Properties

Label 1547.2.a.i.1.5
Level $1547$
Weight $2$
Character 1547.1
Self dual yes
Analytic conductor $12.353$
Analytic rank $1$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1547,2,Mod(1,1547)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1547.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1547, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1547 = 7 \cdot 13 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1547.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.3528571927\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - x^{13} - 20 x^{12} + 19 x^{11} + 151 x^{10} - 133 x^{9} - 536 x^{8} + 404 x^{7} + 924 x^{6} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.650788\) of defining polynomial
Character \(\chi\) \(=\) 1547.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.650788 q^{2} -1.79830 q^{3} -1.57647 q^{4} +0.841445 q^{5} +1.17031 q^{6} -1.00000 q^{7} +2.32753 q^{8} +0.233881 q^{9} -0.547603 q^{10} +0.796743 q^{11} +2.83497 q^{12} -1.00000 q^{13} +0.650788 q^{14} -1.51317 q^{15} +1.63822 q^{16} -1.00000 q^{17} -0.152207 q^{18} +1.25187 q^{19} -1.32652 q^{20} +1.79830 q^{21} -0.518511 q^{22} +1.21539 q^{23} -4.18559 q^{24} -4.29197 q^{25} +0.650788 q^{26} +4.97431 q^{27} +1.57647 q^{28} +4.84305 q^{29} +0.984753 q^{30} +0.804541 q^{31} -5.72119 q^{32} -1.43278 q^{33} +0.650788 q^{34} -0.841445 q^{35} -0.368707 q^{36} +9.74778 q^{37} -0.814703 q^{38} +1.79830 q^{39} +1.95849 q^{40} +4.04778 q^{41} -1.17031 q^{42} +7.06833 q^{43} -1.25605 q^{44} +0.196798 q^{45} -0.790959 q^{46} -11.0202 q^{47} -2.94601 q^{48} +1.00000 q^{49} +2.79316 q^{50} +1.79830 q^{51} +1.57647 q^{52} -12.8275 q^{53} -3.23722 q^{54} +0.670416 q^{55} -2.32753 q^{56} -2.25124 q^{57} -3.15180 q^{58} +9.70104 q^{59} +2.38548 q^{60} -9.69375 q^{61} -0.523586 q^{62} -0.233881 q^{63} +0.446837 q^{64} -0.841445 q^{65} +0.932438 q^{66} -3.42264 q^{67} +1.57647 q^{68} -2.18563 q^{69} +0.547603 q^{70} -11.9104 q^{71} +0.544363 q^{72} -4.98034 q^{73} -6.34374 q^{74} +7.71825 q^{75} -1.97354 q^{76} -0.796743 q^{77} -1.17031 q^{78} -0.581764 q^{79} +1.37847 q^{80} -9.64694 q^{81} -2.63425 q^{82} -4.45101 q^{83} -2.83497 q^{84} -0.841445 q^{85} -4.59999 q^{86} -8.70925 q^{87} +1.85444 q^{88} +5.54143 q^{89} -0.128074 q^{90} +1.00000 q^{91} -1.91603 q^{92} -1.44681 q^{93} +7.17183 q^{94} +1.05338 q^{95} +10.2884 q^{96} -6.10176 q^{97} -0.650788 q^{98} +0.186343 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + q^{2} - 4 q^{3} + 13 q^{4} - 9 q^{5} - 10 q^{6} - 14 q^{7} + 18 q^{9} - 9 q^{10} + 3 q^{11} - 16 q^{12} - 14 q^{13} - q^{14} - q^{15} + 11 q^{16} - 14 q^{17} + 5 q^{18} - 17 q^{19} - 24 q^{20}+ \cdots + 33 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.650788 −0.460177 −0.230088 0.973170i \(-0.573902\pi\)
−0.230088 + 0.973170i \(0.573902\pi\)
\(3\) −1.79830 −1.03825 −0.519124 0.854699i \(-0.673742\pi\)
−0.519124 + 0.854699i \(0.673742\pi\)
\(4\) −1.57647 −0.788237
\(5\) 0.841445 0.376306 0.188153 0.982140i \(-0.439750\pi\)
0.188153 + 0.982140i \(0.439750\pi\)
\(6\) 1.17031 0.477778
\(7\) −1.00000 −0.377964
\(8\) 2.32753 0.822905
\(9\) 0.233881 0.0779602
\(10\) −0.547603 −0.173167
\(11\) 0.796743 0.240227 0.120114 0.992760i \(-0.461674\pi\)
0.120114 + 0.992760i \(0.461674\pi\)
\(12\) 2.83497 0.818386
\(13\) −1.00000 −0.277350
\(14\) 0.650788 0.173930
\(15\) −1.51317 −0.390699
\(16\) 1.63822 0.409556
\(17\) −1.00000 −0.242536
\(18\) −0.152207 −0.0358755
\(19\) 1.25187 0.287199 0.143600 0.989636i \(-0.454132\pi\)
0.143600 + 0.989636i \(0.454132\pi\)
\(20\) −1.32652 −0.296618
\(21\) 1.79830 0.392421
\(22\) −0.518511 −0.110547
\(23\) 1.21539 0.253426 0.126713 0.991939i \(-0.459557\pi\)
0.126713 + 0.991939i \(0.459557\pi\)
\(24\) −4.18559 −0.854380
\(25\) −4.29197 −0.858394
\(26\) 0.650788 0.127630
\(27\) 4.97431 0.957307
\(28\) 1.57647 0.297926
\(29\) 4.84305 0.899331 0.449666 0.893197i \(-0.351543\pi\)
0.449666 + 0.893197i \(0.351543\pi\)
\(30\) 0.984753 0.179791
\(31\) 0.804541 0.144500 0.0722499 0.997387i \(-0.476982\pi\)
0.0722499 + 0.997387i \(0.476982\pi\)
\(32\) −5.72119 −1.01137
\(33\) −1.43278 −0.249416
\(34\) 0.650788 0.111609
\(35\) −0.841445 −0.142230
\(36\) −0.368707 −0.0614511
\(37\) 9.74778 1.60253 0.801263 0.598313i \(-0.204162\pi\)
0.801263 + 0.598313i \(0.204162\pi\)
\(38\) −0.814703 −0.132162
\(39\) 1.79830 0.287958
\(40\) 1.95849 0.309664
\(41\) 4.04778 0.632157 0.316078 0.948733i \(-0.397634\pi\)
0.316078 + 0.948733i \(0.397634\pi\)
\(42\) −1.17031 −0.180583
\(43\) 7.06833 1.07791 0.538955 0.842334i \(-0.318819\pi\)
0.538955 + 0.842334i \(0.318819\pi\)
\(44\) −1.25605 −0.189356
\(45\) 0.196798 0.0293369
\(46\) −0.790959 −0.116621
\(47\) −11.0202 −1.60746 −0.803732 0.594991i \(-0.797156\pi\)
−0.803732 + 0.594991i \(0.797156\pi\)
\(48\) −2.94601 −0.425221
\(49\) 1.00000 0.142857
\(50\) 2.79316 0.395013
\(51\) 1.79830 0.251812
\(52\) 1.57647 0.218618
\(53\) −12.8275 −1.76199 −0.880994 0.473127i \(-0.843125\pi\)
−0.880994 + 0.473127i \(0.843125\pi\)
\(54\) −3.23722 −0.440530
\(55\) 0.670416 0.0903989
\(56\) −2.32753 −0.311029
\(57\) −2.25124 −0.298184
\(58\) −3.15180 −0.413851
\(59\) 9.70104 1.26297 0.631484 0.775389i \(-0.282446\pi\)
0.631484 + 0.775389i \(0.282446\pi\)
\(60\) 2.38548 0.307964
\(61\) −9.69375 −1.24116 −0.620579 0.784144i \(-0.713102\pi\)
−0.620579 + 0.784144i \(0.713102\pi\)
\(62\) −0.523586 −0.0664955
\(63\) −0.233881 −0.0294662
\(64\) 0.446837 0.0558546
\(65\) −0.841445 −0.104368
\(66\) 0.932438 0.114775
\(67\) −3.42264 −0.418141 −0.209071 0.977901i \(-0.567044\pi\)
−0.209071 + 0.977901i \(0.567044\pi\)
\(68\) 1.57647 0.191176
\(69\) −2.18563 −0.263119
\(70\) 0.547603 0.0654510
\(71\) −11.9104 −1.41351 −0.706753 0.707461i \(-0.749841\pi\)
−0.706753 + 0.707461i \(0.749841\pi\)
\(72\) 0.544363 0.0641538
\(73\) −4.98034 −0.582905 −0.291452 0.956585i \(-0.594139\pi\)
−0.291452 + 0.956585i \(0.594139\pi\)
\(74\) −6.34374 −0.737445
\(75\) 7.71825 0.891226
\(76\) −1.97354 −0.226381
\(77\) −0.796743 −0.0907973
\(78\) −1.17031 −0.132512
\(79\) −0.581764 −0.0654535 −0.0327268 0.999464i \(-0.510419\pi\)
−0.0327268 + 0.999464i \(0.510419\pi\)
\(80\) 1.37847 0.154118
\(81\) −9.64694 −1.07188
\(82\) −2.63425 −0.290904
\(83\) −4.45101 −0.488562 −0.244281 0.969704i \(-0.578552\pi\)
−0.244281 + 0.969704i \(0.578552\pi\)
\(84\) −2.83497 −0.309321
\(85\) −0.841445 −0.0912676
\(86\) −4.59999 −0.496029
\(87\) −8.70925 −0.933729
\(88\) 1.85444 0.197684
\(89\) 5.54143 0.587390 0.293695 0.955899i \(-0.405115\pi\)
0.293695 + 0.955899i \(0.405115\pi\)
\(90\) −0.128074 −0.0135001
\(91\) 1.00000 0.104828
\(92\) −1.91603 −0.199760
\(93\) −1.44681 −0.150027
\(94\) 7.17183 0.739718
\(95\) 1.05338 0.108075
\(96\) 10.2884 1.05006
\(97\) −6.10176 −0.619540 −0.309770 0.950812i \(-0.600252\pi\)
−0.309770 + 0.950812i \(0.600252\pi\)
\(98\) −0.650788 −0.0657395
\(99\) 0.186343 0.0187282
\(100\) 6.76618 0.676618
\(101\) −13.4688 −1.34020 −0.670098 0.742273i \(-0.733748\pi\)
−0.670098 + 0.742273i \(0.733748\pi\)
\(102\) −1.17031 −0.115878
\(103\) −1.82315 −0.179640 −0.0898199 0.995958i \(-0.528629\pi\)
−0.0898199 + 0.995958i \(0.528629\pi\)
\(104\) −2.32753 −0.228233
\(105\) 1.51317 0.147670
\(106\) 8.34796 0.810826
\(107\) 4.47257 0.432380 0.216190 0.976351i \(-0.430637\pi\)
0.216190 + 0.976351i \(0.430637\pi\)
\(108\) −7.84188 −0.754585
\(109\) 0.232041 0.0222255 0.0111127 0.999938i \(-0.496463\pi\)
0.0111127 + 0.999938i \(0.496463\pi\)
\(110\) −0.436299 −0.0415995
\(111\) −17.5294 −1.66382
\(112\) −1.63822 −0.154797
\(113\) −16.3538 −1.53843 −0.769216 0.638989i \(-0.779353\pi\)
−0.769216 + 0.638989i \(0.779353\pi\)
\(114\) 1.46508 0.137217
\(115\) 1.02268 0.0953655
\(116\) −7.63494 −0.708886
\(117\) −0.233881 −0.0216223
\(118\) −6.31332 −0.581188
\(119\) 1.00000 0.0916698
\(120\) −3.52195 −0.321508
\(121\) −10.3652 −0.942291
\(122\) 6.30858 0.571152
\(123\) −7.27912 −0.656336
\(124\) −1.26834 −0.113900
\(125\) −7.81868 −0.699324
\(126\) 0.152207 0.0135596
\(127\) 2.10756 0.187016 0.0935078 0.995619i \(-0.470192\pi\)
0.0935078 + 0.995619i \(0.470192\pi\)
\(128\) 11.1516 0.985670
\(129\) −12.7110 −1.11914
\(130\) 0.547603 0.0480279
\(131\) −3.28052 −0.286621 −0.143310 0.989678i \(-0.545775\pi\)
−0.143310 + 0.989678i \(0.545775\pi\)
\(132\) 2.25875 0.196599
\(133\) −1.25187 −0.108551
\(134\) 2.22741 0.192419
\(135\) 4.18561 0.360240
\(136\) −2.32753 −0.199584
\(137\) 12.2625 1.04766 0.523828 0.851824i \(-0.324503\pi\)
0.523828 + 0.851824i \(0.324503\pi\)
\(138\) 1.42238 0.121081
\(139\) −1.49602 −0.126891 −0.0634453 0.997985i \(-0.520209\pi\)
−0.0634453 + 0.997985i \(0.520209\pi\)
\(140\) 1.32652 0.112111
\(141\) 19.8177 1.66895
\(142\) 7.75115 0.650462
\(143\) −0.796743 −0.0666270
\(144\) 0.383148 0.0319290
\(145\) 4.07516 0.338423
\(146\) 3.24115 0.268239
\(147\) −1.79830 −0.148321
\(148\) −15.3671 −1.26317
\(149\) −1.19794 −0.0981390 −0.0490695 0.998795i \(-0.515626\pi\)
−0.0490695 + 0.998795i \(0.515626\pi\)
\(150\) −5.02294 −0.410122
\(151\) −20.7021 −1.68472 −0.842358 0.538918i \(-0.818833\pi\)
−0.842358 + 0.538918i \(0.818833\pi\)
\(152\) 2.91377 0.236338
\(153\) −0.233881 −0.0189081
\(154\) 0.518511 0.0417828
\(155\) 0.676977 0.0543761
\(156\) −2.83497 −0.226980
\(157\) −8.38163 −0.668927 −0.334463 0.942409i \(-0.608555\pi\)
−0.334463 + 0.942409i \(0.608555\pi\)
\(158\) 0.378605 0.0301202
\(159\) 23.0676 1.82938
\(160\) −4.81407 −0.380586
\(161\) −1.21539 −0.0957859
\(162\) 6.27811 0.493255
\(163\) 19.7842 1.54962 0.774808 0.632197i \(-0.217847\pi\)
0.774808 + 0.632197i \(0.217847\pi\)
\(164\) −6.38122 −0.498290
\(165\) −1.20561 −0.0938565
\(166\) 2.89667 0.224825
\(167\) −8.47065 −0.655479 −0.327739 0.944768i \(-0.606287\pi\)
−0.327739 + 0.944768i \(0.606287\pi\)
\(168\) 4.18559 0.322925
\(169\) 1.00000 0.0769231
\(170\) 0.547603 0.0419992
\(171\) 0.292788 0.0223901
\(172\) −11.1431 −0.849650
\(173\) −21.4553 −1.63122 −0.815609 0.578603i \(-0.803598\pi\)
−0.815609 + 0.578603i \(0.803598\pi\)
\(174\) 5.66787 0.429680
\(175\) 4.29197 0.324442
\(176\) 1.30524 0.0983864
\(177\) −17.4454 −1.31127
\(178\) −3.60629 −0.270303
\(179\) −0.851148 −0.0636178 −0.0318089 0.999494i \(-0.510127\pi\)
−0.0318089 + 0.999494i \(0.510127\pi\)
\(180\) −0.310247 −0.0231244
\(181\) 0.187920 0.0139680 0.00698401 0.999976i \(-0.497777\pi\)
0.00698401 + 0.999976i \(0.497777\pi\)
\(182\) −0.650788 −0.0482396
\(183\) 17.4323 1.28863
\(184\) 2.82885 0.208545
\(185\) 8.20222 0.603040
\(186\) 0.941564 0.0690388
\(187\) −0.796743 −0.0582637
\(188\) 17.3731 1.26706
\(189\) −4.97431 −0.361828
\(190\) −0.685528 −0.0497335
\(191\) 22.5362 1.63066 0.815331 0.578995i \(-0.196555\pi\)
0.815331 + 0.578995i \(0.196555\pi\)
\(192\) −0.803547 −0.0579910
\(193\) −11.4897 −0.827047 −0.413524 0.910493i \(-0.635702\pi\)
−0.413524 + 0.910493i \(0.635702\pi\)
\(194\) 3.97095 0.285098
\(195\) 1.51317 0.108360
\(196\) −1.57647 −0.112605
\(197\) 3.11017 0.221590 0.110795 0.993843i \(-0.464660\pi\)
0.110795 + 0.993843i \(0.464660\pi\)
\(198\) −0.121270 −0.00861826
\(199\) −17.0428 −1.20813 −0.604065 0.796935i \(-0.706453\pi\)
−0.604065 + 0.796935i \(0.706453\pi\)
\(200\) −9.98968 −0.706377
\(201\) 6.15492 0.434135
\(202\) 8.76534 0.616727
\(203\) −4.84305 −0.339915
\(204\) −2.83497 −0.198488
\(205\) 3.40598 0.237884
\(206\) 1.18648 0.0826661
\(207\) 0.284255 0.0197571
\(208\) −1.63822 −0.113590
\(209\) 0.997421 0.0689930
\(210\) −0.984753 −0.0679544
\(211\) −21.0782 −1.45108 −0.725541 0.688179i \(-0.758410\pi\)
−0.725541 + 0.688179i \(0.758410\pi\)
\(212\) 20.2222 1.38886
\(213\) 21.4185 1.46757
\(214\) −2.91070 −0.198971
\(215\) 5.94762 0.405624
\(216\) 11.5778 0.787773
\(217\) −0.804541 −0.0546158
\(218\) −0.151009 −0.0102277
\(219\) 8.95614 0.605200
\(220\) −1.05689 −0.0712558
\(221\) 1.00000 0.0672673
\(222\) 11.4079 0.765651
\(223\) −21.8499 −1.46318 −0.731589 0.681746i \(-0.761221\pi\)
−0.731589 + 0.681746i \(0.761221\pi\)
\(224\) 5.72119 0.382263
\(225\) −1.00381 −0.0669205
\(226\) 10.6428 0.707951
\(227\) 13.9686 0.927131 0.463565 0.886063i \(-0.346570\pi\)
0.463565 + 0.886063i \(0.346570\pi\)
\(228\) 3.54902 0.235040
\(229\) 23.6910 1.56555 0.782774 0.622307i \(-0.213804\pi\)
0.782774 + 0.622307i \(0.213804\pi\)
\(230\) −0.665549 −0.0438850
\(231\) 1.43278 0.0942702
\(232\) 11.2723 0.740064
\(233\) −19.3772 −1.26944 −0.634721 0.772742i \(-0.718885\pi\)
−0.634721 + 0.772742i \(0.718885\pi\)
\(234\) 0.152207 0.00995006
\(235\) −9.27292 −0.604898
\(236\) −15.2934 −0.995518
\(237\) 1.04618 0.0679570
\(238\) −0.650788 −0.0421843
\(239\) 29.3048 1.89557 0.947785 0.318911i \(-0.103317\pi\)
0.947785 + 0.318911i \(0.103317\pi\)
\(240\) −2.47891 −0.160013
\(241\) 1.44990 0.0933960 0.0466980 0.998909i \(-0.485130\pi\)
0.0466980 + 0.998909i \(0.485130\pi\)
\(242\) 6.74555 0.433620
\(243\) 2.42516 0.155574
\(244\) 15.2820 0.978327
\(245\) 0.841445 0.0537580
\(246\) 4.73716 0.302031
\(247\) −1.25187 −0.0796547
\(248\) 1.87259 0.118910
\(249\) 8.00425 0.507249
\(250\) 5.08831 0.321813
\(251\) 3.35421 0.211716 0.105858 0.994381i \(-0.466241\pi\)
0.105858 + 0.994381i \(0.466241\pi\)
\(252\) 0.368707 0.0232263
\(253\) 0.968351 0.0608797
\(254\) −1.37157 −0.0860602
\(255\) 1.51317 0.0947584
\(256\) −8.15099 −0.509437
\(257\) −7.42625 −0.463237 −0.231618 0.972807i \(-0.574402\pi\)
−0.231618 + 0.972807i \(0.574402\pi\)
\(258\) 8.27215 0.515002
\(259\) −9.74778 −0.605698
\(260\) 1.32652 0.0822671
\(261\) 1.13269 0.0701120
\(262\) 2.13493 0.131896
\(263\) 22.0319 1.35855 0.679273 0.733886i \(-0.262295\pi\)
0.679273 + 0.733886i \(0.262295\pi\)
\(264\) −3.33484 −0.205245
\(265\) −10.7936 −0.663046
\(266\) 0.814703 0.0499527
\(267\) −9.96514 −0.609857
\(268\) 5.39570 0.329595
\(269\) −20.5754 −1.25450 −0.627252 0.778816i \(-0.715820\pi\)
−0.627252 + 0.778816i \(0.715820\pi\)
\(270\) −2.72395 −0.165774
\(271\) 19.1736 1.16471 0.582357 0.812933i \(-0.302131\pi\)
0.582357 + 0.812933i \(0.302131\pi\)
\(272\) −1.63822 −0.0993318
\(273\) −1.79830 −0.108838
\(274\) −7.98029 −0.482107
\(275\) −3.41960 −0.206210
\(276\) 3.44559 0.207400
\(277\) 3.69170 0.221813 0.110906 0.993831i \(-0.464625\pi\)
0.110906 + 0.993831i \(0.464625\pi\)
\(278\) 0.973591 0.0583921
\(279\) 0.188167 0.0112652
\(280\) −1.95849 −0.117042
\(281\) −7.88435 −0.470341 −0.235171 0.971954i \(-0.575565\pi\)
−0.235171 + 0.971954i \(0.575565\pi\)
\(282\) −12.8971 −0.768011
\(283\) 20.4732 1.21701 0.608504 0.793551i \(-0.291770\pi\)
0.608504 + 0.793551i \(0.291770\pi\)
\(284\) 18.7765 1.11418
\(285\) −1.89430 −0.112208
\(286\) 0.518511 0.0306602
\(287\) −4.04778 −0.238933
\(288\) −1.33807 −0.0788468
\(289\) 1.00000 0.0588235
\(290\) −2.65206 −0.155735
\(291\) 10.9728 0.643236
\(292\) 7.85138 0.459467
\(293\) −6.16643 −0.360247 −0.180123 0.983644i \(-0.557650\pi\)
−0.180123 + 0.983644i \(0.557650\pi\)
\(294\) 1.17031 0.0682540
\(295\) 8.16289 0.475262
\(296\) 22.6882 1.31873
\(297\) 3.96325 0.229971
\(298\) 0.779604 0.0451613
\(299\) −1.21539 −0.0702876
\(300\) −12.1676 −0.702498
\(301\) −7.06833 −0.407412
\(302\) 13.4727 0.775267
\(303\) 24.2209 1.39146
\(304\) 2.05085 0.117624
\(305\) −8.15676 −0.467055
\(306\) 0.152207 0.00870108
\(307\) −20.9086 −1.19332 −0.596659 0.802495i \(-0.703505\pi\)
−0.596659 + 0.802495i \(0.703505\pi\)
\(308\) 1.25605 0.0715699
\(309\) 3.27856 0.186511
\(310\) −0.440569 −0.0250226
\(311\) 20.4924 1.16202 0.581009 0.813897i \(-0.302658\pi\)
0.581009 + 0.813897i \(0.302658\pi\)
\(312\) 4.18559 0.236962
\(313\) −11.6416 −0.658020 −0.329010 0.944326i \(-0.606715\pi\)
−0.329010 + 0.944326i \(0.606715\pi\)
\(314\) 5.45466 0.307824
\(315\) −0.196798 −0.0110883
\(316\) 0.917136 0.0515929
\(317\) −4.38727 −0.246414 −0.123207 0.992381i \(-0.539318\pi\)
−0.123207 + 0.992381i \(0.539318\pi\)
\(318\) −15.0121 −0.841839
\(319\) 3.85867 0.216044
\(320\) 0.375989 0.0210184
\(321\) −8.04303 −0.448918
\(322\) 0.790959 0.0440784
\(323\) −1.25187 −0.0696560
\(324\) 15.2082 0.844898
\(325\) 4.29197 0.238076
\(326\) −12.8753 −0.713097
\(327\) −0.417279 −0.0230756
\(328\) 9.42132 0.520205
\(329\) 11.0202 0.607565
\(330\) 0.784596 0.0431906
\(331\) 27.1698 1.49339 0.746693 0.665168i \(-0.231640\pi\)
0.746693 + 0.665168i \(0.231640\pi\)
\(332\) 7.01691 0.385103
\(333\) 2.27982 0.124933
\(334\) 5.51260 0.301636
\(335\) −2.87996 −0.157349
\(336\) 2.94601 0.160718
\(337\) 29.2310 1.59231 0.796156 0.605091i \(-0.206863\pi\)
0.796156 + 0.605091i \(0.206863\pi\)
\(338\) −0.650788 −0.0353982
\(339\) 29.4089 1.59727
\(340\) 1.32652 0.0719405
\(341\) 0.641013 0.0347128
\(342\) −0.190543 −0.0103034
\(343\) −1.00000 −0.0539949
\(344\) 16.4517 0.887018
\(345\) −1.83909 −0.0990131
\(346\) 13.9629 0.750648
\(347\) −9.33094 −0.500911 −0.250455 0.968128i \(-0.580580\pi\)
−0.250455 + 0.968128i \(0.580580\pi\)
\(348\) 13.7299 0.736000
\(349\) −2.54583 −0.136275 −0.0681377 0.997676i \(-0.521706\pi\)
−0.0681377 + 0.997676i \(0.521706\pi\)
\(350\) −2.79316 −0.149301
\(351\) −4.97431 −0.265509
\(352\) −4.55832 −0.242959
\(353\) −35.3313 −1.88050 −0.940249 0.340488i \(-0.889408\pi\)
−0.940249 + 0.340488i \(0.889408\pi\)
\(354\) 11.3532 0.603418
\(355\) −10.0220 −0.531910
\(356\) −8.73592 −0.463003
\(357\) −1.79830 −0.0951761
\(358\) 0.553917 0.0292754
\(359\) 1.27201 0.0671342 0.0335671 0.999436i \(-0.489313\pi\)
0.0335671 + 0.999436i \(0.489313\pi\)
\(360\) 0.458052 0.0241415
\(361\) −17.4328 −0.917517
\(362\) −0.122296 −0.00642775
\(363\) 18.6397 0.978332
\(364\) −1.57647 −0.0826297
\(365\) −4.19068 −0.219350
\(366\) −11.3447 −0.592998
\(367\) −2.48879 −0.129914 −0.0649569 0.997888i \(-0.520691\pi\)
−0.0649569 + 0.997888i \(0.520691\pi\)
\(368\) 1.99107 0.103792
\(369\) 0.946697 0.0492831
\(370\) −5.33791 −0.277505
\(371\) 12.8275 0.665969
\(372\) 2.28085 0.118257
\(373\) −24.0285 −1.24415 −0.622075 0.782958i \(-0.713710\pi\)
−0.622075 + 0.782958i \(0.713710\pi\)
\(374\) 0.518511 0.0268116
\(375\) 14.0603 0.726073
\(376\) −25.6499 −1.32279
\(377\) −4.84305 −0.249430
\(378\) 3.23722 0.166505
\(379\) −4.69341 −0.241084 −0.120542 0.992708i \(-0.538463\pi\)
−0.120542 + 0.992708i \(0.538463\pi\)
\(380\) −1.66063 −0.0851885
\(381\) −3.79002 −0.194169
\(382\) −14.6663 −0.750392
\(383\) −13.4814 −0.688870 −0.344435 0.938810i \(-0.611929\pi\)
−0.344435 + 0.938810i \(0.611929\pi\)
\(384\) −20.0539 −1.02337
\(385\) −0.670416 −0.0341676
\(386\) 7.47737 0.380588
\(387\) 1.65315 0.0840341
\(388\) 9.61927 0.488345
\(389\) 31.8250 1.61359 0.806796 0.590830i \(-0.201200\pi\)
0.806796 + 0.590830i \(0.201200\pi\)
\(390\) −0.984753 −0.0498649
\(391\) −1.21539 −0.0614647
\(392\) 2.32753 0.117558
\(393\) 5.89936 0.297583
\(394\) −2.02406 −0.101971
\(395\) −0.489522 −0.0246305
\(396\) −0.293765 −0.0147622
\(397\) −32.9159 −1.65200 −0.826001 0.563668i \(-0.809390\pi\)
−0.826001 + 0.563668i \(0.809390\pi\)
\(398\) 11.0912 0.555953
\(399\) 2.25124 0.112703
\(400\) −7.03120 −0.351560
\(401\) 34.4247 1.71909 0.859545 0.511060i \(-0.170747\pi\)
0.859545 + 0.511060i \(0.170747\pi\)
\(402\) −4.00555 −0.199779
\(403\) −0.804541 −0.0400771
\(404\) 21.2332 1.05639
\(405\) −8.11737 −0.403356
\(406\) 3.15180 0.156421
\(407\) 7.76648 0.384970
\(408\) 4.18559 0.207218
\(409\) −11.1450 −0.551083 −0.275541 0.961289i \(-0.588857\pi\)
−0.275541 + 0.961289i \(0.588857\pi\)
\(410\) −2.21657 −0.109469
\(411\) −22.0517 −1.08773
\(412\) 2.87414 0.141599
\(413\) −9.70104 −0.477357
\(414\) −0.184990 −0.00909176
\(415\) −3.74528 −0.183849
\(416\) 5.72119 0.280504
\(417\) 2.69029 0.131744
\(418\) −0.649110 −0.0317490
\(419\) 15.9203 0.777758 0.388879 0.921289i \(-0.372862\pi\)
0.388879 + 0.921289i \(0.372862\pi\)
\(420\) −2.38548 −0.116399
\(421\) −35.3186 −1.72132 −0.860662 0.509176i \(-0.829950\pi\)
−0.860662 + 0.509176i \(0.829950\pi\)
\(422\) 13.7174 0.667754
\(423\) −2.57742 −0.125318
\(424\) −29.8563 −1.44995
\(425\) 4.29197 0.208191
\(426\) −13.9389 −0.675341
\(427\) 9.69375 0.469114
\(428\) −7.05090 −0.340818
\(429\) 1.43278 0.0691754
\(430\) −3.87064 −0.186659
\(431\) −13.6960 −0.659713 −0.329856 0.944031i \(-0.607000\pi\)
−0.329856 + 0.944031i \(0.607000\pi\)
\(432\) 8.14903 0.392070
\(433\) −31.6379 −1.52042 −0.760211 0.649676i \(-0.774904\pi\)
−0.760211 + 0.649676i \(0.774904\pi\)
\(434\) 0.523586 0.0251329
\(435\) −7.32835 −0.351368
\(436\) −0.365807 −0.0175190
\(437\) 1.52151 0.0727836
\(438\) −5.82855 −0.278499
\(439\) −24.4352 −1.16623 −0.583113 0.812391i \(-0.698166\pi\)
−0.583113 + 0.812391i \(0.698166\pi\)
\(440\) 1.56041 0.0743897
\(441\) 0.233881 0.0111372
\(442\) −0.650788 −0.0309548
\(443\) −28.2072 −1.34016 −0.670082 0.742287i \(-0.733741\pi\)
−0.670082 + 0.742287i \(0.733741\pi\)
\(444\) 27.6347 1.31149
\(445\) 4.66281 0.221038
\(446\) 14.2197 0.673320
\(447\) 2.15425 0.101893
\(448\) −0.446837 −0.0211111
\(449\) 13.9665 0.659122 0.329561 0.944134i \(-0.393099\pi\)
0.329561 + 0.944134i \(0.393099\pi\)
\(450\) 0.653266 0.0307953
\(451\) 3.22504 0.151861
\(452\) 25.7813 1.21265
\(453\) 37.2286 1.74915
\(454\) −9.09062 −0.426644
\(455\) 0.841445 0.0394476
\(456\) −5.23982 −0.245377
\(457\) −7.80505 −0.365105 −0.182552 0.983196i \(-0.558436\pi\)
−0.182552 + 0.983196i \(0.558436\pi\)
\(458\) −15.4178 −0.720428
\(459\) −4.97431 −0.232181
\(460\) −1.61223 −0.0751707
\(461\) 12.0651 0.561927 0.280963 0.959718i \(-0.409346\pi\)
0.280963 + 0.959718i \(0.409346\pi\)
\(462\) −0.932438 −0.0433810
\(463\) 35.1413 1.63316 0.816578 0.577236i \(-0.195869\pi\)
0.816578 + 0.577236i \(0.195869\pi\)
\(464\) 7.93399 0.368326
\(465\) −1.21741 −0.0564560
\(466\) 12.6104 0.584167
\(467\) 13.9755 0.646711 0.323356 0.946278i \(-0.395189\pi\)
0.323356 + 0.946278i \(0.395189\pi\)
\(468\) 0.368707 0.0170435
\(469\) 3.42264 0.158043
\(470\) 6.03470 0.278360
\(471\) 15.0727 0.694512
\(472\) 22.5794 1.03930
\(473\) 5.63165 0.258943
\(474\) −0.680845 −0.0312722
\(475\) −5.37300 −0.246530
\(476\) −1.57647 −0.0722576
\(477\) −3.00009 −0.137365
\(478\) −19.0712 −0.872297
\(479\) −13.4273 −0.613510 −0.306755 0.951788i \(-0.599243\pi\)
−0.306755 + 0.951788i \(0.599243\pi\)
\(480\) 8.65714 0.395142
\(481\) −9.74778 −0.444461
\(482\) −0.943575 −0.0429787
\(483\) 2.18563 0.0994496
\(484\) 16.3405 0.742749
\(485\) −5.13430 −0.233136
\(486\) −1.57826 −0.0715914
\(487\) 0.927028 0.0420077 0.0210038 0.999779i \(-0.493314\pi\)
0.0210038 + 0.999779i \(0.493314\pi\)
\(488\) −22.5625 −1.02136
\(489\) −35.5778 −1.60889
\(490\) −0.547603 −0.0247382
\(491\) 19.0059 0.857724 0.428862 0.903370i \(-0.358915\pi\)
0.428862 + 0.903370i \(0.358915\pi\)
\(492\) 11.4753 0.517349
\(493\) −4.84305 −0.218120
\(494\) 0.814703 0.0366552
\(495\) 0.156797 0.00704751
\(496\) 1.31802 0.0591807
\(497\) 11.9104 0.534255
\(498\) −5.20907 −0.233424
\(499\) 8.63038 0.386349 0.193174 0.981164i \(-0.438122\pi\)
0.193174 + 0.981164i \(0.438122\pi\)
\(500\) 12.3260 0.551234
\(501\) 15.2328 0.680550
\(502\) −2.18288 −0.0974268
\(503\) −1.30100 −0.0580087 −0.0290044 0.999579i \(-0.509234\pi\)
−0.0290044 + 0.999579i \(0.509234\pi\)
\(504\) −0.544363 −0.0242479
\(505\) −11.3333 −0.504324
\(506\) −0.630191 −0.0280154
\(507\) −1.79830 −0.0798653
\(508\) −3.32251 −0.147413
\(509\) −8.33492 −0.369439 −0.184719 0.982791i \(-0.559138\pi\)
−0.184719 + 0.982791i \(0.559138\pi\)
\(510\) −0.984753 −0.0436056
\(511\) 4.98034 0.220317
\(512\) −16.9986 −0.751239
\(513\) 6.22720 0.274938
\(514\) 4.83292 0.213171
\(515\) −1.53408 −0.0675995
\(516\) 20.0385 0.882148
\(517\) −8.78029 −0.386157
\(518\) 6.34374 0.278728
\(519\) 38.5831 1.69361
\(520\) −1.95849 −0.0858853
\(521\) 27.3339 1.19752 0.598760 0.800929i \(-0.295660\pi\)
0.598760 + 0.800929i \(0.295660\pi\)
\(522\) −0.737144 −0.0322639
\(523\) −26.8415 −1.17370 −0.586848 0.809697i \(-0.699631\pi\)
−0.586848 + 0.809697i \(0.699631\pi\)
\(524\) 5.17166 0.225925
\(525\) −7.71825 −0.336852
\(526\) −14.3381 −0.625171
\(527\) −0.804541 −0.0350464
\(528\) −2.34722 −0.102150
\(529\) −21.5228 −0.935775
\(530\) 7.02435 0.305118
\(531\) 2.26888 0.0984612
\(532\) 1.97354 0.0855640
\(533\) −4.04778 −0.175329
\(534\) 6.48520 0.280642
\(535\) 3.76343 0.162707
\(536\) −7.96628 −0.344091
\(537\) 1.53062 0.0660511
\(538\) 13.3902 0.577294
\(539\) 0.796743 0.0343182
\(540\) −6.59851 −0.283955
\(541\) −32.0934 −1.37980 −0.689902 0.723903i \(-0.742346\pi\)
−0.689902 + 0.723903i \(0.742346\pi\)
\(542\) −12.4780 −0.535974
\(543\) −0.337937 −0.0145023
\(544\) 5.72119 0.245294
\(545\) 0.195250 0.00836358
\(546\) 1.17031 0.0500847
\(547\) −12.8588 −0.549801 −0.274901 0.961473i \(-0.588645\pi\)
−0.274901 + 0.961473i \(0.588645\pi\)
\(548\) −19.3315 −0.825802
\(549\) −2.26718 −0.0967609
\(550\) 2.22543 0.0948928
\(551\) 6.06287 0.258287
\(552\) −5.08711 −0.216522
\(553\) 0.581764 0.0247391
\(554\) −2.40251 −0.102073
\(555\) −14.7501 −0.626105
\(556\) 2.35844 0.100020
\(557\) −7.12653 −0.301961 −0.150980 0.988537i \(-0.548243\pi\)
−0.150980 + 0.988537i \(0.548243\pi\)
\(558\) −0.122457 −0.00518400
\(559\) −7.06833 −0.298959
\(560\) −1.37847 −0.0582512
\(561\) 1.43278 0.0604922
\(562\) 5.13104 0.216440
\(563\) −2.56748 −0.108206 −0.0541032 0.998535i \(-0.517230\pi\)
−0.0541032 + 0.998535i \(0.517230\pi\)
\(564\) −31.2420 −1.31553
\(565\) −13.7608 −0.578921
\(566\) −13.3237 −0.560039
\(567\) 9.64694 0.405133
\(568\) −27.7218 −1.16318
\(569\) 39.5766 1.65914 0.829570 0.558403i \(-0.188586\pi\)
0.829570 + 0.558403i \(0.188586\pi\)
\(570\) 1.23279 0.0516357
\(571\) −15.3442 −0.642137 −0.321068 0.947056i \(-0.604042\pi\)
−0.321068 + 0.947056i \(0.604042\pi\)
\(572\) 1.25605 0.0525179
\(573\) −40.5268 −1.69303
\(574\) 2.63425 0.109951
\(575\) −5.21640 −0.217539
\(576\) 0.104507 0.00435444
\(577\) −37.9635 −1.58044 −0.790221 0.612822i \(-0.790034\pi\)
−0.790221 + 0.612822i \(0.790034\pi\)
\(578\) −0.650788 −0.0270692
\(579\) 20.6619 0.858681
\(580\) −6.42438 −0.266758
\(581\) 4.45101 0.184659
\(582\) −7.14096 −0.296002
\(583\) −10.2202 −0.423277
\(584\) −11.5919 −0.479675
\(585\) −0.196798 −0.00813658
\(586\) 4.01304 0.165777
\(587\) −1.14473 −0.0472481 −0.0236240 0.999721i \(-0.507520\pi\)
−0.0236240 + 0.999721i \(0.507520\pi\)
\(588\) 2.83497 0.116912
\(589\) 1.00718 0.0415002
\(590\) −5.31231 −0.218704
\(591\) −5.59301 −0.230066
\(592\) 15.9690 0.656323
\(593\) 24.2168 0.994463 0.497231 0.867618i \(-0.334350\pi\)
0.497231 + 0.867618i \(0.334350\pi\)
\(594\) −2.57924 −0.105827
\(595\) 0.841445 0.0344959
\(596\) 1.88852 0.0773568
\(597\) 30.6480 1.25434
\(598\) 0.790959 0.0323447
\(599\) 41.3412 1.68916 0.844578 0.535432i \(-0.179851\pi\)
0.844578 + 0.535432i \(0.179851\pi\)
\(600\) 17.9644 0.733395
\(601\) −28.9763 −1.18197 −0.590984 0.806683i \(-0.701260\pi\)
−0.590984 + 0.806683i \(0.701260\pi\)
\(602\) 4.59999 0.187481
\(603\) −0.800488 −0.0325984
\(604\) 32.6364 1.32796
\(605\) −8.72175 −0.354590
\(606\) −15.7627 −0.640316
\(607\) 0.748031 0.0303617 0.0151808 0.999885i \(-0.495168\pi\)
0.0151808 + 0.999885i \(0.495168\pi\)
\(608\) −7.16220 −0.290465
\(609\) 8.70925 0.352916
\(610\) 5.30832 0.214928
\(611\) 11.0202 0.445831
\(612\) 0.368707 0.0149041
\(613\) 16.1811 0.653549 0.326774 0.945102i \(-0.394038\pi\)
0.326774 + 0.945102i \(0.394038\pi\)
\(614\) 13.6071 0.549137
\(615\) −6.12498 −0.246983
\(616\) −1.85444 −0.0747176
\(617\) 8.80303 0.354397 0.177198 0.984175i \(-0.443297\pi\)
0.177198 + 0.984175i \(0.443297\pi\)
\(618\) −2.13365 −0.0858279
\(619\) −21.9572 −0.882533 −0.441266 0.897376i \(-0.645471\pi\)
−0.441266 + 0.897376i \(0.645471\pi\)
\(620\) −1.06724 −0.0428613
\(621\) 6.04571 0.242606
\(622\) −13.3362 −0.534734
\(623\) −5.54143 −0.222013
\(624\) 2.94601 0.117935
\(625\) 14.8809 0.595234
\(626\) 7.57619 0.302805
\(627\) −1.79366 −0.0716319
\(628\) 13.2134 0.527273
\(629\) −9.74778 −0.388670
\(630\) 0.128074 0.00510257
\(631\) 14.0046 0.557515 0.278758 0.960361i \(-0.410077\pi\)
0.278758 + 0.960361i \(0.410077\pi\)
\(632\) −1.35407 −0.0538620
\(633\) 37.9049 1.50658
\(634\) 2.85518 0.113394
\(635\) 1.77340 0.0703750
\(636\) −36.3655 −1.44199
\(637\) −1.00000 −0.0396214
\(638\) −2.51117 −0.0994183
\(639\) −2.78561 −0.110197
\(640\) 9.38345 0.370913
\(641\) −31.4262 −1.24126 −0.620631 0.784103i \(-0.713123\pi\)
−0.620631 + 0.784103i \(0.713123\pi\)
\(642\) 5.23431 0.206582
\(643\) −27.6464 −1.09027 −0.545133 0.838349i \(-0.683521\pi\)
−0.545133 + 0.838349i \(0.683521\pi\)
\(644\) 1.91603 0.0755020
\(645\) −10.6956 −0.421139
\(646\) 0.814703 0.0320541
\(647\) −6.84656 −0.269166 −0.134583 0.990902i \(-0.542969\pi\)
−0.134583 + 0.990902i \(0.542969\pi\)
\(648\) −22.4535 −0.882058
\(649\) 7.72924 0.303399
\(650\) −2.79316 −0.109557
\(651\) 1.44681 0.0567048
\(652\) −31.1892 −1.22146
\(653\) −0.945871 −0.0370148 −0.0185074 0.999829i \(-0.505891\pi\)
−0.0185074 + 0.999829i \(0.505891\pi\)
\(654\) 0.271560 0.0106188
\(655\) −2.76038 −0.107857
\(656\) 6.63116 0.258903
\(657\) −1.16480 −0.0454434
\(658\) −7.17183 −0.279587
\(659\) 20.9859 0.817493 0.408746 0.912648i \(-0.365966\pi\)
0.408746 + 0.912648i \(0.365966\pi\)
\(660\) 1.90061 0.0739812
\(661\) 46.2126 1.79746 0.898731 0.438500i \(-0.144490\pi\)
0.898731 + 0.438500i \(0.144490\pi\)
\(662\) −17.6818 −0.687222
\(663\) −1.79830 −0.0698402
\(664\) −10.3598 −0.402040
\(665\) −1.05338 −0.0408484
\(666\) −1.48368 −0.0574913
\(667\) 5.88617 0.227914
\(668\) 13.3538 0.516673
\(669\) 39.2927 1.51914
\(670\) 1.87424 0.0724084
\(671\) −7.72343 −0.298160
\(672\) −10.2884 −0.396884
\(673\) 46.9851 1.81114 0.905572 0.424193i \(-0.139442\pi\)
0.905572 + 0.424193i \(0.139442\pi\)
\(674\) −19.0232 −0.732745
\(675\) −21.3496 −0.821746
\(676\) −1.57647 −0.0606336
\(677\) 18.9931 0.729963 0.364981 0.931015i \(-0.381075\pi\)
0.364981 + 0.931015i \(0.381075\pi\)
\(678\) −19.1390 −0.735029
\(679\) 6.10176 0.234164
\(680\) −1.95849 −0.0751045
\(681\) −25.1198 −0.962592
\(682\) −0.417164 −0.0159740
\(683\) −0.369431 −0.0141359 −0.00706795 0.999975i \(-0.502250\pi\)
−0.00706795 + 0.999975i \(0.502250\pi\)
\(684\) −0.461574 −0.0176487
\(685\) 10.3182 0.394239
\(686\) 0.650788 0.0248472
\(687\) −42.6036 −1.62543
\(688\) 11.5795 0.441464
\(689\) 12.8275 0.488688
\(690\) 1.19686 0.0455635
\(691\) −35.5005 −1.35050 −0.675252 0.737587i \(-0.735965\pi\)
−0.675252 + 0.737587i \(0.735965\pi\)
\(692\) 33.8238 1.28579
\(693\) −0.186343 −0.00707858
\(694\) 6.07246 0.230508
\(695\) −1.25882 −0.0477497
\(696\) −20.2710 −0.768371
\(697\) −4.04778 −0.153321
\(698\) 1.65680 0.0627107
\(699\) 34.8460 1.31800
\(700\) −6.76618 −0.255738
\(701\) 4.30274 0.162512 0.0812561 0.996693i \(-0.474107\pi\)
0.0812561 + 0.996693i \(0.474107\pi\)
\(702\) 3.23722 0.122181
\(703\) 12.2030 0.460244
\(704\) 0.356015 0.0134178
\(705\) 16.6755 0.628035
\(706\) 22.9932 0.865361
\(707\) 13.4688 0.506547
\(708\) 27.5022 1.03360
\(709\) −18.3577 −0.689437 −0.344719 0.938706i \(-0.612026\pi\)
−0.344719 + 0.938706i \(0.612026\pi\)
\(710\) 6.52217 0.244773
\(711\) −0.136063 −0.00510277
\(712\) 12.8978 0.483366
\(713\) 0.977829 0.0366200
\(714\) 1.17031 0.0437978
\(715\) −0.670416 −0.0250721
\(716\) 1.34181 0.0501459
\(717\) −52.6988 −1.96807
\(718\) −0.827810 −0.0308936
\(719\) −42.4380 −1.58267 −0.791336 0.611382i \(-0.790614\pi\)
−0.791336 + 0.611382i \(0.790614\pi\)
\(720\) 0.322398 0.0120151
\(721\) 1.82315 0.0678975
\(722\) 11.3451 0.422220
\(723\) −2.60735 −0.0969683
\(724\) −0.296252 −0.0110101
\(725\) −20.7862 −0.771980
\(726\) −12.1305 −0.450206
\(727\) −24.5006 −0.908679 −0.454339 0.890829i \(-0.650125\pi\)
−0.454339 + 0.890829i \(0.650125\pi\)
\(728\) 2.32753 0.0862639
\(729\) 24.5797 0.910358
\(730\) 2.72725 0.100940
\(731\) −7.06833 −0.261432
\(732\) −27.4815 −1.01575
\(733\) −13.2573 −0.489668 −0.244834 0.969565i \(-0.578733\pi\)
−0.244834 + 0.969565i \(0.578733\pi\)
\(734\) 1.61967 0.0597833
\(735\) −1.51317 −0.0558141
\(736\) −6.95346 −0.256308
\(737\) −2.72696 −0.100449
\(738\) −0.616099 −0.0226789
\(739\) 36.9781 1.36026 0.680131 0.733091i \(-0.261923\pi\)
0.680131 + 0.733091i \(0.261923\pi\)
\(740\) −12.9306 −0.475338
\(741\) 2.25124 0.0827014
\(742\) −8.34796 −0.306463
\(743\) −32.9774 −1.20982 −0.604911 0.796293i \(-0.706791\pi\)
−0.604911 + 0.796293i \(0.706791\pi\)
\(744\) −3.36748 −0.123458
\(745\) −1.00800 −0.0369303
\(746\) 15.6375 0.572528
\(747\) −1.04100 −0.0380884
\(748\) 1.25605 0.0459256
\(749\) −4.47257 −0.163424
\(750\) −9.15030 −0.334122
\(751\) −10.5985 −0.386744 −0.193372 0.981126i \(-0.561942\pi\)
−0.193372 + 0.981126i \(0.561942\pi\)
\(752\) −18.0536 −0.658346
\(753\) −6.03188 −0.219814
\(754\) 3.15180 0.114782
\(755\) −17.4197 −0.633968
\(756\) 7.84188 0.285206
\(757\) 25.0113 0.909051 0.454525 0.890734i \(-0.349809\pi\)
0.454525 + 0.890734i \(0.349809\pi\)
\(758\) 3.05442 0.110941
\(759\) −1.74139 −0.0632083
\(760\) 2.45177 0.0889352
\(761\) −2.31376 −0.0838737 −0.0419369 0.999120i \(-0.513353\pi\)
−0.0419369 + 0.999120i \(0.513353\pi\)
\(762\) 2.46650 0.0893519
\(763\) −0.232041 −0.00840044
\(764\) −35.5277 −1.28535
\(765\) −0.196798 −0.00711523
\(766\) 8.77356 0.317002
\(767\) −9.70104 −0.350284
\(768\) 14.6579 0.528922
\(769\) −20.1751 −0.727533 −0.363766 0.931490i \(-0.618509\pi\)
−0.363766 + 0.931490i \(0.618509\pi\)
\(770\) 0.436299 0.0157231
\(771\) 13.3546 0.480955
\(772\) 18.1132 0.651910
\(773\) −32.3032 −1.16186 −0.580932 0.813952i \(-0.697312\pi\)
−0.580932 + 0.813952i \(0.697312\pi\)
\(774\) −1.07585 −0.0386705
\(775\) −3.45307 −0.124038
\(776\) −14.2020 −0.509823
\(777\) 17.5294 0.628865
\(778\) −20.7113 −0.742537
\(779\) 5.06730 0.181555
\(780\) −2.38548 −0.0854137
\(781\) −9.48954 −0.339562
\(782\) 0.790959 0.0282846
\(783\) 24.0908 0.860936
\(784\) 1.63822 0.0585080
\(785\) −7.05268 −0.251721
\(786\) −3.83923 −0.136941
\(787\) −19.0892 −0.680456 −0.340228 0.940343i \(-0.610504\pi\)
−0.340228 + 0.940343i \(0.610504\pi\)
\(788\) −4.90310 −0.174666
\(789\) −39.6200 −1.41051
\(790\) 0.318575 0.0113344
\(791\) 16.3538 0.581473
\(792\) 0.433718 0.0154115
\(793\) 9.69375 0.344235
\(794\) 21.4213 0.760213
\(795\) 19.4101 0.688407
\(796\) 26.8675 0.952293
\(797\) −46.5232 −1.64793 −0.823967 0.566637i \(-0.808244\pi\)
−0.823967 + 0.566637i \(0.808244\pi\)
\(798\) −1.46508 −0.0518633
\(799\) 11.0202 0.389867
\(800\) 24.5552 0.868157
\(801\) 1.29603 0.0457930
\(802\) −22.4032 −0.791085
\(803\) −3.96805 −0.140030
\(804\) −9.70308 −0.342201
\(805\) −1.02268 −0.0360448
\(806\) 0.523586 0.0184425
\(807\) 37.0007 1.30249
\(808\) −31.3490 −1.10285
\(809\) −20.2391 −0.711569 −0.355784 0.934568i \(-0.615786\pi\)
−0.355784 + 0.934568i \(0.615786\pi\)
\(810\) 5.28269 0.185615
\(811\) −33.6678 −1.18224 −0.591118 0.806585i \(-0.701313\pi\)
−0.591118 + 0.806585i \(0.701313\pi\)
\(812\) 7.63494 0.267934
\(813\) −34.4799 −1.20926
\(814\) −5.05433 −0.177154
\(815\) 16.6473 0.583129
\(816\) 2.94601 0.103131
\(817\) 8.84865 0.309575
\(818\) 7.25301 0.253595
\(819\) 0.233881 0.00817245
\(820\) −5.36945 −0.187509
\(821\) −29.2842 −1.02203 −0.511013 0.859573i \(-0.670730\pi\)
−0.511013 + 0.859573i \(0.670730\pi\)
\(822\) 14.3510 0.500547
\(823\) 33.1953 1.15711 0.578557 0.815642i \(-0.303616\pi\)
0.578557 + 0.815642i \(0.303616\pi\)
\(824\) −4.24342 −0.147827
\(825\) 6.14946 0.214097
\(826\) 6.31332 0.219668
\(827\) 42.1806 1.46676 0.733382 0.679817i \(-0.237941\pi\)
0.733382 + 0.679817i \(0.237941\pi\)
\(828\) −0.448121 −0.0155733
\(829\) −3.37249 −0.117131 −0.0585656 0.998284i \(-0.518653\pi\)
−0.0585656 + 0.998284i \(0.518653\pi\)
\(830\) 2.43739 0.0846029
\(831\) −6.63878 −0.230297
\(832\) −0.446837 −0.0154913
\(833\) −1.00000 −0.0346479
\(834\) −1.75081 −0.0606255
\(835\) −7.12759 −0.246660
\(836\) −1.57241 −0.0543829
\(837\) 4.00204 0.138331
\(838\) −10.3608 −0.357906
\(839\) 16.0546 0.554267 0.277133 0.960831i \(-0.410616\pi\)
0.277133 + 0.960831i \(0.410616\pi\)
\(840\) 3.52195 0.121519
\(841\) −5.54490 −0.191204
\(842\) 22.9849 0.792113
\(843\) 14.1784 0.488331
\(844\) 33.2292 1.14380
\(845\) 0.841445 0.0289466
\(846\) 1.67735 0.0576685
\(847\) 10.3652 0.356152
\(848\) −21.0142 −0.721632
\(849\) −36.8170 −1.26356
\(850\) −2.79316 −0.0958047
\(851\) 11.8473 0.406121
\(852\) −33.7657 −1.15679
\(853\) −39.5050 −1.35263 −0.676313 0.736615i \(-0.736423\pi\)
−0.676313 + 0.736615i \(0.736423\pi\)
\(854\) −6.30858 −0.215875
\(855\) 0.246365 0.00842552
\(856\) 10.4100 0.355808
\(857\) 13.8888 0.474434 0.237217 0.971457i \(-0.423765\pi\)
0.237217 + 0.971457i \(0.423765\pi\)
\(858\) −0.932438 −0.0318329
\(859\) −21.7866 −0.743350 −0.371675 0.928363i \(-0.621216\pi\)
−0.371675 + 0.928363i \(0.621216\pi\)
\(860\) −9.37627 −0.319728
\(861\) 7.27912 0.248072
\(862\) 8.91319 0.303584
\(863\) −39.9175 −1.35881 −0.679404 0.733765i \(-0.737761\pi\)
−0.679404 + 0.733765i \(0.737761\pi\)
\(864\) −28.4590 −0.968194
\(865\) −18.0535 −0.613837
\(866\) 20.5896 0.699663
\(867\) −1.79830 −0.0610734
\(868\) 1.26834 0.0430502
\(869\) −0.463516 −0.0157237
\(870\) 4.76921 0.161691
\(871\) 3.42264 0.115972
\(872\) 0.540081 0.0182895
\(873\) −1.42708 −0.0482994
\(874\) −0.990180 −0.0334933
\(875\) 7.81868 0.264320
\(876\) −14.1191 −0.477041
\(877\) −23.8123 −0.804083 −0.402042 0.915621i \(-0.631699\pi\)
−0.402042 + 0.915621i \(0.631699\pi\)
\(878\) 15.9021 0.536670
\(879\) 11.0891 0.374026
\(880\) 1.09829 0.0370234
\(881\) 53.9231 1.81672 0.908358 0.418194i \(-0.137337\pi\)
0.908358 + 0.418194i \(0.137337\pi\)
\(882\) −0.152207 −0.00512506
\(883\) 7.00832 0.235849 0.117924 0.993023i \(-0.462376\pi\)
0.117924 + 0.993023i \(0.462376\pi\)
\(884\) −1.57647 −0.0530226
\(885\) −14.6793 −0.493440
\(886\) 18.3569 0.616712
\(887\) 35.3058 1.18545 0.592726 0.805404i \(-0.298052\pi\)
0.592726 + 0.805404i \(0.298052\pi\)
\(888\) −40.8002 −1.36917
\(889\) −2.10756 −0.0706853
\(890\) −3.03450 −0.101717
\(891\) −7.68614 −0.257495
\(892\) 34.4458 1.15333
\(893\) −13.7959 −0.461663
\(894\) −1.40196 −0.0468886
\(895\) −0.716195 −0.0239398
\(896\) −11.1516 −0.372548
\(897\) 2.18563 0.0729760
\(898\) −9.08926 −0.303312
\(899\) 3.89643 0.129953
\(900\) 1.58248 0.0527493
\(901\) 12.8275 0.427345
\(902\) −2.09882 −0.0698830
\(903\) 12.7110 0.422995
\(904\) −38.0638 −1.26598
\(905\) 0.158125 0.00525624
\(906\) −24.2280 −0.804920
\(907\) 10.2502 0.340354 0.170177 0.985414i \(-0.445566\pi\)
0.170177 + 0.985414i \(0.445566\pi\)
\(908\) −22.0212 −0.730799
\(909\) −3.15009 −0.104482
\(910\) −0.547603 −0.0181528
\(911\) 17.1842 0.569338 0.284669 0.958626i \(-0.408116\pi\)
0.284669 + 0.958626i \(0.408116\pi\)
\(912\) −3.68803 −0.122123
\(913\) −3.54631 −0.117366
\(914\) 5.07943 0.168013
\(915\) 14.6683 0.484919
\(916\) −37.3483 −1.23402
\(917\) 3.28052 0.108332
\(918\) 3.23722 0.106844
\(919\) −6.19440 −0.204334 −0.102167 0.994767i \(-0.532578\pi\)
−0.102167 + 0.994767i \(0.532578\pi\)
\(920\) 2.38032 0.0784768
\(921\) 37.6000 1.23896
\(922\) −7.85181 −0.258586
\(923\) 11.9104 0.392036
\(924\) −2.25875 −0.0743073
\(925\) −41.8372 −1.37560
\(926\) −22.8695 −0.751540
\(927\) −0.426398 −0.0140048
\(928\) −27.7080 −0.909559
\(929\) −25.5573 −0.838507 −0.419253 0.907869i \(-0.637708\pi\)
−0.419253 + 0.907869i \(0.637708\pi\)
\(930\) 0.792275 0.0259797
\(931\) 1.25187 0.0410284
\(932\) 30.5476 1.00062
\(933\) −36.8515 −1.20646
\(934\) −9.09512 −0.297601
\(935\) −0.670416 −0.0219249
\(936\) −0.544363 −0.0177931
\(937\) 51.3148 1.67638 0.838190 0.545378i \(-0.183614\pi\)
0.838190 + 0.545378i \(0.183614\pi\)
\(938\) −2.22741 −0.0727275
\(939\) 20.9350 0.683188
\(940\) 14.6185 0.476803
\(941\) −20.3997 −0.665010 −0.332505 0.943101i \(-0.607894\pi\)
−0.332505 + 0.943101i \(0.607894\pi\)
\(942\) −9.80912 −0.319598
\(943\) 4.91962 0.160205
\(944\) 15.8925 0.517256
\(945\) −4.18561 −0.136158
\(946\) −3.66501 −0.119160
\(947\) −36.6968 −1.19249 −0.596243 0.802804i \(-0.703341\pi\)
−0.596243 + 0.802804i \(0.703341\pi\)
\(948\) −1.64928 −0.0535663
\(949\) 4.98034 0.161669
\(950\) 3.49668 0.113447
\(951\) 7.88963 0.255839
\(952\) 2.32753 0.0754356
\(953\) −14.5923 −0.472690 −0.236345 0.971669i \(-0.575950\pi\)
−0.236345 + 0.971669i \(0.575950\pi\)
\(954\) 1.95243 0.0632121
\(955\) 18.9630 0.613627
\(956\) −46.1983 −1.49416
\(957\) −6.93904 −0.224307
\(958\) 8.73835 0.282323
\(959\) −12.2625 −0.395977
\(960\) −0.676141 −0.0218224
\(961\) −30.3527 −0.979120
\(962\) 6.34374 0.204530
\(963\) 1.04605 0.0337084
\(964\) −2.28572 −0.0736182
\(965\) −9.66796 −0.311223
\(966\) −1.42238 −0.0457644
\(967\) −24.3658 −0.783550 −0.391775 0.920061i \(-0.628139\pi\)
−0.391775 + 0.920061i \(0.628139\pi\)
\(968\) −24.1253 −0.775416
\(969\) 2.25124 0.0723203
\(970\) 3.34134 0.107284
\(971\) 24.2576 0.778463 0.389232 0.921140i \(-0.372741\pi\)
0.389232 + 0.921140i \(0.372741\pi\)
\(972\) −3.82320 −0.122629
\(973\) 1.49602 0.0479602
\(974\) −0.603299 −0.0193309
\(975\) −7.71825 −0.247182
\(976\) −15.8805 −0.508323
\(977\) 30.5053 0.975951 0.487975 0.872857i \(-0.337736\pi\)
0.487975 + 0.872857i \(0.337736\pi\)
\(978\) 23.1536 0.740372
\(979\) 4.41509 0.141107
\(980\) −1.32652 −0.0423740
\(981\) 0.0542698 0.00173270
\(982\) −12.3688 −0.394705
\(983\) 12.0725 0.385052 0.192526 0.981292i \(-0.438332\pi\)
0.192526 + 0.981292i \(0.438332\pi\)
\(984\) −16.9423 −0.540102
\(985\) 2.61704 0.0833857
\(986\) 3.15180 0.100374
\(987\) −19.8177 −0.630803
\(988\) 1.97354 0.0627868
\(989\) 8.59076 0.273170
\(990\) −0.102042 −0.00324310
\(991\) −19.7636 −0.627812 −0.313906 0.949454i \(-0.601638\pi\)
−0.313906 + 0.949454i \(0.601638\pi\)
\(992\) −4.60293 −0.146143
\(993\) −48.8594 −1.55051
\(994\) −7.75115 −0.245852
\(995\) −14.3406 −0.454626
\(996\) −12.6185 −0.399832
\(997\) −30.8553 −0.977197 −0.488598 0.872509i \(-0.662492\pi\)
−0.488598 + 0.872509i \(0.662492\pi\)
\(998\) −5.61655 −0.177789
\(999\) 48.4885 1.53411
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1547.2.a.i.1.5 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1547.2.a.i.1.5 14 1.1 even 1 trivial