.9697 −1.28971
\(914\) 2.53830 0.0839594
\(915\) 76.7829 2.53837
\(916\) −4.93105 −0.162926
\(917\) −11.4907 −0.379457
\(918\) −0.107720 −0.00355529
\(919\) −16.6489 −0.549195 −0.274598 0.961559i \(-0.588545\pi\)
−0.274598 + 0.961559i \(0.588545\pi\)
\(920\) 4.94223 0.162941
\(921\) −48.2212 −1.58894
\(922\) −2.38512 −0.0785497
\(923\) 12.7742 0.420467
\(924\) 26.5427 0.873192
\(925\) −33.5773 −1.10401
\(926\) 1.74079 0.0572058
\(927\) −2.17537 −0.0714484
\(928\) 4.15985 0.136554
\(929\) 48.6803 1.59715 0.798574 0.601896i \(-0.205588\pi\)
0.798574 + 0.601896i \(0.205588\pi\)
\(930\) −5.27302 −0.172909
\(931\) 1.36989 0.0448963
\(932\) 12.9282 0.423479
\(933\) 35.3480 1.15724
\(934\) 1.11820 0.0365888
\(935\) 17.1532 0.560969
\(936\) −0.721960 −0.0235980
\(937\) 27.0573 0.883923 0.441961 0.897034i \(-0.354283\pi\)
0.441961 + 0.897034i \(0.354283\pi\)
\(938\) 0.742061 0.0242291
\(939\) 58.6404 1.91366
\(940\) −9.16142 −0.298813
\(941\) 27.3172 0.890514 0.445257 0.895403i \(-0.353112\pi\)
0.445257 + 0.895403i \(0.353112\pi\)
\(942\) −1.89485 −0.0617376
\(943\) 54.9234 1.78855
\(944\) 6.89609 0.224449
\(945\) −4.25544 −0.138430
\(946\) −3.32368 −0.108062
\(947\) 21.7110 0.705514 0.352757 0.935715i \(-0.385244\pi\)
0.352757 + 0.935715i \(0.385244\pi\)
\(948\) −37.5199 −1.21859
\(949\) 11.6203 0.377212
\(950\) −0.409501 −0.0132860
\(951\) −54.3173 −1.76136
\(952\) 0.302446 0.00980233
\(953\) 19.7773 0.640648 0.320324 0.947308i \(-0.396208\pi\)
0.320324 + 0.947308i \(0.396208\pi\)
\(954\) −1.27507 −0.0412819
\(955\) −27.8809 −0.902206
\(956\) 16.5185 0.534247
\(957\) −61.1660 −1.97722
\(958\) 0.342373 0.0110616
\(959\) 5.20377 0.168039
\(960\) 54.5894 1.76186
\(961\) 69.6068 2.24538
\(962\) −0.644018 −0.0207640
\(963\) −28.7492 −0.926429
\(964\) 23.7093 0.763624
\(965\) 63.7524 2.05226
\(966\) −0.960072 −0.0308898
\(967\) −22.0061 −0.707670 −0.353835 0.935308i \(-0.615123\pi\)
−0.353835 + 0.935308i \(0.615123\pi\)
\(968\) 6.61844 0.212725
\(969\) −3.17952 −0.102141
\(970\) −2.08827 −0.0670503
\(971\) −39.0756 −1.25399 −0.626997 0.779021i \(-0.715716\pi\)
−0.626997 + 0.779021i \(0.715716\pi\)
\(972\) 39.9194 1.28042
\(973\) −2.88701 −0.0925534
\(974\) 0.826147 0.0264715
\(975\) −9.16293 −0.293449
\(976\) −43.8573 −1.40384
\(977\) 11.6510 0.372750 0.186375 0.982479i \(-0.440326\pi\)
0.186375 + 0.982479i \(0.440326\pi\)
\(978\) −0.895075 −0.0286213
\(979\) 57.0128 1.82214
\(980\) 5.96543 0.190559
\(981\) 46.1581 1.47371
\(982\) −0.805768 −0.0257131
\(983\) −22.5560 −0.719426 −0.359713 0.933063i \(-0.617125\pi\)
−0.359713 + 0.933063i \(0.617125\pi\)
\(984\) −7.05773 −0.224992
\(985\) −38.9391 −1.24070
\(986\) −0.347983 −0.0110820
\(987\) 3.56449 0.113459
\(988\) 2.73192 0.0869141
\(989\) −41.8157 −1.32966
\(990\) 3.10042 0.0985379
\(991\) 46.7348 1.48458 0.742290 0.670079i \(-0.233740\pi\)
0.742290 + 0.670079i \(0.233740\pi\)
\(992\) 9.07912 0.288262
\(993\) 71.2880 2.26226
\(994\) −0.967261 −0.0306796
\(995\) 23.0364 0.730302
\(996\) 31.4558 0.996714
\(997\) −7.46495 −0.236417 −0.118209 0.992989i \(-0.537715\pi\)
−0.118209 + 0.992989i \(0.537715\pi\)
\(998\) −2.77443 −0.0878231
\(999\) 12.0997 0.382816
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1547.2.a.i.1.8 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1547.2.a.i.1.8 14 1.1 even 1 trivial