Properties

Label 1547.2.a.g.1.9
Level $1547$
Weight $2$
Character 1547.1
Self dual yes
Analytic conductor $12.353$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1547,2,Mod(1,1547)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1547.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1547, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1547 = 7 \cdot 13 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1547.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.3528571927\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 3x^{8} - 6x^{7} + 21x^{6} + 6x^{5} - 34x^{4} - 2x^{3} + 13x^{2} - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-2.20091\) of defining polynomial
Character \(\chi\) \(=\) 1547.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.20091 q^{2} +0.186661 q^{3} +2.84398 q^{4} -2.74655 q^{5} +0.410824 q^{6} +1.00000 q^{7} +1.85753 q^{8} -2.96516 q^{9} -6.04489 q^{10} -4.50572 q^{11} +0.530861 q^{12} -1.00000 q^{13} +2.20091 q^{14} -0.512674 q^{15} -1.59973 q^{16} +1.00000 q^{17} -6.52603 q^{18} -4.55532 q^{19} -7.81113 q^{20} +0.186661 q^{21} -9.91666 q^{22} +0.0507068 q^{23} +0.346728 q^{24} +2.54352 q^{25} -2.20091 q^{26} -1.11346 q^{27} +2.84398 q^{28} +2.94234 q^{29} -1.12835 q^{30} +8.62083 q^{31} -7.23590 q^{32} -0.841043 q^{33} +2.20091 q^{34} -2.74655 q^{35} -8.43286 q^{36} -8.04437 q^{37} -10.0258 q^{38} -0.186661 q^{39} -5.10179 q^{40} -0.594226 q^{41} +0.410824 q^{42} -11.6328 q^{43} -12.8142 q^{44} +8.14394 q^{45} +0.111601 q^{46} +13.3003 q^{47} -0.298607 q^{48} +1.00000 q^{49} +5.59804 q^{50} +0.186661 q^{51} -2.84398 q^{52} +1.24248 q^{53} -2.45063 q^{54} +12.3752 q^{55} +1.85753 q^{56} -0.850302 q^{57} +6.47581 q^{58} -1.17250 q^{59} -1.45804 q^{60} -3.74391 q^{61} +18.9736 q^{62} -2.96516 q^{63} -12.7261 q^{64} +2.74655 q^{65} -1.85106 q^{66} -1.32325 q^{67} +2.84398 q^{68} +0.00946499 q^{69} -6.04489 q^{70} +7.60887 q^{71} -5.50786 q^{72} +10.5866 q^{73} -17.7049 q^{74} +0.474776 q^{75} -12.9553 q^{76} -4.50572 q^{77} -0.410824 q^{78} -3.16726 q^{79} +4.39372 q^{80} +8.68763 q^{81} -1.30784 q^{82} -10.3441 q^{83} +0.530861 q^{84} -2.74655 q^{85} -25.6026 q^{86} +0.549220 q^{87} -8.36950 q^{88} -15.0735 q^{89} +17.9240 q^{90} -1.00000 q^{91} +0.144209 q^{92} +1.60917 q^{93} +29.2727 q^{94} +12.5114 q^{95} -1.35066 q^{96} -8.06416 q^{97} +2.20091 q^{98} +13.3602 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 3 q^{2} - 4 q^{3} + 3 q^{4} - 6 q^{5} + 2 q^{6} + 9 q^{7} - 6 q^{8} + 5 q^{9} - 9 q^{10} - 7 q^{11} + 2 q^{12} - 9 q^{13} - 3 q^{14} - 5 q^{15} + 3 q^{16} + 9 q^{17} - 9 q^{18} - 6 q^{19} + 6 q^{20}+ \cdots - 25 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.20091 1.55627 0.778137 0.628094i \(-0.216165\pi\)
0.778137 + 0.628094i \(0.216165\pi\)
\(3\) 0.186661 0.107769 0.0538844 0.998547i \(-0.482840\pi\)
0.0538844 + 0.998547i \(0.482840\pi\)
\(4\) 2.84398 1.42199
\(5\) −2.74655 −1.22829 −0.614146 0.789192i \(-0.710500\pi\)
−0.614146 + 0.789192i \(0.710500\pi\)
\(6\) 0.410824 0.167718
\(7\) 1.00000 0.377964
\(8\) 1.85753 0.656735
\(9\) −2.96516 −0.988386
\(10\) −6.04489 −1.91156
\(11\) −4.50572 −1.35853 −0.679263 0.733895i \(-0.737700\pi\)
−0.679263 + 0.733895i \(0.737700\pi\)
\(12\) 0.530861 0.153246
\(13\) −1.00000 −0.277350
\(14\) 2.20091 0.588217
\(15\) −0.512674 −0.132372
\(16\) −1.59973 −0.399931
\(17\) 1.00000 0.242536
\(18\) −6.52603 −1.53820
\(19\) −4.55532 −1.04506 −0.522531 0.852620i \(-0.675012\pi\)
−0.522531 + 0.852620i \(0.675012\pi\)
\(20\) −7.81113 −1.74662
\(21\) 0.186661 0.0407328
\(22\) −9.91666 −2.11424
\(23\) 0.0507068 0.0105731 0.00528655 0.999986i \(-0.498317\pi\)
0.00528655 + 0.999986i \(0.498317\pi\)
\(24\) 0.346728 0.0707756
\(25\) 2.54352 0.508704
\(26\) −2.20091 −0.431633
\(27\) −1.11346 −0.214286
\(28\) 2.84398 0.537462
\(29\) 2.94234 0.546379 0.273189 0.961960i \(-0.411921\pi\)
0.273189 + 0.961960i \(0.411921\pi\)
\(30\) −1.12835 −0.206007
\(31\) 8.62083 1.54835 0.774173 0.632974i \(-0.218166\pi\)
0.774173 + 0.632974i \(0.218166\pi\)
\(32\) −7.23590 −1.27914
\(33\) −0.841043 −0.146407
\(34\) 2.20091 0.377452
\(35\) −2.74655 −0.464251
\(36\) −8.43286 −1.40548
\(37\) −8.04437 −1.32249 −0.661243 0.750172i \(-0.729971\pi\)
−0.661243 + 0.750172i \(0.729971\pi\)
\(38\) −10.0258 −1.62640
\(39\) −0.186661 −0.0298897
\(40\) −5.10179 −0.806663
\(41\) −0.594226 −0.0928025 −0.0464013 0.998923i \(-0.514775\pi\)
−0.0464013 + 0.998923i \(0.514775\pi\)
\(42\) 0.410824 0.0633915
\(43\) −11.6328 −1.77398 −0.886990 0.461789i \(-0.847208\pi\)
−0.886990 + 0.461789i \(0.847208\pi\)
\(44\) −12.8142 −1.93181
\(45\) 8.14394 1.21403
\(46\) 0.111601 0.0164546
\(47\) 13.3003 1.94005 0.970024 0.243008i \(-0.0781342\pi\)
0.970024 + 0.243008i \(0.0781342\pi\)
\(48\) −0.298607 −0.0431002
\(49\) 1.00000 0.142857
\(50\) 5.59804 0.791683
\(51\) 0.186661 0.0261378
\(52\) −2.84398 −0.394390
\(53\) 1.24248 0.170667 0.0853336 0.996352i \(-0.472804\pi\)
0.0853336 + 0.996352i \(0.472804\pi\)
\(54\) −2.45063 −0.333488
\(55\) 12.3752 1.66867
\(56\) 1.85753 0.248223
\(57\) −0.850302 −0.112625
\(58\) 6.47581 0.850315
\(59\) −1.17250 −0.152647 −0.0763235 0.997083i \(-0.524318\pi\)
−0.0763235 + 0.997083i \(0.524318\pi\)
\(60\) −1.45804 −0.188232
\(61\) −3.74391 −0.479358 −0.239679 0.970852i \(-0.577042\pi\)
−0.239679 + 0.970852i \(0.577042\pi\)
\(62\) 18.9736 2.40965
\(63\) −2.96516 −0.373575
\(64\) −12.7261 −1.59076
\(65\) 2.74655 0.340667
\(66\) −1.85106 −0.227849
\(67\) −1.32325 −0.161661 −0.0808303 0.996728i \(-0.525757\pi\)
−0.0808303 + 0.996728i \(0.525757\pi\)
\(68\) 2.84398 0.344884
\(69\) 0.00946499 0.00113945
\(70\) −6.04489 −0.722502
\(71\) 7.60887 0.903007 0.451504 0.892269i \(-0.350888\pi\)
0.451504 + 0.892269i \(0.350888\pi\)
\(72\) −5.50786 −0.649108
\(73\) 10.5866 1.23907 0.619535 0.784969i \(-0.287321\pi\)
0.619535 + 0.784969i \(0.287321\pi\)
\(74\) −17.7049 −2.05815
\(75\) 0.474776 0.0548224
\(76\) −12.9553 −1.48607
\(77\) −4.50572 −0.513474
\(78\) −0.410824 −0.0465166
\(79\) −3.16726 −0.356345 −0.178173 0.983999i \(-0.557019\pi\)
−0.178173 + 0.983999i \(0.557019\pi\)
\(80\) 4.39372 0.491233
\(81\) 8.68763 0.965292
\(82\) −1.30784 −0.144426
\(83\) −10.3441 −1.13542 −0.567708 0.823230i \(-0.692170\pi\)
−0.567708 + 0.823230i \(0.692170\pi\)
\(84\) 0.530861 0.0579217
\(85\) −2.74655 −0.297905
\(86\) −25.6026 −2.76080
\(87\) 0.549220 0.0588826
\(88\) −8.36950 −0.892191
\(89\) −15.0735 −1.59778 −0.798892 0.601474i \(-0.794580\pi\)
−0.798892 + 0.601474i \(0.794580\pi\)
\(90\) 17.9240 1.88936
\(91\) −1.00000 −0.104828
\(92\) 0.144209 0.0150349
\(93\) 1.60917 0.166864
\(94\) 29.2727 3.01925
\(95\) 12.5114 1.28364
\(96\) −1.35066 −0.137851
\(97\) −8.06416 −0.818792 −0.409396 0.912357i \(-0.634260\pi\)
−0.409396 + 0.912357i \(0.634260\pi\)
\(98\) 2.20091 0.222325
\(99\) 13.3602 1.34275
\(100\) 7.23372 0.723372
\(101\) 10.8235 1.07698 0.538489 0.842632i \(-0.318995\pi\)
0.538489 + 0.842632i \(0.318995\pi\)
\(102\) 0.410824 0.0406776
\(103\) −3.15503 −0.310874 −0.155437 0.987846i \(-0.549679\pi\)
−0.155437 + 0.987846i \(0.549679\pi\)
\(104\) −1.85753 −0.182146
\(105\) −0.512674 −0.0500318
\(106\) 2.73457 0.265605
\(107\) −12.9240 −1.24941 −0.624705 0.780861i \(-0.714781\pi\)
−0.624705 + 0.780861i \(0.714781\pi\)
\(108\) −3.16667 −0.304713
\(109\) −0.942031 −0.0902302 −0.0451151 0.998982i \(-0.514365\pi\)
−0.0451151 + 0.998982i \(0.514365\pi\)
\(110\) 27.2366 2.59690
\(111\) −1.50157 −0.142523
\(112\) −1.59973 −0.151160
\(113\) 17.6287 1.65837 0.829186 0.558973i \(-0.188804\pi\)
0.829186 + 0.558973i \(0.188804\pi\)
\(114\) −1.87143 −0.175276
\(115\) −0.139269 −0.0129869
\(116\) 8.36796 0.776946
\(117\) 2.96516 0.274129
\(118\) −2.58057 −0.237561
\(119\) 1.00000 0.0916698
\(120\) −0.952305 −0.0869332
\(121\) 9.30150 0.845591
\(122\) −8.23999 −0.746013
\(123\) −0.110919 −0.0100012
\(124\) 24.5175 2.20174
\(125\) 6.74684 0.603456
\(126\) −6.52603 −0.581385
\(127\) 2.95001 0.261771 0.130886 0.991397i \(-0.458218\pi\)
0.130886 + 0.991397i \(0.458218\pi\)
\(128\) −13.5371 −1.19652
\(129\) −2.17139 −0.191180
\(130\) 6.04489 0.530172
\(131\) 10.2320 0.893971 0.446985 0.894541i \(-0.352498\pi\)
0.446985 + 0.894541i \(0.352498\pi\)
\(132\) −2.39191 −0.208189
\(133\) −4.55532 −0.394996
\(134\) −2.91235 −0.251588
\(135\) 3.05818 0.263206
\(136\) 1.85753 0.159282
\(137\) −18.5805 −1.58744 −0.793718 0.608286i \(-0.791857\pi\)
−0.793718 + 0.608286i \(0.791857\pi\)
\(138\) 0.0208315 0.00177330
\(139\) −11.5357 −0.978447 −0.489223 0.872159i \(-0.662720\pi\)
−0.489223 + 0.872159i \(0.662720\pi\)
\(140\) −7.81113 −0.660161
\(141\) 2.48265 0.209077
\(142\) 16.7464 1.40533
\(143\) 4.50572 0.376787
\(144\) 4.74344 0.395286
\(145\) −8.08127 −0.671113
\(146\) 23.3001 1.92833
\(147\) 0.186661 0.0153956
\(148\) −22.8780 −1.88056
\(149\) −15.2190 −1.24679 −0.623395 0.781907i \(-0.714247\pi\)
−0.623395 + 0.781907i \(0.714247\pi\)
\(150\) 1.04494 0.0853188
\(151\) −11.5463 −0.939623 −0.469811 0.882767i \(-0.655678\pi\)
−0.469811 + 0.882767i \(0.655678\pi\)
\(152\) −8.46163 −0.686329
\(153\) −2.96516 −0.239719
\(154\) −9.91666 −0.799107
\(155\) −23.6775 −1.90182
\(156\) −0.530861 −0.0425029
\(157\) −9.14426 −0.729791 −0.364896 0.931048i \(-0.618895\pi\)
−0.364896 + 0.931048i \(0.618895\pi\)
\(158\) −6.97085 −0.554571
\(159\) 0.231922 0.0183926
\(160\) 19.8737 1.57116
\(161\) 0.0507068 0.00399626
\(162\) 19.1207 1.50226
\(163\) −3.35459 −0.262752 −0.131376 0.991333i \(-0.541940\pi\)
−0.131376 + 0.991333i \(0.541940\pi\)
\(164\) −1.68997 −0.131964
\(165\) 2.30996 0.179830
\(166\) −22.7665 −1.76702
\(167\) −4.35419 −0.336937 −0.168469 0.985707i \(-0.553882\pi\)
−0.168469 + 0.985707i \(0.553882\pi\)
\(168\) 0.346728 0.0267507
\(169\) 1.00000 0.0769231
\(170\) −6.04489 −0.463622
\(171\) 13.5072 1.03292
\(172\) −33.0834 −2.52258
\(173\) 14.6634 1.11484 0.557418 0.830232i \(-0.311792\pi\)
0.557418 + 0.830232i \(0.311792\pi\)
\(174\) 1.20878 0.0916375
\(175\) 2.54352 0.192272
\(176\) 7.20791 0.543317
\(177\) −0.218861 −0.0164506
\(178\) −33.1753 −2.48659
\(179\) −10.4214 −0.778929 −0.389464 0.921042i \(-0.627340\pi\)
−0.389464 + 0.921042i \(0.627340\pi\)
\(180\) 23.1612 1.72634
\(181\) −7.03669 −0.523033 −0.261517 0.965199i \(-0.584223\pi\)
−0.261517 + 0.965199i \(0.584223\pi\)
\(182\) −2.20091 −0.163142
\(183\) −0.698842 −0.0516599
\(184\) 0.0941893 0.00694372
\(185\) 22.0942 1.62440
\(186\) 3.54164 0.259686
\(187\) −4.50572 −0.329491
\(188\) 37.8258 2.75873
\(189\) −1.11346 −0.0809925
\(190\) 27.5364 1.99770
\(191\) 18.6773 1.35144 0.675721 0.737157i \(-0.263832\pi\)
0.675721 + 0.737157i \(0.263832\pi\)
\(192\) −2.37546 −0.171434
\(193\) 6.11104 0.439882 0.219941 0.975513i \(-0.429413\pi\)
0.219941 + 0.975513i \(0.429413\pi\)
\(194\) −17.7485 −1.27426
\(195\) 0.512674 0.0367133
\(196\) 2.84398 0.203142
\(197\) 3.15097 0.224497 0.112249 0.993680i \(-0.464195\pi\)
0.112249 + 0.993680i \(0.464195\pi\)
\(198\) 29.4045 2.08968
\(199\) 12.3313 0.874145 0.437072 0.899426i \(-0.356015\pi\)
0.437072 + 0.899426i \(0.356015\pi\)
\(200\) 4.72465 0.334084
\(201\) −0.246999 −0.0174220
\(202\) 23.8215 1.67607
\(203\) 2.94234 0.206512
\(204\) 0.530861 0.0371677
\(205\) 1.63207 0.113989
\(206\) −6.94391 −0.483805
\(207\) −0.150354 −0.0104503
\(208\) 1.59973 0.110921
\(209\) 20.5250 1.41974
\(210\) −1.12835 −0.0778633
\(211\) −17.7378 −1.22112 −0.610559 0.791971i \(-0.709055\pi\)
−0.610559 + 0.791971i \(0.709055\pi\)
\(212\) 3.53358 0.242687
\(213\) 1.42028 0.0973161
\(214\) −28.4445 −1.94442
\(215\) 31.9499 2.17897
\(216\) −2.06829 −0.140729
\(217\) 8.62083 0.585220
\(218\) −2.07332 −0.140423
\(219\) 1.97611 0.133533
\(220\) 35.1948 2.37283
\(221\) −1.00000 −0.0672673
\(222\) −3.30482 −0.221805
\(223\) −23.9302 −1.60248 −0.801242 0.598341i \(-0.795827\pi\)
−0.801242 + 0.598341i \(0.795827\pi\)
\(224\) −7.23590 −0.483469
\(225\) −7.54193 −0.502795
\(226\) 38.7992 2.58088
\(227\) 15.5141 1.02971 0.514855 0.857277i \(-0.327846\pi\)
0.514855 + 0.857277i \(0.327846\pi\)
\(228\) −2.41824 −0.160152
\(229\) −1.24319 −0.0821526 −0.0410763 0.999156i \(-0.513079\pi\)
−0.0410763 + 0.999156i \(0.513079\pi\)
\(230\) −0.306517 −0.0202111
\(231\) −0.841043 −0.0553366
\(232\) 5.46547 0.358826
\(233\) 18.3324 1.20100 0.600498 0.799626i \(-0.294969\pi\)
0.600498 + 0.799626i \(0.294969\pi\)
\(234\) 6.52603 0.426620
\(235\) −36.5299 −2.38295
\(236\) −3.33458 −0.217063
\(237\) −0.591205 −0.0384029
\(238\) 2.20091 0.142663
\(239\) −14.6029 −0.944585 −0.472292 0.881442i \(-0.656573\pi\)
−0.472292 + 0.881442i \(0.656573\pi\)
\(240\) 0.820137 0.0529396
\(241\) −4.49374 −0.289467 −0.144734 0.989471i \(-0.546232\pi\)
−0.144734 + 0.989471i \(0.546232\pi\)
\(242\) 20.4717 1.31597
\(243\) 4.96203 0.318315
\(244\) −10.6476 −0.681644
\(245\) −2.74655 −0.175470
\(246\) −0.244122 −0.0155647
\(247\) 4.55532 0.289848
\(248\) 16.0134 1.01685
\(249\) −1.93085 −0.122363
\(250\) 14.8492 0.939143
\(251\) −0.711416 −0.0449042 −0.0224521 0.999748i \(-0.507147\pi\)
−0.0224521 + 0.999748i \(0.507147\pi\)
\(252\) −8.43286 −0.531220
\(253\) −0.228471 −0.0143638
\(254\) 6.49270 0.407388
\(255\) −0.512674 −0.0321049
\(256\) −4.34169 −0.271356
\(257\) 13.7105 0.855235 0.427618 0.903960i \(-0.359353\pi\)
0.427618 + 0.903960i \(0.359353\pi\)
\(258\) −4.77901 −0.297528
\(259\) −8.04437 −0.499853
\(260\) 7.81113 0.484426
\(261\) −8.72450 −0.540033
\(262\) 22.5196 1.39126
\(263\) 20.0286 1.23501 0.617507 0.786566i \(-0.288143\pi\)
0.617507 + 0.786566i \(0.288143\pi\)
\(264\) −1.56226 −0.0961505
\(265\) −3.41252 −0.209629
\(266\) −10.0258 −0.614723
\(267\) −2.81363 −0.172191
\(268\) −3.76330 −0.229880
\(269\) 4.82120 0.293954 0.146977 0.989140i \(-0.453046\pi\)
0.146977 + 0.989140i \(0.453046\pi\)
\(270\) 6.73076 0.409621
\(271\) −5.25703 −0.319342 −0.159671 0.987170i \(-0.551043\pi\)
−0.159671 + 0.987170i \(0.551043\pi\)
\(272\) −1.59973 −0.0969976
\(273\) −0.186661 −0.0112972
\(274\) −40.8938 −2.47049
\(275\) −11.4604 −0.691087
\(276\) 0.0269183 0.00162029
\(277\) −12.2316 −0.734925 −0.367463 0.930038i \(-0.619773\pi\)
−0.367463 + 0.930038i \(0.619773\pi\)
\(278\) −25.3890 −1.52273
\(279\) −25.5621 −1.53036
\(280\) −5.10179 −0.304890
\(281\) −27.3339 −1.63060 −0.815302 0.579036i \(-0.803429\pi\)
−0.815302 + 0.579036i \(0.803429\pi\)
\(282\) 5.46408 0.325381
\(283\) 12.6446 0.751645 0.375822 0.926692i \(-0.377360\pi\)
0.375822 + 0.926692i \(0.377360\pi\)
\(284\) 21.6395 1.28407
\(285\) 2.33539 0.138337
\(286\) 9.91666 0.586384
\(287\) −0.594226 −0.0350761
\(288\) 21.4556 1.26428
\(289\) 1.00000 0.0588235
\(290\) −17.7861 −1.04444
\(291\) −1.50527 −0.0882403
\(292\) 30.1081 1.76195
\(293\) 21.6244 1.26331 0.631654 0.775250i \(-0.282376\pi\)
0.631654 + 0.775250i \(0.282376\pi\)
\(294\) 0.410824 0.0239597
\(295\) 3.22033 0.187495
\(296\) −14.9426 −0.868523
\(297\) 5.01695 0.291113
\(298\) −33.4956 −1.94035
\(299\) −0.0507068 −0.00293245
\(300\) 1.35026 0.0779570
\(301\) −11.6328 −0.670501
\(302\) −25.4123 −1.46231
\(303\) 2.02033 0.116065
\(304\) 7.28726 0.417953
\(305\) 10.2828 0.588792
\(306\) −6.52603 −0.373068
\(307\) 7.39812 0.422233 0.211117 0.977461i \(-0.432290\pi\)
0.211117 + 0.977461i \(0.432290\pi\)
\(308\) −12.8142 −0.730156
\(309\) −0.588921 −0.0335025
\(310\) −52.1119 −2.95976
\(311\) −11.6550 −0.660893 −0.330447 0.943825i \(-0.607199\pi\)
−0.330447 + 0.943825i \(0.607199\pi\)
\(312\) −0.346728 −0.0196296
\(313\) −27.2766 −1.54176 −0.770882 0.636978i \(-0.780184\pi\)
−0.770882 + 0.636978i \(0.780184\pi\)
\(314\) −20.1256 −1.13576
\(315\) 8.14394 0.458859
\(316\) −9.00765 −0.506720
\(317\) 31.9636 1.79525 0.897627 0.440755i \(-0.145289\pi\)
0.897627 + 0.440755i \(0.145289\pi\)
\(318\) 0.510438 0.0286240
\(319\) −13.2573 −0.742269
\(320\) 34.9528 1.95392
\(321\) −2.41241 −0.134647
\(322\) 0.111601 0.00621927
\(323\) −4.55532 −0.253465
\(324\) 24.7075 1.37264
\(325\) −2.54352 −0.141089
\(326\) −7.38314 −0.408914
\(327\) −0.175841 −0.00972401
\(328\) −1.10379 −0.0609467
\(329\) 13.3003 0.733269
\(330\) 5.08401 0.279866
\(331\) 9.88534 0.543347 0.271674 0.962389i \(-0.412423\pi\)
0.271674 + 0.962389i \(0.412423\pi\)
\(332\) −29.4186 −1.61455
\(333\) 23.8528 1.30713
\(334\) −9.58316 −0.524367
\(335\) 3.63437 0.198567
\(336\) −0.298607 −0.0162903
\(337\) 25.9902 1.41578 0.707888 0.706324i \(-0.249648\pi\)
0.707888 + 0.706324i \(0.249648\pi\)
\(338\) 2.20091 0.119713
\(339\) 3.29060 0.178721
\(340\) −7.81113 −0.423618
\(341\) −38.8430 −2.10347
\(342\) 29.7282 1.60752
\(343\) 1.00000 0.0539949
\(344\) −21.6082 −1.16503
\(345\) −0.0259960 −0.00139958
\(346\) 32.2727 1.73499
\(347\) −26.2306 −1.40813 −0.704065 0.710135i \(-0.748634\pi\)
−0.704065 + 0.710135i \(0.748634\pi\)
\(348\) 1.56197 0.0837306
\(349\) −16.0057 −0.856768 −0.428384 0.903597i \(-0.640917\pi\)
−0.428384 + 0.903597i \(0.640917\pi\)
\(350\) 5.59804 0.299228
\(351\) 1.11346 0.0594323
\(352\) 32.6029 1.73774
\(353\) −27.8678 −1.48325 −0.741626 0.670814i \(-0.765945\pi\)
−0.741626 + 0.670814i \(0.765945\pi\)
\(354\) −0.481692 −0.0256016
\(355\) −20.8981 −1.10916
\(356\) −42.8687 −2.27204
\(357\) 0.186661 0.00987916
\(358\) −22.9364 −1.21223
\(359\) −37.8621 −1.99829 −0.999143 0.0413995i \(-0.986818\pi\)
−0.999143 + 0.0413995i \(0.986818\pi\)
\(360\) 15.1276 0.797294
\(361\) 1.75095 0.0921555
\(362\) −15.4871 −0.813983
\(363\) 1.73623 0.0911284
\(364\) −2.84398 −0.149065
\(365\) −29.0766 −1.52194
\(366\) −1.53809 −0.0803970
\(367\) −2.27783 −0.118902 −0.0594508 0.998231i \(-0.518935\pi\)
−0.0594508 + 0.998231i \(0.518935\pi\)
\(368\) −0.0811169 −0.00422851
\(369\) 1.76197 0.0917247
\(370\) 48.6273 2.52801
\(371\) 1.24248 0.0645061
\(372\) 4.57646 0.237279
\(373\) −12.5646 −0.650573 −0.325286 0.945616i \(-0.605461\pi\)
−0.325286 + 0.945616i \(0.605461\pi\)
\(374\) −9.91666 −0.512778
\(375\) 1.25937 0.0650338
\(376\) 24.7057 1.27410
\(377\) −2.94234 −0.151538
\(378\) −2.45063 −0.126047
\(379\) −4.50281 −0.231294 −0.115647 0.993290i \(-0.536894\pi\)
−0.115647 + 0.993290i \(0.536894\pi\)
\(380\) 35.5822 1.82533
\(381\) 0.550653 0.0282108
\(382\) 41.1070 2.10322
\(383\) 2.22158 0.113518 0.0567588 0.998388i \(-0.481923\pi\)
0.0567588 + 0.998388i \(0.481923\pi\)
\(384\) −2.52685 −0.128948
\(385\) 12.3752 0.630697
\(386\) 13.4498 0.684578
\(387\) 34.4930 1.75338
\(388\) −22.9343 −1.16431
\(389\) 25.6830 1.30218 0.651089 0.759002i \(-0.274313\pi\)
0.651089 + 0.759002i \(0.274313\pi\)
\(390\) 1.12835 0.0571360
\(391\) 0.0507068 0.00256435
\(392\) 1.85753 0.0938193
\(393\) 1.90991 0.0963422
\(394\) 6.93499 0.349380
\(395\) 8.69904 0.437696
\(396\) 37.9961 1.90938
\(397\) −20.2669 −1.01717 −0.508584 0.861012i \(-0.669831\pi\)
−0.508584 + 0.861012i \(0.669831\pi\)
\(398\) 27.1401 1.36041
\(399\) −0.850302 −0.0425683
\(400\) −4.06893 −0.203447
\(401\) −35.8745 −1.79149 −0.895744 0.444570i \(-0.853357\pi\)
−0.895744 + 0.444570i \(0.853357\pi\)
\(402\) −0.543622 −0.0271134
\(403\) −8.62083 −0.429434
\(404\) 30.7818 1.53145
\(405\) −23.8610 −1.18566
\(406\) 6.47581 0.321389
\(407\) 36.2457 1.79663
\(408\) 0.346728 0.0171656
\(409\) 13.6731 0.676090 0.338045 0.941130i \(-0.390234\pi\)
0.338045 + 0.941130i \(0.390234\pi\)
\(410\) 3.59203 0.177398
\(411\) −3.46825 −0.171076
\(412\) −8.97284 −0.442060
\(413\) −1.17250 −0.0576951
\(414\) −0.330914 −0.0162635
\(415\) 28.4107 1.39462
\(416\) 7.23590 0.354769
\(417\) −2.15327 −0.105446
\(418\) 45.1736 2.20951
\(419\) −11.3633 −0.555131 −0.277566 0.960707i \(-0.589528\pi\)
−0.277566 + 0.960707i \(0.589528\pi\)
\(420\) −1.45804 −0.0711448
\(421\) 10.1372 0.494059 0.247029 0.969008i \(-0.420546\pi\)
0.247029 + 0.969008i \(0.420546\pi\)
\(422\) −39.0391 −1.90040
\(423\) −39.4375 −1.91752
\(424\) 2.30793 0.112083
\(425\) 2.54352 0.123379
\(426\) 3.12590 0.151451
\(427\) −3.74391 −0.181180
\(428\) −36.7556 −1.77665
\(429\) 0.841043 0.0406059
\(430\) 70.3188 3.39107
\(431\) 12.7321 0.613284 0.306642 0.951825i \(-0.400795\pi\)
0.306642 + 0.951825i \(0.400795\pi\)
\(432\) 1.78124 0.0856997
\(433\) −14.6700 −0.704997 −0.352499 0.935812i \(-0.614668\pi\)
−0.352499 + 0.935812i \(0.614668\pi\)
\(434\) 18.9736 0.910763
\(435\) −1.50846 −0.0723251
\(436\) −2.67912 −0.128307
\(437\) −0.230986 −0.0110495
\(438\) 4.34923 0.207814
\(439\) −30.1235 −1.43771 −0.718857 0.695158i \(-0.755334\pi\)
−0.718857 + 0.695158i \(0.755334\pi\)
\(440\) 22.9872 1.09587
\(441\) −2.96516 −0.141198
\(442\) −2.20091 −0.104686
\(443\) 16.6088 0.789109 0.394555 0.918873i \(-0.370899\pi\)
0.394555 + 0.918873i \(0.370899\pi\)
\(444\) −4.27044 −0.202666
\(445\) 41.4000 1.96255
\(446\) −52.6680 −2.49390
\(447\) −2.84080 −0.134365
\(448\) −12.7261 −0.601251
\(449\) −30.0792 −1.41952 −0.709762 0.704441i \(-0.751198\pi\)
−0.709762 + 0.704441i \(0.751198\pi\)
\(450\) −16.5991 −0.782488
\(451\) 2.67742 0.126075
\(452\) 50.1358 2.35819
\(453\) −2.15524 −0.101262
\(454\) 34.1451 1.60251
\(455\) 2.74655 0.128760
\(456\) −1.57946 −0.0739649
\(457\) −3.02469 −0.141489 −0.0707445 0.997494i \(-0.522537\pi\)
−0.0707445 + 0.997494i \(0.522537\pi\)
\(458\) −2.73615 −0.127852
\(459\) −1.11346 −0.0519720
\(460\) −0.396077 −0.0184672
\(461\) 20.7217 0.965108 0.482554 0.875866i \(-0.339709\pi\)
0.482554 + 0.875866i \(0.339709\pi\)
\(462\) −1.85106 −0.0861189
\(463\) −29.6231 −1.37670 −0.688350 0.725379i \(-0.741665\pi\)
−0.688350 + 0.725379i \(0.741665\pi\)
\(464\) −4.70693 −0.218514
\(465\) −4.41967 −0.204957
\(466\) 40.3479 1.86908
\(467\) 34.8500 1.61266 0.806332 0.591463i \(-0.201450\pi\)
0.806332 + 0.591463i \(0.201450\pi\)
\(468\) 8.43286 0.389809
\(469\) −1.32325 −0.0611020
\(470\) −80.3988 −3.70852
\(471\) −1.70688 −0.0786488
\(472\) −2.17796 −0.100249
\(473\) 52.4140 2.41000
\(474\) −1.30119 −0.0597655
\(475\) −11.5865 −0.531627
\(476\) 2.84398 0.130354
\(477\) −3.68414 −0.168685
\(478\) −32.1397 −1.47003
\(479\) 30.1404 1.37715 0.688576 0.725164i \(-0.258236\pi\)
0.688576 + 0.725164i \(0.258236\pi\)
\(480\) 3.70965 0.169322
\(481\) 8.04437 0.366792
\(482\) −9.89029 −0.450490
\(483\) 0.00946499 0.000430672 0
\(484\) 26.4533 1.20242
\(485\) 22.1486 1.00572
\(486\) 10.9210 0.495385
\(487\) −16.1115 −0.730082 −0.365041 0.930991i \(-0.618945\pi\)
−0.365041 + 0.930991i \(0.618945\pi\)
\(488\) −6.95441 −0.314811
\(489\) −0.626172 −0.0283165
\(490\) −6.04489 −0.273080
\(491\) 24.1862 1.09151 0.545754 0.837945i \(-0.316243\pi\)
0.545754 + 0.837945i \(0.316243\pi\)
\(492\) −0.315452 −0.0142217
\(493\) 2.94234 0.132516
\(494\) 10.0258 0.451083
\(495\) −36.6943 −1.64929
\(496\) −13.7910 −0.619232
\(497\) 7.60887 0.341305
\(498\) −4.24962 −0.190430
\(499\) −12.1212 −0.542617 −0.271309 0.962492i \(-0.587456\pi\)
−0.271309 + 0.962492i \(0.587456\pi\)
\(500\) 19.1879 0.858109
\(501\) −0.812758 −0.0363114
\(502\) −1.56576 −0.0698832
\(503\) −34.7695 −1.55030 −0.775149 0.631779i \(-0.782325\pi\)
−0.775149 + 0.631779i \(0.782325\pi\)
\(504\) −5.50786 −0.245340
\(505\) −29.7272 −1.32284
\(506\) −0.502842 −0.0223541
\(507\) 0.186661 0.00828991
\(508\) 8.38979 0.372237
\(509\) −21.8609 −0.968968 −0.484484 0.874800i \(-0.660993\pi\)
−0.484484 + 0.874800i \(0.660993\pi\)
\(510\) −1.12835 −0.0499640
\(511\) 10.5866 0.468324
\(512\) 17.5185 0.774216
\(513\) 5.07218 0.223942
\(514\) 30.1754 1.33098
\(515\) 8.66543 0.381844
\(516\) −6.17538 −0.271856
\(517\) −59.9274 −2.63561
\(518\) −17.7049 −0.777908
\(519\) 2.73708 0.120145
\(520\) 5.10179 0.223728
\(521\) −25.0681 −1.09825 −0.549126 0.835740i \(-0.685039\pi\)
−0.549126 + 0.835740i \(0.685039\pi\)
\(522\) −19.2018 −0.840440
\(523\) −1.42808 −0.0624457 −0.0312229 0.999512i \(-0.509940\pi\)
−0.0312229 + 0.999512i \(0.509940\pi\)
\(524\) 29.0995 1.27122
\(525\) 0.474776 0.0207209
\(526\) 44.0810 1.92202
\(527\) 8.62083 0.375529
\(528\) 1.34544 0.0585527
\(529\) −22.9974 −0.999888
\(530\) −7.51063 −0.326241
\(531\) 3.47666 0.150874
\(532\) −12.9553 −0.561682
\(533\) 0.594226 0.0257388
\(534\) −6.19253 −0.267977
\(535\) 35.4963 1.53464
\(536\) −2.45797 −0.106168
\(537\) −1.94526 −0.0839443
\(538\) 10.6110 0.457473
\(539\) −4.50572 −0.194075
\(540\) 8.69741 0.374277
\(541\) −3.32635 −0.143011 −0.0715056 0.997440i \(-0.522780\pi\)
−0.0715056 + 0.997440i \(0.522780\pi\)
\(542\) −11.5702 −0.496983
\(543\) −1.31348 −0.0563667
\(544\) −7.23590 −0.310237
\(545\) 2.58733 0.110829
\(546\) −0.410824 −0.0175816
\(547\) 28.3280 1.21122 0.605608 0.795763i \(-0.292930\pi\)
0.605608 + 0.795763i \(0.292930\pi\)
\(548\) −52.8425 −2.25732
\(549\) 11.1013 0.473791
\(550\) −25.2232 −1.07552
\(551\) −13.4033 −0.571000
\(552\) 0.0175815 0.000748317 0
\(553\) −3.16726 −0.134686
\(554\) −26.9206 −1.14375
\(555\) 4.12413 0.175060
\(556\) −32.8074 −1.39134
\(557\) −18.4078 −0.779963 −0.389981 0.920823i \(-0.627519\pi\)
−0.389981 + 0.920823i \(0.627519\pi\)
\(558\) −56.2598 −2.38167
\(559\) 11.6328 0.492013
\(560\) 4.39372 0.185669
\(561\) −0.841043 −0.0355089
\(562\) −60.1593 −2.53767
\(563\) 32.5862 1.37335 0.686673 0.726966i \(-0.259070\pi\)
0.686673 + 0.726966i \(0.259070\pi\)
\(564\) 7.06062 0.297306
\(565\) −48.4182 −2.03697
\(566\) 27.8296 1.16977
\(567\) 8.68763 0.364846
\(568\) 14.1337 0.593036
\(569\) 9.48520 0.397640 0.198820 0.980036i \(-0.436289\pi\)
0.198820 + 0.980036i \(0.436289\pi\)
\(570\) 5.13998 0.215290
\(571\) 24.2153 1.01338 0.506689 0.862129i \(-0.330869\pi\)
0.506689 + 0.862129i \(0.330869\pi\)
\(572\) 12.8142 0.535788
\(573\) 3.48633 0.145643
\(574\) −1.30784 −0.0545880
\(575\) 0.128974 0.00537857
\(576\) 37.7348 1.57228
\(577\) 21.5349 0.896511 0.448256 0.893905i \(-0.352045\pi\)
0.448256 + 0.893905i \(0.352045\pi\)
\(578\) 2.20091 0.0915456
\(579\) 1.14069 0.0474056
\(580\) −22.9830 −0.954317
\(581\) −10.3441 −0.429147
\(582\) −3.31295 −0.137326
\(583\) −5.59824 −0.231856
\(584\) 19.6649 0.813740
\(585\) −8.14394 −0.336711
\(586\) 47.5931 1.96605
\(587\) −46.6382 −1.92497 −0.962483 0.271341i \(-0.912533\pi\)
−0.962483 + 0.271341i \(0.912533\pi\)
\(588\) 0.530861 0.0218924
\(589\) −39.2706 −1.61812
\(590\) 7.08765 0.291794
\(591\) 0.588164 0.0241938
\(592\) 12.8688 0.528903
\(593\) −9.70436 −0.398510 −0.199255 0.979948i \(-0.563852\pi\)
−0.199255 + 0.979948i \(0.563852\pi\)
\(594\) 11.0418 0.453052
\(595\) −2.74655 −0.112597
\(596\) −43.2826 −1.77293
\(597\) 2.30178 0.0942056
\(598\) −0.111601 −0.00456370
\(599\) 9.12520 0.372846 0.186423 0.982470i \(-0.440311\pi\)
0.186423 + 0.982470i \(0.440311\pi\)
\(600\) 0.881910 0.0360038
\(601\) 46.8048 1.90921 0.954605 0.297875i \(-0.0962780\pi\)
0.954605 + 0.297875i \(0.0962780\pi\)
\(602\) −25.6026 −1.04348
\(603\) 3.92364 0.159783
\(604\) −32.8374 −1.33614
\(605\) −25.5470 −1.03863
\(606\) 4.44655 0.180629
\(607\) 6.42403 0.260743 0.130372 0.991465i \(-0.458383\pi\)
0.130372 + 0.991465i \(0.458383\pi\)
\(608\) 32.9618 1.33678
\(609\) 0.549220 0.0222555
\(610\) 22.6315 0.916323
\(611\) −13.3003 −0.538073
\(612\) −8.43286 −0.340878
\(613\) 39.5294 1.59658 0.798289 0.602274i \(-0.205739\pi\)
0.798289 + 0.602274i \(0.205739\pi\)
\(614\) 16.2826 0.657111
\(615\) 0.304644 0.0122844
\(616\) −8.36950 −0.337217
\(617\) −35.5744 −1.43217 −0.716087 0.698011i \(-0.754068\pi\)
−0.716087 + 0.698011i \(0.754068\pi\)
\(618\) −1.29616 −0.0521392
\(619\) −21.6337 −0.869532 −0.434766 0.900543i \(-0.643169\pi\)
−0.434766 + 0.900543i \(0.643169\pi\)
\(620\) −67.3384 −2.70438
\(621\) −0.0564602 −0.00226567
\(622\) −25.6515 −1.02853
\(623\) −15.0735 −0.603906
\(624\) 0.298607 0.0119538
\(625\) −31.2481 −1.24992
\(626\) −60.0332 −2.39941
\(627\) 3.83122 0.153004
\(628\) −26.0061 −1.03776
\(629\) −8.04437 −0.320750
\(630\) 17.9240 0.714111
\(631\) 0.679694 0.0270582 0.0135291 0.999908i \(-0.495693\pi\)
0.0135291 + 0.999908i \(0.495693\pi\)
\(632\) −5.88328 −0.234024
\(633\) −3.31095 −0.131599
\(634\) 70.3489 2.79391
\(635\) −8.10235 −0.321532
\(636\) 0.659582 0.0261541
\(637\) −1.00000 −0.0396214
\(638\) −29.1782 −1.15517
\(639\) −22.5615 −0.892519
\(640\) 37.1802 1.46968
\(641\) 22.3386 0.882320 0.441160 0.897428i \(-0.354567\pi\)
0.441160 + 0.897428i \(0.354567\pi\)
\(642\) −5.30948 −0.209548
\(643\) 24.3692 0.961029 0.480515 0.876987i \(-0.340450\pi\)
0.480515 + 0.876987i \(0.340450\pi\)
\(644\) 0.144209 0.00568264
\(645\) 5.96381 0.234825
\(646\) −10.0258 −0.394461
\(647\) 6.15979 0.242166 0.121083 0.992642i \(-0.461363\pi\)
0.121083 + 0.992642i \(0.461363\pi\)
\(648\) 16.1375 0.633941
\(649\) 5.28297 0.207375
\(650\) −5.59804 −0.219573
\(651\) 1.60917 0.0630685
\(652\) −9.54040 −0.373631
\(653\) −46.4723 −1.81860 −0.909301 0.416139i \(-0.863383\pi\)
−0.909301 + 0.416139i \(0.863383\pi\)
\(654\) −0.387009 −0.0151332
\(655\) −28.1026 −1.09806
\(656\) 0.950599 0.0371146
\(657\) −31.3910 −1.22468
\(658\) 29.2727 1.14117
\(659\) −31.1607 −1.21385 −0.606924 0.794760i \(-0.707597\pi\)
−0.606924 + 0.794760i \(0.707597\pi\)
\(660\) 6.56950 0.255717
\(661\) −20.3071 −0.789854 −0.394927 0.918713i \(-0.629230\pi\)
−0.394927 + 0.918713i \(0.629230\pi\)
\(662\) 21.7567 0.845598
\(663\) −0.186661 −0.00724932
\(664\) −19.2145 −0.745668
\(665\) 12.5114 0.485171
\(666\) 52.4978 2.03425
\(667\) 0.149197 0.00577691
\(668\) −12.3832 −0.479122
\(669\) −4.46683 −0.172698
\(670\) 7.99889 0.309024
\(671\) 16.8690 0.651220
\(672\) −1.35066 −0.0521029
\(673\) −5.66328 −0.218303 −0.109152 0.994025i \(-0.534813\pi\)
−0.109152 + 0.994025i \(0.534813\pi\)
\(674\) 57.2020 2.20334
\(675\) −2.83211 −0.109008
\(676\) 2.84398 0.109384
\(677\) −17.4253 −0.669707 −0.334854 0.942270i \(-0.608687\pi\)
−0.334854 + 0.942270i \(0.608687\pi\)
\(678\) 7.24230 0.278139
\(679\) −8.06416 −0.309474
\(680\) −5.10179 −0.195645
\(681\) 2.89589 0.110971
\(682\) −85.4898 −3.27357
\(683\) 42.5457 1.62796 0.813982 0.580890i \(-0.197295\pi\)
0.813982 + 0.580890i \(0.197295\pi\)
\(684\) 38.4144 1.46881
\(685\) 51.0321 1.94984
\(686\) 2.20091 0.0840309
\(687\) −0.232056 −0.00885349
\(688\) 18.6092 0.709470
\(689\) −1.24248 −0.0473345
\(690\) −0.0572148 −0.00217813
\(691\) 40.2907 1.53273 0.766366 0.642404i \(-0.222063\pi\)
0.766366 + 0.642404i \(0.222063\pi\)
\(692\) 41.7024 1.58529
\(693\) 13.3602 0.507511
\(694\) −57.7310 −2.19144
\(695\) 31.6834 1.20182
\(696\) 1.02019 0.0386703
\(697\) −0.594226 −0.0225079
\(698\) −35.2271 −1.33337
\(699\) 3.42195 0.129430
\(700\) 7.23372 0.273409
\(701\) 5.24426 0.198073 0.0990364 0.995084i \(-0.468424\pi\)
0.0990364 + 0.995084i \(0.468424\pi\)
\(702\) 2.45063 0.0924930
\(703\) 36.6447 1.38208
\(704\) 57.3401 2.16109
\(705\) −6.81871 −0.256808
\(706\) −61.3343 −2.30835
\(707\) 10.8235 0.407059
\(708\) −0.622437 −0.0233926
\(709\) −9.31121 −0.349690 −0.174845 0.984596i \(-0.555942\pi\)
−0.174845 + 0.984596i \(0.555942\pi\)
\(710\) −45.9948 −1.72615
\(711\) 9.39144 0.352206
\(712\) −27.9994 −1.04932
\(713\) 0.437135 0.0163708
\(714\) 0.410824 0.0153747
\(715\) −12.3752 −0.462805
\(716\) −29.6382 −1.10763
\(717\) −2.72580 −0.101797
\(718\) −83.3309 −3.10988
\(719\) 22.5770 0.841981 0.420991 0.907065i \(-0.361683\pi\)
0.420991 + 0.907065i \(0.361683\pi\)
\(720\) −13.0281 −0.485528
\(721\) −3.15503 −0.117499
\(722\) 3.85369 0.143419
\(723\) −0.838806 −0.0311955
\(724\) −20.0122 −0.743749
\(725\) 7.48389 0.277945
\(726\) 3.82128 0.141821
\(727\) 45.9467 1.70407 0.852034 0.523486i \(-0.175369\pi\)
0.852034 + 0.523486i \(0.175369\pi\)
\(728\) −1.85753 −0.0688445
\(729\) −25.1367 −0.930988
\(730\) −63.9949 −2.36856
\(731\) −11.6328 −0.430253
\(732\) −1.98750 −0.0734600
\(733\) −26.7497 −0.988022 −0.494011 0.869456i \(-0.664470\pi\)
−0.494011 + 0.869456i \(0.664470\pi\)
\(734\) −5.01328 −0.185044
\(735\) −0.512674 −0.0189103
\(736\) −0.366909 −0.0135245
\(737\) 5.96219 0.219620
\(738\) 3.87794 0.142749
\(739\) −3.17357 −0.116742 −0.0583708 0.998295i \(-0.518591\pi\)
−0.0583708 + 0.998295i \(0.518591\pi\)
\(740\) 62.8356 2.30988
\(741\) 0.850302 0.0312366
\(742\) 2.73457 0.100389
\(743\) −2.36723 −0.0868452 −0.0434226 0.999057i \(-0.513826\pi\)
−0.0434226 + 0.999057i \(0.513826\pi\)
\(744\) 2.98908 0.109585
\(745\) 41.7997 1.53142
\(746\) −27.6536 −1.01247
\(747\) 30.6720 1.12223
\(748\) −12.8142 −0.468533
\(749\) −12.9240 −0.472232
\(750\) 2.77176 0.101210
\(751\) 28.4447 1.03796 0.518981 0.854786i \(-0.326312\pi\)
0.518981 + 0.854786i \(0.326312\pi\)
\(752\) −21.2768 −0.775886
\(753\) −0.132794 −0.00483927
\(754\) −6.47581 −0.235835
\(755\) 31.7124 1.15413
\(756\) −3.16667 −0.115171
\(757\) 19.6201 0.713103 0.356551 0.934276i \(-0.383952\pi\)
0.356551 + 0.934276i \(0.383952\pi\)
\(758\) −9.91025 −0.359957
\(759\) −0.0426466 −0.00154797
\(760\) 23.2403 0.843013
\(761\) −11.0348 −0.400012 −0.200006 0.979795i \(-0.564096\pi\)
−0.200006 + 0.979795i \(0.564096\pi\)
\(762\) 1.21194 0.0439038
\(763\) −0.942031 −0.0341038
\(764\) 53.1180 1.92174
\(765\) 8.14394 0.294445
\(766\) 4.88950 0.176665
\(767\) 1.17250 0.0423366
\(768\) −0.810426 −0.0292437
\(769\) 12.8991 0.465153 0.232577 0.972578i \(-0.425284\pi\)
0.232577 + 0.972578i \(0.425284\pi\)
\(770\) 27.2366 0.981538
\(771\) 2.55921 0.0921677
\(772\) 17.3797 0.625509
\(773\) −11.0250 −0.396542 −0.198271 0.980147i \(-0.563533\pi\)
−0.198271 + 0.980147i \(0.563533\pi\)
\(774\) 75.9158 2.72874
\(775\) 21.9272 0.787649
\(776\) −14.9794 −0.537729
\(777\) −1.50157 −0.0538686
\(778\) 56.5258 2.02655
\(779\) 2.70689 0.0969844
\(780\) 1.45804 0.0522060
\(781\) −34.2834 −1.22676
\(782\) 0.111601 0.00399084
\(783\) −3.27619 −0.117081
\(784\) −1.59973 −0.0571330
\(785\) 25.1151 0.896397
\(786\) 4.20353 0.149935
\(787\) 42.3482 1.50955 0.754775 0.655984i \(-0.227746\pi\)
0.754775 + 0.655984i \(0.227746\pi\)
\(788\) 8.96131 0.319233
\(789\) 3.73855 0.133096
\(790\) 19.1458 0.681175
\(791\) 17.6287 0.626806
\(792\) 24.8169 0.881829
\(793\) 3.74391 0.132950
\(794\) −44.6056 −1.58299
\(795\) −0.636984 −0.0225915
\(796\) 35.0701 1.24303
\(797\) 8.45957 0.299653 0.149827 0.988712i \(-0.452128\pi\)
0.149827 + 0.988712i \(0.452128\pi\)
\(798\) −1.87143 −0.0662480
\(799\) 13.3003 0.470531
\(800\) −18.4046 −0.650702
\(801\) 44.6952 1.57923
\(802\) −78.9564 −2.78805
\(803\) −47.7003 −1.68331
\(804\) −0.702462 −0.0247739
\(805\) −0.139269 −0.00490857
\(806\) −18.9736 −0.668317
\(807\) 0.899931 0.0316791
\(808\) 20.1049 0.707289
\(809\) 21.1140 0.742330 0.371165 0.928567i \(-0.378958\pi\)
0.371165 + 0.928567i \(0.378958\pi\)
\(810\) −52.5158 −1.84522
\(811\) 5.28391 0.185543 0.0927715 0.995687i \(-0.470427\pi\)
0.0927715 + 0.995687i \(0.470427\pi\)
\(812\) 8.36796 0.293658
\(813\) −0.981283 −0.0344151
\(814\) 79.7732 2.79605
\(815\) 9.21354 0.322736
\(816\) −0.298607 −0.0104533
\(817\) 52.9910 1.85392
\(818\) 30.0932 1.05218
\(819\) 2.96516 0.103611
\(820\) 4.64158 0.162091
\(821\) −29.4908 −1.02924 −0.514618 0.857419i \(-0.672066\pi\)
−0.514618 + 0.857419i \(0.672066\pi\)
\(822\) −7.63329 −0.266241
\(823\) −14.9924 −0.522603 −0.261301 0.965257i \(-0.584152\pi\)
−0.261301 + 0.965257i \(0.584152\pi\)
\(824\) −5.86055 −0.204162
\(825\) −2.13921 −0.0744777
\(826\) −2.58057 −0.0897895
\(827\) −6.18931 −0.215223 −0.107612 0.994193i \(-0.534320\pi\)
−0.107612 + 0.994193i \(0.534320\pi\)
\(828\) −0.427603 −0.0148602
\(829\) −25.6717 −0.891616 −0.445808 0.895129i \(-0.647084\pi\)
−0.445808 + 0.895129i \(0.647084\pi\)
\(830\) 62.5292 2.17042
\(831\) −2.28316 −0.0792021
\(832\) 12.7261 0.441197
\(833\) 1.00000 0.0346479
\(834\) −4.73914 −0.164103
\(835\) 11.9590 0.413858
\(836\) 58.3728 2.01886
\(837\) −9.59898 −0.331789
\(838\) −25.0095 −0.863937
\(839\) 16.5823 0.572486 0.286243 0.958157i \(-0.407594\pi\)
0.286243 + 0.958157i \(0.407594\pi\)
\(840\) −0.952305 −0.0328577
\(841\) −20.3426 −0.701471
\(842\) 22.3111 0.768891
\(843\) −5.10218 −0.175728
\(844\) −50.4459 −1.73642
\(845\) −2.74655 −0.0944841
\(846\) −86.7982 −2.98418
\(847\) 9.30150 0.319603
\(848\) −1.98762 −0.0682551
\(849\) 2.36026 0.0810039
\(850\) 5.59804 0.192011
\(851\) −0.407904 −0.0139828
\(852\) 4.03926 0.138383
\(853\) −27.8993 −0.955255 −0.477628 0.878562i \(-0.658503\pi\)
−0.477628 + 0.878562i \(0.658503\pi\)
\(854\) −8.23999 −0.281967
\(855\) −37.0983 −1.26873
\(856\) −24.0067 −0.820531
\(857\) −21.5364 −0.735669 −0.367835 0.929891i \(-0.619901\pi\)
−0.367835 + 0.929891i \(0.619901\pi\)
\(858\) 1.85106 0.0631940
\(859\) −41.3404 −1.41052 −0.705259 0.708950i \(-0.749169\pi\)
−0.705259 + 0.708950i \(0.749169\pi\)
\(860\) 90.8651 3.09847
\(861\) −0.110919 −0.00378011
\(862\) 28.0222 0.954439
\(863\) 31.2898 1.06512 0.532559 0.846393i \(-0.321230\pi\)
0.532559 + 0.846393i \(0.321230\pi\)
\(864\) 8.05691 0.274102
\(865\) −40.2736 −1.36934
\(866\) −32.2874 −1.09717
\(867\) 0.186661 0.00633935
\(868\) 24.5175 0.832178
\(869\) 14.2708 0.484104
\(870\) −3.31998 −0.112558
\(871\) 1.32325 0.0448366
\(872\) −1.74985 −0.0592574
\(873\) 23.9115 0.809282
\(874\) −0.508378 −0.0171961
\(875\) 6.74684 0.228085
\(876\) 5.62002 0.189883
\(877\) 16.3642 0.552581 0.276291 0.961074i \(-0.410895\pi\)
0.276291 + 0.961074i \(0.410895\pi\)
\(878\) −66.2989 −2.23748
\(879\) 4.03643 0.136145
\(880\) −19.7969 −0.667352
\(881\) 3.23042 0.108836 0.0544178 0.998518i \(-0.482670\pi\)
0.0544178 + 0.998518i \(0.482670\pi\)
\(882\) −6.52603 −0.219743
\(883\) −11.1382 −0.374829 −0.187414 0.982281i \(-0.560011\pi\)
−0.187414 + 0.982281i \(0.560011\pi\)
\(884\) −2.84398 −0.0956535
\(885\) 0.601112 0.0202061
\(886\) 36.5544 1.22807
\(887\) −56.6958 −1.90366 −0.951830 0.306627i \(-0.900799\pi\)
−0.951830 + 0.306627i \(0.900799\pi\)
\(888\) −2.78921 −0.0935997
\(889\) 2.95001 0.0989403
\(890\) 91.1174 3.05426
\(891\) −39.1440 −1.31137
\(892\) −68.0570 −2.27872
\(893\) −60.5872 −2.02747
\(894\) −6.25233 −0.209109
\(895\) 28.6227 0.956753
\(896\) −13.5371 −0.452242
\(897\) −0.00946499 −0.000316027 0
\(898\) −66.2014 −2.20917
\(899\) 25.3654 0.845983
\(900\) −21.4491 −0.714971
\(901\) 1.24248 0.0413929
\(902\) 5.89274 0.196207
\(903\) −2.17139 −0.0722592
\(904\) 32.7459 1.08911
\(905\) 19.3266 0.642438
\(906\) −4.74348 −0.157592
\(907\) 43.5503 1.44606 0.723032 0.690815i \(-0.242748\pi\)
0.723032 + 0.690815i \(0.242748\pi\)
\(908\) 44.1219 1.46424
\(909\) −32.0934 −1.06447
\(910\) 6.04489 0.200386
\(911\) −22.0647 −0.731035 −0.365518 0.930804i \(-0.619108\pi\)
−0.365518 + 0.930804i \(0.619108\pi\)
\(912\) 1.36025 0.0450424
\(913\) 46.6078 1.54249
\(914\) −6.65705 −0.220196
\(915\) 1.91940 0.0634535
\(916\) −3.53562 −0.116820
\(917\) 10.2320 0.337889
\(918\) −2.45063 −0.0808828
\(919\) 23.4348 0.773041 0.386521 0.922281i \(-0.373677\pi\)
0.386521 + 0.922281i \(0.373677\pi\)
\(920\) −0.258695 −0.00852893
\(921\) 1.38094 0.0455036
\(922\) 45.6066 1.50197
\(923\) −7.60887 −0.250449
\(924\) −2.39191 −0.0786881
\(925\) −20.4610 −0.672753
\(926\) −65.1975 −2.14252
\(927\) 9.35515 0.307263
\(928\) −21.2905 −0.698894
\(929\) −51.9337 −1.70389 −0.851945 0.523631i \(-0.824577\pi\)
−0.851945 + 0.523631i \(0.824577\pi\)
\(930\) −9.72728 −0.318970
\(931\) −4.55532 −0.149295
\(932\) 52.1371 1.70781
\(933\) −2.17553 −0.0712237
\(934\) 76.7014 2.50975
\(935\) 12.3752 0.404711
\(936\) 5.50786 0.180030
\(937\) −53.3075 −1.74148 −0.870741 0.491742i \(-0.836360\pi\)
−0.870741 + 0.491742i \(0.836360\pi\)
\(938\) −2.91235 −0.0950915
\(939\) −5.09148 −0.166154
\(940\) −103.890 −3.38853
\(941\) 1.88634 0.0614928 0.0307464 0.999527i \(-0.490212\pi\)
0.0307464 + 0.999527i \(0.490212\pi\)
\(942\) −3.75668 −0.122399
\(943\) −0.0301313 −0.000981210 0
\(944\) 1.87568 0.0610483
\(945\) 3.05818 0.0994826
\(946\) 115.358 3.75062
\(947\) 1.50318 0.0488469 0.0244234 0.999702i \(-0.492225\pi\)
0.0244234 + 0.999702i \(0.492225\pi\)
\(948\) −1.68138 −0.0546086
\(949\) −10.5866 −0.343656
\(950\) −25.5009 −0.827358
\(951\) 5.96636 0.193473
\(952\) 1.85753 0.0602028
\(953\) −30.4687 −0.986976 −0.493488 0.869752i \(-0.664278\pi\)
−0.493488 + 0.869752i \(0.664278\pi\)
\(954\) −8.10843 −0.262520
\(955\) −51.2981 −1.65997
\(956\) −41.5305 −1.34319
\(957\) −2.47463 −0.0799935
\(958\) 66.3362 2.14323
\(959\) −18.5805 −0.599994
\(960\) 6.52432 0.210572
\(961\) 43.3187 1.39738
\(962\) 17.7049 0.570828
\(963\) 38.3217 1.23490
\(964\) −12.7801 −0.411620
\(965\) −16.7843 −0.540304
\(966\) 0.0208315 0.000670244 0
\(967\) 4.33866 0.139522 0.0697609 0.997564i \(-0.477776\pi\)
0.0697609 + 0.997564i \(0.477776\pi\)
\(968\) 17.2778 0.555329
\(969\) −0.850302 −0.0273156
\(970\) 48.7470 1.56517
\(971\) 23.9894 0.769857 0.384928 0.922946i \(-0.374226\pi\)
0.384928 + 0.922946i \(0.374226\pi\)
\(972\) 14.1119 0.452641
\(973\) −11.5357 −0.369818
\(974\) −35.4599 −1.13621
\(975\) −0.474776 −0.0152050
\(976\) 5.98922 0.191710
\(977\) −29.0268 −0.928649 −0.464325 0.885665i \(-0.653703\pi\)
−0.464325 + 0.885665i \(0.653703\pi\)
\(978\) −1.37815 −0.0440682
\(979\) 67.9168 2.17063
\(980\) −7.81113 −0.249517
\(981\) 2.79327 0.0891823
\(982\) 53.2316 1.69869
\(983\) −7.88661 −0.251544 −0.125772 0.992059i \(-0.540141\pi\)
−0.125772 + 0.992059i \(0.540141\pi\)
\(984\) −0.206035 −0.00656816
\(985\) −8.65429 −0.275749
\(986\) 6.47581 0.206232
\(987\) 2.48265 0.0790236
\(988\) 12.9553 0.412162
\(989\) −0.589860 −0.0187565
\(990\) −80.7607 −2.56674
\(991\) −39.5107 −1.25510 −0.627549 0.778577i \(-0.715942\pi\)
−0.627549 + 0.778577i \(0.715942\pi\)
\(992\) −62.3794 −1.98055
\(993\) 1.84521 0.0585559
\(994\) 16.7464 0.531164
\(995\) −33.8686 −1.07371
\(996\) −5.49130 −0.173999
\(997\) −6.45614 −0.204468 −0.102234 0.994760i \(-0.532599\pi\)
−0.102234 + 0.994760i \(0.532599\pi\)
\(998\) −26.6775 −0.844462
\(999\) 8.95711 0.283390
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1547.2.a.g.1.9 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1547.2.a.g.1.9 9 1.1 even 1 trivial