Properties

Label 1547.2.a.g.1.6
Level $1547$
Weight $2$
Character 1547.1
Self dual yes
Analytic conductor $12.353$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1547,2,Mod(1,1547)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1547.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1547, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1547 = 7 \cdot 13 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1547.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.3528571927\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 3x^{8} - 6x^{7} + 21x^{6} + 6x^{5} - 34x^{4} - 2x^{3} + 13x^{2} - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-0.310487\) of defining polynomial
Character \(\chi\) \(=\) 1547.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.310487 q^{2} -1.20477 q^{3} -1.90360 q^{4} +1.91026 q^{5} -0.374064 q^{6} +1.00000 q^{7} -1.21202 q^{8} -1.54854 q^{9} +0.593111 q^{10} +0.933608 q^{11} +2.29339 q^{12} -1.00000 q^{13} +0.310487 q^{14} -2.30142 q^{15} +3.43088 q^{16} +1.00000 q^{17} -0.480800 q^{18} -2.56036 q^{19} -3.63637 q^{20} -1.20477 q^{21} +0.289873 q^{22} -0.142760 q^{23} +1.46020 q^{24} -1.35090 q^{25} -0.310487 q^{26} +5.47993 q^{27} -1.90360 q^{28} -4.09227 q^{29} -0.714561 q^{30} -1.16994 q^{31} +3.48927 q^{32} -1.12478 q^{33} +0.310487 q^{34} +1.91026 q^{35} +2.94779 q^{36} +7.10312 q^{37} -0.794958 q^{38} +1.20477 q^{39} -2.31527 q^{40} -10.4590 q^{41} -0.374064 q^{42} -6.62646 q^{43} -1.77721 q^{44} -2.95811 q^{45} -0.0443252 q^{46} +1.67934 q^{47} -4.13341 q^{48} +1.00000 q^{49} -0.419437 q^{50} -1.20477 q^{51} +1.90360 q^{52} +7.52913 q^{53} +1.70145 q^{54} +1.78343 q^{55} -1.21202 q^{56} +3.08464 q^{57} -1.27060 q^{58} -5.82899 q^{59} +4.38098 q^{60} -9.38495 q^{61} -0.363250 q^{62} -1.54854 q^{63} -5.77839 q^{64} -1.91026 q^{65} -0.349229 q^{66} +1.15178 q^{67} -1.90360 q^{68} +0.171993 q^{69} +0.593111 q^{70} -9.83677 q^{71} +1.87685 q^{72} -15.2483 q^{73} +2.20543 q^{74} +1.62752 q^{75} +4.87389 q^{76} +0.933608 q^{77} +0.374064 q^{78} -16.3320 q^{79} +6.55388 q^{80} -1.95643 q^{81} -3.24737 q^{82} -9.69241 q^{83} +2.29339 q^{84} +1.91026 q^{85} -2.05743 q^{86} +4.93023 q^{87} -1.13155 q^{88} -11.5419 q^{89} -0.918454 q^{90} -1.00000 q^{91} +0.271758 q^{92} +1.40950 q^{93} +0.521413 q^{94} -4.89096 q^{95} -4.20376 q^{96} +7.09254 q^{97} +0.310487 q^{98} -1.44572 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 3 q^{2} - 4 q^{3} + 3 q^{4} - 6 q^{5} + 2 q^{6} + 9 q^{7} - 6 q^{8} + 5 q^{9} - 9 q^{10} - 7 q^{11} + 2 q^{12} - 9 q^{13} - 3 q^{14} - 5 q^{15} + 3 q^{16} + 9 q^{17} - 9 q^{18} - 6 q^{19} + 6 q^{20}+ \cdots - 25 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.310487 0.219547 0.109774 0.993957i \(-0.464987\pi\)
0.109774 + 0.993957i \(0.464987\pi\)
\(3\) −1.20477 −0.695573 −0.347786 0.937574i \(-0.613067\pi\)
−0.347786 + 0.937574i \(0.613067\pi\)
\(4\) −1.90360 −0.951799
\(5\) 1.91026 0.854295 0.427148 0.904182i \(-0.359519\pi\)
0.427148 + 0.904182i \(0.359519\pi\)
\(6\) −0.374064 −0.152711
\(7\) 1.00000 0.377964
\(8\) −1.21202 −0.428512
\(9\) −1.54854 −0.516179
\(10\) 0.593111 0.187558
\(11\) 0.933608 0.281493 0.140747 0.990046i \(-0.455050\pi\)
0.140747 + 0.990046i \(0.455050\pi\)
\(12\) 2.29339 0.662045
\(13\) −1.00000 −0.277350
\(14\) 0.310487 0.0829811
\(15\) −2.30142 −0.594224
\(16\) 3.43088 0.857720
\(17\) 1.00000 0.242536
\(18\) −0.480800 −0.113326
\(19\) −2.56036 −0.587387 −0.293693 0.955900i \(-0.594884\pi\)
−0.293693 + 0.955900i \(0.594884\pi\)
\(20\) −3.63637 −0.813117
\(21\) −1.20477 −0.262902
\(22\) 0.289873 0.0618011
\(23\) −0.142760 −0.0297676 −0.0148838 0.999889i \(-0.504738\pi\)
−0.0148838 + 0.999889i \(0.504738\pi\)
\(24\) 1.46020 0.298061
\(25\) −1.35090 −0.270180
\(26\) −0.310487 −0.0608915
\(27\) 5.47993 1.05461
\(28\) −1.90360 −0.359746
\(29\) −4.09227 −0.759915 −0.379958 0.925004i \(-0.624061\pi\)
−0.379958 + 0.925004i \(0.624061\pi\)
\(30\) −0.714561 −0.130460
\(31\) −1.16994 −0.210127 −0.105063 0.994466i \(-0.533505\pi\)
−0.105063 + 0.994466i \(0.533505\pi\)
\(32\) 3.48927 0.616822
\(33\) −1.12478 −0.195799
\(34\) 0.310487 0.0532481
\(35\) 1.91026 0.322893
\(36\) 2.94779 0.491298
\(37\) 7.10312 1.16775 0.583873 0.811845i \(-0.301537\pi\)
0.583873 + 0.811845i \(0.301537\pi\)
\(38\) −0.794958 −0.128959
\(39\) 1.20477 0.192917
\(40\) −2.31527 −0.366076
\(41\) −10.4590 −1.63341 −0.816707 0.577053i \(-0.804203\pi\)
−0.816707 + 0.577053i \(0.804203\pi\)
\(42\) −0.374064 −0.0577194
\(43\) −6.62646 −1.01053 −0.505263 0.862966i \(-0.668604\pi\)
−0.505263 + 0.862966i \(0.668604\pi\)
\(44\) −1.77721 −0.267925
\(45\) −2.95811 −0.440969
\(46\) −0.0443252 −0.00653539
\(47\) 1.67934 0.244957 0.122478 0.992471i \(-0.460916\pi\)
0.122478 + 0.992471i \(0.460916\pi\)
\(48\) −4.13341 −0.596607
\(49\) 1.00000 0.142857
\(50\) −0.419437 −0.0593173
\(51\) −1.20477 −0.168701
\(52\) 1.90360 0.263982
\(53\) 7.52913 1.03421 0.517103 0.855923i \(-0.327011\pi\)
0.517103 + 0.855923i \(0.327011\pi\)
\(54\) 1.70145 0.231537
\(55\) 1.78343 0.240478
\(56\) −1.21202 −0.161962
\(57\) 3.08464 0.408570
\(58\) −1.27060 −0.166837
\(59\) −5.82899 −0.758869 −0.379435 0.925219i \(-0.623881\pi\)
−0.379435 + 0.925219i \(0.623881\pi\)
\(60\) 4.38098 0.565582
\(61\) −9.38495 −1.20162 −0.600810 0.799392i \(-0.705155\pi\)
−0.600810 + 0.799392i \(0.705155\pi\)
\(62\) −0.363250 −0.0461328
\(63\) −1.54854 −0.195097
\(64\) −5.77839 −0.722299
\(65\) −1.91026 −0.236939
\(66\) −0.349229 −0.0429872
\(67\) 1.15178 0.140712 0.0703559 0.997522i \(-0.477587\pi\)
0.0703559 + 0.997522i \(0.477587\pi\)
\(68\) −1.90360 −0.230845
\(69\) 0.171993 0.0207055
\(70\) 0.593111 0.0708903
\(71\) −9.83677 −1.16741 −0.583705 0.811966i \(-0.698397\pi\)
−0.583705 + 0.811966i \(0.698397\pi\)
\(72\) 1.87685 0.221189
\(73\) −15.2483 −1.78467 −0.892337 0.451370i \(-0.850935\pi\)
−0.892337 + 0.451370i \(0.850935\pi\)
\(74\) 2.20543 0.256376
\(75\) 1.62752 0.187930
\(76\) 4.87389 0.559074
\(77\) 0.933608 0.106394
\(78\) 0.374064 0.0423544
\(79\) −16.3320 −1.83749 −0.918745 0.394852i \(-0.870796\pi\)
−0.918745 + 0.394852i \(0.870796\pi\)
\(80\) 6.55388 0.732746
\(81\) −1.95643 −0.217381
\(82\) −3.24737 −0.358612
\(83\) −9.69241 −1.06388 −0.531940 0.846782i \(-0.678537\pi\)
−0.531940 + 0.846782i \(0.678537\pi\)
\(84\) 2.29339 0.250230
\(85\) 1.91026 0.207197
\(86\) −2.05743 −0.221858
\(87\) 4.93023 0.528576
\(88\) −1.13155 −0.120623
\(89\) −11.5419 −1.22343 −0.611717 0.791077i \(-0.709521\pi\)
−0.611717 + 0.791077i \(0.709521\pi\)
\(90\) −0.918454 −0.0968135
\(91\) −1.00000 −0.104828
\(92\) 0.271758 0.0283328
\(93\) 1.40950 0.146158
\(94\) 0.521413 0.0537797
\(95\) −4.89096 −0.501801
\(96\) −4.20376 −0.429045
\(97\) 7.09254 0.720139 0.360069 0.932926i \(-0.382753\pi\)
0.360069 + 0.932926i \(0.382753\pi\)
\(98\) 0.310487 0.0313639
\(99\) −1.44572 −0.145301
\(100\) 2.57157 0.257157
\(101\) 13.6480 1.35802 0.679011 0.734128i \(-0.262409\pi\)
0.679011 + 0.734128i \(0.262409\pi\)
\(102\) −0.374064 −0.0370379
\(103\) 19.3469 1.90631 0.953154 0.302485i \(-0.0978161\pi\)
0.953154 + 0.302485i \(0.0978161\pi\)
\(104\) 1.21202 0.118848
\(105\) −2.30142 −0.224596
\(106\) 2.33769 0.227057
\(107\) −8.65671 −0.836875 −0.418438 0.908246i \(-0.637422\pi\)
−0.418438 + 0.908246i \(0.637422\pi\)
\(108\) −10.4316 −1.00378
\(109\) 12.7298 1.21930 0.609648 0.792673i \(-0.291311\pi\)
0.609648 + 0.792673i \(0.291311\pi\)
\(110\) 0.553733 0.0527964
\(111\) −8.55761 −0.812252
\(112\) 3.43088 0.324188
\(113\) −17.3759 −1.63459 −0.817294 0.576221i \(-0.804527\pi\)
−0.817294 + 0.576221i \(0.804527\pi\)
\(114\) 0.957739 0.0897005
\(115\) −0.272710 −0.0254303
\(116\) 7.79003 0.723286
\(117\) 1.54854 0.143162
\(118\) −1.80982 −0.166608
\(119\) 1.00000 0.0916698
\(120\) 2.78936 0.254632
\(121\) −10.1284 −0.920762
\(122\) −2.91390 −0.263812
\(123\) 12.6006 1.13616
\(124\) 2.22709 0.199998
\(125\) −12.1319 −1.08511
\(126\) −0.480800 −0.0428331
\(127\) −12.2117 −1.08361 −0.541807 0.840503i \(-0.682260\pi\)
−0.541807 + 0.840503i \(0.682260\pi\)
\(128\) −8.77266 −0.775401
\(129\) 7.98334 0.702894
\(130\) −0.593111 −0.0520193
\(131\) 5.01677 0.438317 0.219159 0.975689i \(-0.429669\pi\)
0.219159 + 0.975689i \(0.429669\pi\)
\(132\) 2.14113 0.186361
\(133\) −2.56036 −0.222011
\(134\) 0.357611 0.0308929
\(135\) 10.4681 0.900950
\(136\) −1.21202 −0.103929
\(137\) −11.9450 −1.02053 −0.510264 0.860018i \(-0.670452\pi\)
−0.510264 + 0.860018i \(0.670452\pi\)
\(138\) 0.0534015 0.00454584
\(139\) 10.3283 0.876032 0.438016 0.898967i \(-0.355681\pi\)
0.438016 + 0.898967i \(0.355681\pi\)
\(140\) −3.63637 −0.307329
\(141\) −2.02321 −0.170385
\(142\) −3.05419 −0.256302
\(143\) −0.933608 −0.0780722
\(144\) −5.31284 −0.442737
\(145\) −7.81730 −0.649192
\(146\) −4.73438 −0.391820
\(147\) −1.20477 −0.0993675
\(148\) −13.5215 −1.11146
\(149\) 3.18905 0.261258 0.130629 0.991431i \(-0.458300\pi\)
0.130629 + 0.991431i \(0.458300\pi\)
\(150\) 0.505324 0.0412595
\(151\) 12.0435 0.980087 0.490043 0.871698i \(-0.336981\pi\)
0.490043 + 0.871698i \(0.336981\pi\)
\(152\) 3.10320 0.251702
\(153\) −1.54854 −0.125192
\(154\) 0.289873 0.0233586
\(155\) −2.23488 −0.179510
\(156\) −2.29339 −0.183618
\(157\) −21.5759 −1.72195 −0.860973 0.508650i \(-0.830145\pi\)
−0.860973 + 0.508650i \(0.830145\pi\)
\(158\) −5.07086 −0.403416
\(159\) −9.07085 −0.719365
\(160\) 6.66543 0.526948
\(161\) −0.142760 −0.0112511
\(162\) −0.607445 −0.0477254
\(163\) 0.538447 0.0421744 0.0210872 0.999778i \(-0.493287\pi\)
0.0210872 + 0.999778i \(0.493287\pi\)
\(164\) 19.9096 1.55468
\(165\) −2.14862 −0.167270
\(166\) −3.00937 −0.233572
\(167\) 24.4256 1.89011 0.945054 0.326913i \(-0.106008\pi\)
0.945054 + 0.326913i \(0.106008\pi\)
\(168\) 1.46020 0.112657
\(169\) 1.00000 0.0769231
\(170\) 0.593111 0.0454895
\(171\) 3.96481 0.303196
\(172\) 12.6141 0.961817
\(173\) −23.4345 −1.78169 −0.890845 0.454307i \(-0.849887\pi\)
−0.890845 + 0.454307i \(0.849887\pi\)
\(174\) 1.53077 0.116047
\(175\) −1.35090 −0.102118
\(176\) 3.20310 0.241442
\(177\) 7.02257 0.527849
\(178\) −3.58359 −0.268602
\(179\) 7.83894 0.585910 0.292955 0.956126i \(-0.405361\pi\)
0.292955 + 0.956126i \(0.405361\pi\)
\(180\) 5.63105 0.419714
\(181\) −6.76175 −0.502597 −0.251298 0.967910i \(-0.580858\pi\)
−0.251298 + 0.967910i \(0.580858\pi\)
\(182\) −0.310487 −0.0230148
\(183\) 11.3067 0.835814
\(184\) 0.173028 0.0127558
\(185\) 13.5688 0.997600
\(186\) 0.437631 0.0320887
\(187\) 0.933608 0.0682721
\(188\) −3.19679 −0.233150
\(189\) 5.47993 0.398606
\(190\) −1.51858 −0.110169
\(191\) −14.8029 −1.07110 −0.535549 0.844504i \(-0.679895\pi\)
−0.535549 + 0.844504i \(0.679895\pi\)
\(192\) 6.96161 0.502411
\(193\) 10.4202 0.750061 0.375031 0.927012i \(-0.377632\pi\)
0.375031 + 0.927012i \(0.377632\pi\)
\(194\) 2.20214 0.158105
\(195\) 2.30142 0.164808
\(196\) −1.90360 −0.135971
\(197\) −1.33454 −0.0950818 −0.0475409 0.998869i \(-0.515138\pi\)
−0.0475409 + 0.998869i \(0.515138\pi\)
\(198\) −0.448879 −0.0319004
\(199\) 14.8848 1.05515 0.527577 0.849507i \(-0.323101\pi\)
0.527577 + 0.849507i \(0.323101\pi\)
\(200\) 1.63731 0.115775
\(201\) −1.38762 −0.0978753
\(202\) 4.23751 0.298150
\(203\) −4.09227 −0.287221
\(204\) 2.29339 0.160570
\(205\) −19.9793 −1.39542
\(206\) 6.00696 0.418525
\(207\) 0.221070 0.0153654
\(208\) −3.43088 −0.237889
\(209\) −2.39037 −0.165345
\(210\) −0.714561 −0.0493094
\(211\) −15.8098 −1.08839 −0.544196 0.838958i \(-0.683165\pi\)
−0.544196 + 0.838958i \(0.683165\pi\)
\(212\) −14.3324 −0.984355
\(213\) 11.8510 0.812018
\(214\) −2.68779 −0.183734
\(215\) −12.6583 −0.863287
\(216\) −6.64176 −0.451914
\(217\) −1.16994 −0.0794204
\(218\) 3.95244 0.267693
\(219\) 18.3706 1.24137
\(220\) −3.39494 −0.228887
\(221\) −1.00000 −0.0672673
\(222\) −2.65703 −0.178328
\(223\) 3.73710 0.250255 0.125127 0.992141i \(-0.460066\pi\)
0.125127 + 0.992141i \(0.460066\pi\)
\(224\) 3.48927 0.233137
\(225\) 2.09192 0.139461
\(226\) −5.39499 −0.358869
\(227\) 23.1272 1.53501 0.767504 0.641044i \(-0.221499\pi\)
0.767504 + 0.641044i \(0.221499\pi\)
\(228\) −5.87191 −0.388877
\(229\) −5.69418 −0.376282 −0.188141 0.982142i \(-0.560246\pi\)
−0.188141 + 0.982142i \(0.560246\pi\)
\(230\) −0.0846727 −0.00558315
\(231\) −1.12478 −0.0740051
\(232\) 4.95989 0.325633
\(233\) 24.1106 1.57954 0.789770 0.613403i \(-0.210200\pi\)
0.789770 + 0.613403i \(0.210200\pi\)
\(234\) 0.480800 0.0314309
\(235\) 3.20798 0.209266
\(236\) 11.0960 0.722291
\(237\) 19.6762 1.27811
\(238\) 0.310487 0.0201259
\(239\) 17.0879 1.10533 0.552663 0.833405i \(-0.313612\pi\)
0.552663 + 0.833405i \(0.313612\pi\)
\(240\) −7.89590 −0.509678
\(241\) 20.5081 1.32104 0.660522 0.750807i \(-0.270335\pi\)
0.660522 + 0.750807i \(0.270335\pi\)
\(242\) −3.14473 −0.202151
\(243\) −14.0827 −0.903408
\(244\) 17.8652 1.14370
\(245\) 1.91026 0.122042
\(246\) 3.91232 0.249440
\(247\) 2.56036 0.162912
\(248\) 1.41798 0.0900419
\(249\) 11.6771 0.740006
\(250\) −3.76679 −0.238233
\(251\) −10.0961 −0.637258 −0.318629 0.947880i \(-0.603222\pi\)
−0.318629 + 0.947880i \(0.603222\pi\)
\(252\) 2.94779 0.185693
\(253\) −0.133282 −0.00837938
\(254\) −3.79157 −0.237904
\(255\) −2.30142 −0.144121
\(256\) 8.83298 0.552061
\(257\) 14.3301 0.893889 0.446945 0.894562i \(-0.352512\pi\)
0.446945 + 0.894562i \(0.352512\pi\)
\(258\) 2.47872 0.154318
\(259\) 7.10312 0.441367
\(260\) 3.63637 0.225518
\(261\) 6.33702 0.392252
\(262\) 1.55764 0.0962314
\(263\) 14.6691 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(264\) 1.36325 0.0839023
\(265\) 14.3826 0.883516
\(266\) −0.794958 −0.0487420
\(267\) 13.9052 0.850987
\(268\) −2.19252 −0.133929
\(269\) −26.9591 −1.64372 −0.821861 0.569688i \(-0.807064\pi\)
−0.821861 + 0.569688i \(0.807064\pi\)
\(270\) 3.25021 0.197801
\(271\) 24.6135 1.49516 0.747582 0.664170i \(-0.231215\pi\)
0.747582 + 0.664170i \(0.231215\pi\)
\(272\) 3.43088 0.208028
\(273\) 1.20477 0.0729158
\(274\) −3.70876 −0.224054
\(275\) −1.26121 −0.0760539
\(276\) −0.327405 −0.0197075
\(277\) −7.74399 −0.465291 −0.232646 0.972562i \(-0.574738\pi\)
−0.232646 + 0.972562i \(0.574738\pi\)
\(278\) 3.20679 0.192331
\(279\) 1.81169 0.108463
\(280\) −2.31527 −0.138364
\(281\) −18.1424 −1.08228 −0.541142 0.840931i \(-0.682008\pi\)
−0.541142 + 0.840931i \(0.682008\pi\)
\(282\) −0.628181 −0.0374077
\(283\) 23.2152 1.38000 0.689999 0.723810i \(-0.257611\pi\)
0.689999 + 0.723810i \(0.257611\pi\)
\(284\) 18.7252 1.11114
\(285\) 5.89246 0.349039
\(286\) −0.289873 −0.0171405
\(287\) −10.4590 −0.617372
\(288\) −5.40327 −0.318391
\(289\) 1.00000 0.0588235
\(290\) −2.42717 −0.142528
\(291\) −8.54487 −0.500909
\(292\) 29.0265 1.69865
\(293\) 15.7957 0.922795 0.461397 0.887194i \(-0.347348\pi\)
0.461397 + 0.887194i \(0.347348\pi\)
\(294\) −0.374064 −0.0218159
\(295\) −11.1349 −0.648298
\(296\) −8.60910 −0.500394
\(297\) 5.11610 0.296866
\(298\) 0.990159 0.0573584
\(299\) 0.142760 0.00825604
\(300\) −3.09814 −0.178871
\(301\) −6.62646 −0.381943
\(302\) 3.73935 0.215175
\(303\) −16.4426 −0.944604
\(304\) −8.78429 −0.503813
\(305\) −17.9277 −1.02654
\(306\) −0.480800 −0.0274855
\(307\) 9.92143 0.566246 0.283123 0.959084i \(-0.408630\pi\)
0.283123 + 0.959084i \(0.408630\pi\)
\(308\) −1.77721 −0.101266
\(309\) −23.3085 −1.32598
\(310\) −0.693902 −0.0394110
\(311\) 8.83335 0.500893 0.250447 0.968130i \(-0.419423\pi\)
0.250447 + 0.968130i \(0.419423\pi\)
\(312\) −1.46020 −0.0826674
\(313\) −19.2692 −1.08916 −0.544581 0.838708i \(-0.683311\pi\)
−0.544581 + 0.838708i \(0.683311\pi\)
\(314\) −6.69904 −0.378049
\(315\) −2.95811 −0.166671
\(316\) 31.0895 1.74892
\(317\) 14.1812 0.796497 0.398249 0.917277i \(-0.369618\pi\)
0.398249 + 0.917277i \(0.369618\pi\)
\(318\) −2.81638 −0.157935
\(319\) −3.82057 −0.213911
\(320\) −11.0382 −0.617056
\(321\) 10.4293 0.582108
\(322\) −0.0443252 −0.00247015
\(323\) −2.56036 −0.142462
\(324\) 3.72425 0.206903
\(325\) 1.35090 0.0749345
\(326\) 0.167181 0.00925928
\(327\) −15.3365 −0.848108
\(328\) 12.6764 0.699938
\(329\) 1.67934 0.0925850
\(330\) −0.667119 −0.0367237
\(331\) −8.27011 −0.454566 −0.227283 0.973829i \(-0.572984\pi\)
−0.227283 + 0.973829i \(0.572984\pi\)
\(332\) 18.4505 1.01260
\(333\) −10.9994 −0.602766
\(334\) 7.58382 0.414968
\(335\) 2.20019 0.120209
\(336\) −4.13341 −0.225496
\(337\) −26.2248 −1.42856 −0.714279 0.699861i \(-0.753245\pi\)
−0.714279 + 0.699861i \(0.753245\pi\)
\(338\) 0.310487 0.0168883
\(339\) 20.9339 1.13697
\(340\) −3.63637 −0.197210
\(341\) −1.09226 −0.0591493
\(342\) 1.23102 0.0665660
\(343\) 1.00000 0.0539949
\(344\) 8.03137 0.433023
\(345\) 0.328552 0.0176886
\(346\) −7.27610 −0.391165
\(347\) 5.79589 0.311140 0.155570 0.987825i \(-0.450279\pi\)
0.155570 + 0.987825i \(0.450279\pi\)
\(348\) −9.38518 −0.503098
\(349\) 2.18852 0.117149 0.0585745 0.998283i \(-0.481344\pi\)
0.0585745 + 0.998283i \(0.481344\pi\)
\(350\) −0.419437 −0.0224198
\(351\) −5.47993 −0.292497
\(352\) 3.25761 0.173631
\(353\) −2.38672 −0.127032 −0.0635162 0.997981i \(-0.520231\pi\)
−0.0635162 + 0.997981i \(0.520231\pi\)
\(354\) 2.18042 0.115888
\(355\) −18.7908 −0.997312
\(356\) 21.9711 1.16446
\(357\) −1.20477 −0.0637630
\(358\) 2.43389 0.128635
\(359\) 17.3614 0.916297 0.458149 0.888876i \(-0.348513\pi\)
0.458149 + 0.888876i \(0.348513\pi\)
\(360\) 3.58527 0.188961
\(361\) −12.4446 −0.654977
\(362\) −2.09943 −0.110344
\(363\) 12.2023 0.640457
\(364\) 1.90360 0.0997756
\(365\) −29.1282 −1.52464
\(366\) 3.51058 0.183501
\(367\) 20.8370 1.08768 0.543842 0.839188i \(-0.316969\pi\)
0.543842 + 0.839188i \(0.316969\pi\)
\(368\) −0.489794 −0.0255323
\(369\) 16.1961 0.843133
\(370\) 4.21294 0.219020
\(371\) 7.52913 0.390893
\(372\) −2.68312 −0.139113
\(373\) −8.58674 −0.444605 −0.222302 0.974978i \(-0.571357\pi\)
−0.222302 + 0.974978i \(0.571357\pi\)
\(374\) 0.289873 0.0149890
\(375\) 14.6161 0.754772
\(376\) −2.03539 −0.104967
\(377\) 4.09227 0.210763
\(378\) 1.70145 0.0875129
\(379\) −21.4974 −1.10425 −0.552125 0.833761i \(-0.686183\pi\)
−0.552125 + 0.833761i \(0.686183\pi\)
\(380\) 9.31041 0.477614
\(381\) 14.7123 0.753732
\(382\) −4.59610 −0.235157
\(383\) 15.6268 0.798492 0.399246 0.916844i \(-0.369272\pi\)
0.399246 + 0.916844i \(0.369272\pi\)
\(384\) 10.5690 0.539348
\(385\) 1.78343 0.0908923
\(386\) 3.23533 0.164674
\(387\) 10.2613 0.521612
\(388\) −13.5014 −0.685427
\(389\) 13.1130 0.664858 0.332429 0.943128i \(-0.392132\pi\)
0.332429 + 0.943128i \(0.392132\pi\)
\(390\) 0.714561 0.0361832
\(391\) −0.142760 −0.00721970
\(392\) −1.21202 −0.0612160
\(393\) −6.04404 −0.304882
\(394\) −0.414356 −0.0208750
\(395\) −31.1983 −1.56976
\(396\) 2.75208 0.138297
\(397\) 11.7168 0.588049 0.294025 0.955798i \(-0.405005\pi\)
0.294025 + 0.955798i \(0.405005\pi\)
\(398\) 4.62153 0.231656
\(399\) 3.08464 0.154425
\(400\) −4.63478 −0.231739
\(401\) 6.14617 0.306925 0.153462 0.988154i \(-0.450958\pi\)
0.153462 + 0.988154i \(0.450958\pi\)
\(402\) −0.430838 −0.0214883
\(403\) 1.16994 0.0582787
\(404\) −25.9802 −1.29256
\(405\) −3.73729 −0.185707
\(406\) −1.27060 −0.0630586
\(407\) 6.63153 0.328713
\(408\) 1.46020 0.0722905
\(409\) −25.0861 −1.24043 −0.620214 0.784433i \(-0.712954\pi\)
−0.620214 + 0.784433i \(0.712954\pi\)
\(410\) −6.20332 −0.306360
\(411\) 14.3909 0.709851
\(412\) −36.8288 −1.81442
\(413\) −5.82899 −0.286826
\(414\) 0.0686392 0.00337343
\(415\) −18.5150 −0.908868
\(416\) −3.48927 −0.171076
\(417\) −12.4432 −0.609344
\(418\) −0.742179 −0.0363011
\(419\) 2.00654 0.0980257 0.0490128 0.998798i \(-0.484392\pi\)
0.0490128 + 0.998798i \(0.484392\pi\)
\(420\) 4.38098 0.213770
\(421\) −0.929827 −0.0453170 −0.0226585 0.999743i \(-0.507213\pi\)
−0.0226585 + 0.999743i \(0.507213\pi\)
\(422\) −4.90874 −0.238954
\(423\) −2.60052 −0.126442
\(424\) −9.12542 −0.443170
\(425\) −1.35090 −0.0655283
\(426\) 3.67958 0.178276
\(427\) −9.38495 −0.454170
\(428\) 16.4789 0.796537
\(429\) 1.12478 0.0543049
\(430\) −3.93023 −0.189532
\(431\) −37.7264 −1.81722 −0.908609 0.417647i \(-0.862855\pi\)
−0.908609 + 0.417647i \(0.862855\pi\)
\(432\) 18.8010 0.904562
\(433\) 12.1415 0.583485 0.291742 0.956497i \(-0.405765\pi\)
0.291742 + 0.956497i \(0.405765\pi\)
\(434\) −0.363250 −0.0174365
\(435\) 9.41803 0.451560
\(436\) −24.2325 −1.16052
\(437\) 0.365518 0.0174851
\(438\) 5.70383 0.272539
\(439\) 22.4671 1.07230 0.536148 0.844124i \(-0.319879\pi\)
0.536148 + 0.844124i \(0.319879\pi\)
\(440\) −2.16155 −0.103048
\(441\) −1.54854 −0.0737398
\(442\) −0.310487 −0.0147684
\(443\) −34.1303 −1.62158 −0.810791 0.585336i \(-0.800962\pi\)
−0.810791 + 0.585336i \(0.800962\pi\)
\(444\) 16.2902 0.773101
\(445\) −22.0480 −1.04517
\(446\) 1.16032 0.0549427
\(447\) −3.84207 −0.181724
\(448\) −5.77839 −0.273003
\(449\) −39.5244 −1.86527 −0.932636 0.360818i \(-0.882498\pi\)
−0.932636 + 0.360818i \(0.882498\pi\)
\(450\) 0.649513 0.0306183
\(451\) −9.76456 −0.459795
\(452\) 33.0767 1.55580
\(453\) −14.5096 −0.681722
\(454\) 7.18070 0.337007
\(455\) −1.91026 −0.0895545
\(456\) −3.73863 −0.175077
\(457\) −23.4298 −1.09600 −0.548000 0.836479i \(-0.684610\pi\)
−0.548000 + 0.836479i \(0.684610\pi\)
\(458\) −1.76797 −0.0826117
\(459\) 5.47993 0.255781
\(460\) 0.519129 0.0242045
\(461\) 29.1241 1.35645 0.678223 0.734856i \(-0.262750\pi\)
0.678223 + 0.734856i \(0.262750\pi\)
\(462\) −0.349229 −0.0162476
\(463\) −3.58116 −0.166431 −0.0832154 0.996532i \(-0.526519\pi\)
−0.0832154 + 0.996532i \(0.526519\pi\)
\(464\) −14.0401 −0.651795
\(465\) 2.69252 0.124862
\(466\) 7.48603 0.346784
\(467\) −9.23264 −0.427236 −0.213618 0.976917i \(-0.568525\pi\)
−0.213618 + 0.976917i \(0.568525\pi\)
\(468\) −2.94779 −0.136262
\(469\) 1.15178 0.0531841
\(470\) 0.996036 0.0459437
\(471\) 25.9940 1.19774
\(472\) 7.06482 0.325185
\(473\) −6.18651 −0.284456
\(474\) 6.10920 0.280605
\(475\) 3.45879 0.158700
\(476\) −1.90360 −0.0872513
\(477\) −11.6591 −0.533835
\(478\) 5.30558 0.242672
\(479\) 8.01213 0.366083 0.183042 0.983105i \(-0.441406\pi\)
0.183042 + 0.983105i \(0.441406\pi\)
\(480\) −8.03029 −0.366531
\(481\) −7.10312 −0.323875
\(482\) 6.36750 0.290032
\(483\) 0.171993 0.00782595
\(484\) 19.2804 0.876380
\(485\) 13.5486 0.615211
\(486\) −4.37251 −0.198341
\(487\) −27.1240 −1.22911 −0.614553 0.788876i \(-0.710664\pi\)
−0.614553 + 0.788876i \(0.710664\pi\)
\(488\) 11.3747 0.514909
\(489\) −0.648703 −0.0293354
\(490\) 0.593111 0.0267940
\(491\) 7.39298 0.333641 0.166820 0.985987i \(-0.446650\pi\)
0.166820 + 0.985987i \(0.446650\pi\)
\(492\) −23.9865 −1.08139
\(493\) −4.09227 −0.184306
\(494\) 0.794958 0.0357668
\(495\) −2.76171 −0.124130
\(496\) −4.01391 −0.180230
\(497\) −9.83677 −0.441239
\(498\) 3.62558 0.162466
\(499\) −25.0362 −1.12077 −0.560387 0.828231i \(-0.689348\pi\)
−0.560387 + 0.828231i \(0.689348\pi\)
\(500\) 23.0942 1.03281
\(501\) −29.4271 −1.31471
\(502\) −3.13469 −0.139908
\(503\) −33.7748 −1.50594 −0.752972 0.658053i \(-0.771380\pi\)
−0.752972 + 0.658053i \(0.771380\pi\)
\(504\) 1.87685 0.0836015
\(505\) 26.0712 1.16015
\(506\) −0.0413823 −0.00183967
\(507\) −1.20477 −0.0535056
\(508\) 23.2462 1.03138
\(509\) 10.1489 0.449842 0.224921 0.974377i \(-0.427788\pi\)
0.224921 + 0.974377i \(0.427788\pi\)
\(510\) −0.714561 −0.0316413
\(511\) −15.2483 −0.674543
\(512\) 20.2878 0.896605
\(513\) −14.0306 −0.619465
\(514\) 4.44932 0.196251
\(515\) 36.9577 1.62855
\(516\) −15.1971 −0.669014
\(517\) 1.56785 0.0689537
\(518\) 2.20543 0.0969009
\(519\) 28.2331 1.23929
\(520\) 2.31527 0.101531
\(521\) 14.5163 0.635972 0.317986 0.948095i \(-0.396993\pi\)
0.317986 + 0.948095i \(0.396993\pi\)
\(522\) 1.96756 0.0861179
\(523\) 22.2308 0.972085 0.486042 0.873935i \(-0.338440\pi\)
0.486042 + 0.873935i \(0.338440\pi\)
\(524\) −9.54992 −0.417190
\(525\) 1.62752 0.0710308
\(526\) 4.55456 0.198588
\(527\) −1.16994 −0.0509632
\(528\) −3.85899 −0.167941
\(529\) −22.9796 −0.999114
\(530\) 4.46561 0.193974
\(531\) 9.02640 0.391712
\(532\) 4.87389 0.211310
\(533\) 10.4590 0.453028
\(534\) 4.31740 0.186832
\(535\) −16.5366 −0.714938
\(536\) −1.39597 −0.0602967
\(537\) −9.44409 −0.407543
\(538\) −8.37043 −0.360875
\(539\) 0.933608 0.0402133
\(540\) −19.9270 −0.857523
\(541\) 34.3278 1.47587 0.737933 0.674874i \(-0.235802\pi\)
0.737933 + 0.674874i \(0.235802\pi\)
\(542\) 7.64217 0.328259
\(543\) 8.14633 0.349592
\(544\) 3.48927 0.149601
\(545\) 24.3173 1.04164
\(546\) 0.374064 0.0160085
\(547\) 30.7540 1.31494 0.657472 0.753479i \(-0.271626\pi\)
0.657472 + 0.753479i \(0.271626\pi\)
\(548\) 22.7384 0.971338
\(549\) 14.5329 0.620251
\(550\) −0.391589 −0.0166974
\(551\) 10.4777 0.446364
\(552\) −0.208458 −0.00887257
\(553\) −16.3320 −0.694506
\(554\) −2.40441 −0.102153
\(555\) −16.3473 −0.693903
\(556\) −19.6609 −0.833807
\(557\) 24.4846 1.03744 0.518722 0.854943i \(-0.326408\pi\)
0.518722 + 0.854943i \(0.326408\pi\)
\(558\) 0.562505 0.0238128
\(559\) 6.62646 0.280269
\(560\) 6.55388 0.276952
\(561\) −1.12478 −0.0474882
\(562\) −5.63298 −0.237613
\(563\) −5.16102 −0.217511 −0.108755 0.994069i \(-0.534687\pi\)
−0.108755 + 0.994069i \(0.534687\pi\)
\(564\) 3.85139 0.162173
\(565\) −33.1925 −1.39642
\(566\) 7.20800 0.302975
\(567\) −1.95643 −0.0821622
\(568\) 11.9223 0.500249
\(569\) −20.7385 −0.869405 −0.434702 0.900574i \(-0.643146\pi\)
−0.434702 + 0.900574i \(0.643146\pi\)
\(570\) 1.82953 0.0766307
\(571\) 18.9847 0.794486 0.397243 0.917714i \(-0.369967\pi\)
0.397243 + 0.917714i \(0.369967\pi\)
\(572\) 1.77721 0.0743090
\(573\) 17.8340 0.745027
\(574\) −3.24737 −0.135542
\(575\) 0.192855 0.00804261
\(576\) 8.94804 0.372835
\(577\) −29.1658 −1.21419 −0.607095 0.794629i \(-0.707665\pi\)
−0.607095 + 0.794629i \(0.707665\pi\)
\(578\) 0.310487 0.0129145
\(579\) −12.5539 −0.521722
\(580\) 14.8810 0.617900
\(581\) −9.69241 −0.402109
\(582\) −2.65307 −0.109973
\(583\) 7.02925 0.291122
\(584\) 18.4811 0.764754
\(585\) 2.95811 0.122303
\(586\) 4.90436 0.202597
\(587\) 28.1951 1.16374 0.581868 0.813283i \(-0.302322\pi\)
0.581868 + 0.813283i \(0.302322\pi\)
\(588\) 2.29339 0.0945779
\(589\) 2.99546 0.123426
\(590\) −3.45724 −0.142332
\(591\) 1.60781 0.0661363
\(592\) 24.3700 1.00160
\(593\) −34.3455 −1.41040 −0.705201 0.709008i \(-0.749143\pi\)
−0.705201 + 0.709008i \(0.749143\pi\)
\(594\) 1.58848 0.0651762
\(595\) 1.91026 0.0783131
\(596\) −6.07068 −0.248665
\(597\) −17.9327 −0.733936
\(598\) 0.0443252 0.00181259
\(599\) −11.3102 −0.462120 −0.231060 0.972939i \(-0.574219\pi\)
−0.231060 + 0.972939i \(0.574219\pi\)
\(600\) −1.97258 −0.0805302
\(601\) 27.3015 1.11365 0.556825 0.830630i \(-0.312019\pi\)
0.556825 + 0.830630i \(0.312019\pi\)
\(602\) −2.05743 −0.0838545
\(603\) −1.78357 −0.0726324
\(604\) −22.9260 −0.932846
\(605\) −19.3479 −0.786602
\(606\) −5.10522 −0.207385
\(607\) −18.8773 −0.766208 −0.383104 0.923705i \(-0.625145\pi\)
−0.383104 + 0.923705i \(0.625145\pi\)
\(608\) −8.93380 −0.362313
\(609\) 4.93023 0.199783
\(610\) −5.56632 −0.225374
\(611\) −1.67934 −0.0679388
\(612\) 2.94779 0.119157
\(613\) −41.4781 −1.67529 −0.837643 0.546218i \(-0.816067\pi\)
−0.837643 + 0.546218i \(0.816067\pi\)
\(614\) 3.08047 0.124318
\(615\) 24.0704 0.970614
\(616\) −1.13155 −0.0455913
\(617\) 13.0738 0.526330 0.263165 0.964751i \(-0.415234\pi\)
0.263165 + 0.964751i \(0.415234\pi\)
\(618\) −7.23699 −0.291115
\(619\) −21.3131 −0.856644 −0.428322 0.903626i \(-0.640895\pi\)
−0.428322 + 0.903626i \(0.640895\pi\)
\(620\) 4.25432 0.170858
\(621\) −0.782316 −0.0313933
\(622\) 2.74264 0.109970
\(623\) −11.5419 −0.462415
\(624\) 4.13341 0.165469
\(625\) −16.4206 −0.656823
\(626\) −5.98284 −0.239122
\(627\) 2.87984 0.115010
\(628\) 41.0719 1.63895
\(629\) 7.10312 0.283220
\(630\) −0.918454 −0.0365921
\(631\) 4.05886 0.161581 0.0807904 0.996731i \(-0.474256\pi\)
0.0807904 + 0.996731i \(0.474256\pi\)
\(632\) 19.7946 0.787387
\(633\) 19.0472 0.757056
\(634\) 4.40309 0.174869
\(635\) −23.3276 −0.925726
\(636\) 17.2672 0.684691
\(637\) −1.00000 −0.0396214
\(638\) −1.18624 −0.0469636
\(639\) 15.2326 0.602592
\(640\) −16.7581 −0.662421
\(641\) −16.8319 −0.664820 −0.332410 0.943135i \(-0.607862\pi\)
−0.332410 + 0.943135i \(0.607862\pi\)
\(642\) 3.23816 0.127800
\(643\) −40.3030 −1.58940 −0.794698 0.607005i \(-0.792371\pi\)
−0.794698 + 0.607005i \(0.792371\pi\)
\(644\) 0.271758 0.0107088
\(645\) 15.2503 0.600479
\(646\) −0.794958 −0.0312772
\(647\) 28.5648 1.12300 0.561498 0.827478i \(-0.310225\pi\)
0.561498 + 0.827478i \(0.310225\pi\)
\(648\) 2.37122 0.0931504
\(649\) −5.44199 −0.213617
\(650\) 0.419437 0.0164517
\(651\) 1.40950 0.0552427
\(652\) −1.02499 −0.0401416
\(653\) 21.4136 0.837980 0.418990 0.907991i \(-0.362384\pi\)
0.418990 + 0.907991i \(0.362384\pi\)
\(654\) −4.76177 −0.186200
\(655\) 9.58335 0.374452
\(656\) −35.8834 −1.40101
\(657\) 23.6125 0.921210
\(658\) 0.521413 0.0203268
\(659\) 31.8914 1.24231 0.621156 0.783687i \(-0.286663\pi\)
0.621156 + 0.783687i \(0.286663\pi\)
\(660\) 4.09012 0.159208
\(661\) −37.0536 −1.44122 −0.720609 0.693341i \(-0.756138\pi\)
−0.720609 + 0.693341i \(0.756138\pi\)
\(662\) −2.56776 −0.0997988
\(663\) 1.20477 0.0467893
\(664\) 11.7474 0.455886
\(665\) −4.89096 −0.189663
\(666\) −3.41518 −0.132336
\(667\) 0.584214 0.0226208
\(668\) −46.4965 −1.79900
\(669\) −4.50233 −0.174070
\(670\) 0.683131 0.0263917
\(671\) −8.76186 −0.338248
\(672\) −4.20376 −0.162164
\(673\) −17.6058 −0.678655 −0.339328 0.940668i \(-0.610200\pi\)
−0.339328 + 0.940668i \(0.610200\pi\)
\(674\) −8.14246 −0.313636
\(675\) −7.40283 −0.284935
\(676\) −1.90360 −0.0732153
\(677\) 17.7319 0.681492 0.340746 0.940155i \(-0.389320\pi\)
0.340746 + 0.940155i \(0.389320\pi\)
\(678\) 6.49971 0.249620
\(679\) 7.09254 0.272187
\(680\) −2.31527 −0.0887864
\(681\) −27.8629 −1.06771
\(682\) −0.339133 −0.0129861
\(683\) 29.8348 1.14160 0.570798 0.821090i \(-0.306634\pi\)
0.570798 + 0.821090i \(0.306634\pi\)
\(684\) −7.54740 −0.288582
\(685\) −22.8180 −0.871832
\(686\) 0.310487 0.0118544
\(687\) 6.86016 0.261731
\(688\) −22.7346 −0.866748
\(689\) −7.52913 −0.286837
\(690\) 0.102011 0.00388349
\(691\) −1.58904 −0.0604498 −0.0302249 0.999543i \(-0.509622\pi\)
−0.0302249 + 0.999543i \(0.509622\pi\)
\(692\) 44.6098 1.69581
\(693\) −1.44572 −0.0549186
\(694\) 1.79955 0.0683099
\(695\) 19.7297 0.748390
\(696\) −5.97552 −0.226501
\(697\) −10.4590 −0.396161
\(698\) 0.679508 0.0257197
\(699\) −29.0477 −1.09868
\(700\) 2.57157 0.0971962
\(701\) −31.9042 −1.20500 −0.602502 0.798117i \(-0.705829\pi\)
−0.602502 + 0.798117i \(0.705829\pi\)
\(702\) −1.70145 −0.0642169
\(703\) −18.1865 −0.685919
\(704\) −5.39475 −0.203322
\(705\) −3.86487 −0.145559
\(706\) −0.741045 −0.0278896
\(707\) 13.6480 0.513284
\(708\) −13.3682 −0.502406
\(709\) 18.8034 0.706176 0.353088 0.935590i \(-0.385132\pi\)
0.353088 + 0.935590i \(0.385132\pi\)
\(710\) −5.83429 −0.218957
\(711\) 25.2906 0.948473
\(712\) 13.9889 0.524257
\(713\) 0.167020 0.00625497
\(714\) −0.374064 −0.0139990
\(715\) −1.78343 −0.0666967
\(716\) −14.9222 −0.557668
\(717\) −20.5870 −0.768835
\(718\) 5.39047 0.201171
\(719\) 51.3849 1.91633 0.958167 0.286209i \(-0.0923950\pi\)
0.958167 + 0.286209i \(0.0923950\pi\)
\(720\) −10.1489 −0.378228
\(721\) 19.3469 0.720517
\(722\) −3.86387 −0.143798
\(723\) −24.7075 −0.918882
\(724\) 12.8716 0.478371
\(725\) 5.52824 0.205314
\(726\) 3.78866 0.140611
\(727\) 3.61847 0.134202 0.0671008 0.997746i \(-0.478625\pi\)
0.0671008 + 0.997746i \(0.478625\pi\)
\(728\) 1.21202 0.0449203
\(729\) 22.8357 0.845767
\(730\) −9.04391 −0.334730
\(731\) −6.62646 −0.245088
\(732\) −21.5234 −0.795527
\(733\) −18.1873 −0.671763 −0.335882 0.941904i \(-0.609034\pi\)
−0.335882 + 0.941904i \(0.609034\pi\)
\(734\) 6.46962 0.238798
\(735\) −2.30142 −0.0848892
\(736\) −0.498130 −0.0183613
\(737\) 1.07531 0.0396094
\(738\) 5.02866 0.185108
\(739\) −40.5966 −1.49337 −0.746686 0.665177i \(-0.768356\pi\)
−0.746686 + 0.665177i \(0.768356\pi\)
\(740\) −25.8296 −0.949515
\(741\) −3.08464 −0.113317
\(742\) 2.33769 0.0858195
\(743\) 0.150101 0.00550666 0.00275333 0.999996i \(-0.499124\pi\)
0.00275333 + 0.999996i \(0.499124\pi\)
\(744\) −1.70834 −0.0626307
\(745\) 6.09193 0.223191
\(746\) −2.66607 −0.0976118
\(747\) 15.0090 0.549152
\(748\) −1.77721 −0.0649814
\(749\) −8.65671 −0.316309
\(750\) 4.53810 0.165708
\(751\) 10.7938 0.393873 0.196936 0.980416i \(-0.436901\pi\)
0.196936 + 0.980416i \(0.436901\pi\)
\(752\) 5.76162 0.210105
\(753\) 12.1634 0.443259
\(754\) 1.27060 0.0462723
\(755\) 23.0063 0.837283
\(756\) −10.4316 −0.379393
\(757\) −50.0934 −1.82068 −0.910338 0.413866i \(-0.864178\pi\)
−0.910338 + 0.413866i \(0.864178\pi\)
\(758\) −6.67467 −0.242435
\(759\) 0.160574 0.00582846
\(760\) 5.92792 0.215028
\(761\) 34.7310 1.25900 0.629499 0.777002i \(-0.283260\pi\)
0.629499 + 0.777002i \(0.283260\pi\)
\(762\) 4.56796 0.165480
\(763\) 12.7298 0.460850
\(764\) 28.1787 1.01947
\(765\) −2.95811 −0.106951
\(766\) 4.85191 0.175307
\(767\) 5.82899 0.210472
\(768\) −10.6417 −0.383999
\(769\) −31.6778 −1.14233 −0.571166 0.820835i \(-0.693509\pi\)
−0.571166 + 0.820835i \(0.693509\pi\)
\(770\) 0.553733 0.0199552
\(771\) −17.2645 −0.621765
\(772\) −19.8358 −0.713908
\(773\) −0.916879 −0.0329778 −0.0164889 0.999864i \(-0.505249\pi\)
−0.0164889 + 0.999864i \(0.505249\pi\)
\(774\) 3.18600 0.114518
\(775\) 1.58047 0.0567720
\(776\) −8.59628 −0.308588
\(777\) −8.55761 −0.307003
\(778\) 4.07143 0.145968
\(779\) 26.7787 0.959445
\(780\) −4.38098 −0.156864
\(781\) −9.18368 −0.328618
\(782\) −0.0443252 −0.00158507
\(783\) −22.4253 −0.801416
\(784\) 3.43088 0.122531
\(785\) −41.2157 −1.47105
\(786\) −1.87660 −0.0669359
\(787\) −21.7066 −0.773758 −0.386879 0.922130i \(-0.626447\pi\)
−0.386879 + 0.922130i \(0.626447\pi\)
\(788\) 2.54042 0.0904988
\(789\) −17.6728 −0.629169
\(790\) −9.68667 −0.344636
\(791\) −17.3759 −0.617816
\(792\) 1.75224 0.0622632
\(793\) 9.38495 0.333269
\(794\) 3.63791 0.129105
\(795\) −17.3277 −0.614550
\(796\) −28.3346 −1.00429
\(797\) 2.08365 0.0738068 0.0369034 0.999319i \(-0.488251\pi\)
0.0369034 + 0.999319i \(0.488251\pi\)
\(798\) 0.957739 0.0339036
\(799\) 1.67934 0.0594108
\(800\) −4.71366 −0.166653
\(801\) 17.8730 0.631511
\(802\) 1.90830 0.0673846
\(803\) −14.2359 −0.502374
\(804\) 2.64147 0.0931576
\(805\) −0.272710 −0.00961175
\(806\) 0.363250 0.0127949
\(807\) 32.4794 1.14333
\(808\) −16.5415 −0.581930
\(809\) 14.6207 0.514037 0.257019 0.966406i \(-0.417260\pi\)
0.257019 + 0.966406i \(0.417260\pi\)
\(810\) −1.16038 −0.0407716
\(811\) 55.6359 1.95364 0.976820 0.214063i \(-0.0686696\pi\)
0.976820 + 0.214063i \(0.0686696\pi\)
\(812\) 7.79003 0.273377
\(813\) −29.6535 −1.03999
\(814\) 2.05900 0.0721680
\(815\) 1.02857 0.0360294
\(816\) −4.13341 −0.144698
\(817\) 16.9661 0.593569
\(818\) −7.78891 −0.272333
\(819\) 1.54854 0.0541102
\(820\) 38.0326 1.32816
\(821\) 19.8600 0.693119 0.346560 0.938028i \(-0.387350\pi\)
0.346560 + 0.938028i \(0.387350\pi\)
\(822\) 4.46819 0.155846
\(823\) −1.37757 −0.0480191 −0.0240096 0.999712i \(-0.507643\pi\)
−0.0240096 + 0.999712i \(0.507643\pi\)
\(824\) −23.4488 −0.816877
\(825\) 1.51947 0.0529010
\(826\) −1.80982 −0.0629718
\(827\) −17.7767 −0.618155 −0.309078 0.951037i \(-0.600020\pi\)
−0.309078 + 0.951037i \(0.600020\pi\)
\(828\) −0.420827 −0.0146248
\(829\) 31.6262 1.09842 0.549211 0.835684i \(-0.314928\pi\)
0.549211 + 0.835684i \(0.314928\pi\)
\(830\) −5.74868 −0.199539
\(831\) 9.32970 0.323644
\(832\) 5.77839 0.200330
\(833\) 1.00000 0.0346479
\(834\) −3.86344 −0.133780
\(835\) 46.6593 1.61471
\(836\) 4.55030 0.157376
\(837\) −6.41117 −0.221602
\(838\) 0.623003 0.0215213
\(839\) 32.9407 1.13724 0.568619 0.822601i \(-0.307478\pi\)
0.568619 + 0.822601i \(0.307478\pi\)
\(840\) 2.78936 0.0962420
\(841\) −12.2533 −0.422529
\(842\) −0.288699 −0.00994923
\(843\) 21.8574 0.752808
\(844\) 30.0955 1.03593
\(845\) 1.91026 0.0657150
\(846\) −0.807427 −0.0277599
\(847\) −10.1284 −0.348015
\(848\) 25.8315 0.887059
\(849\) −27.9689 −0.959889
\(850\) −0.419437 −0.0143866
\(851\) −1.01404 −0.0347610
\(852\) −22.5596 −0.772878
\(853\) 19.7838 0.677385 0.338692 0.940897i \(-0.390015\pi\)
0.338692 + 0.940897i \(0.390015\pi\)
\(854\) −2.91390 −0.0997117
\(855\) 7.57382 0.259019
\(856\) 10.4921 0.358611
\(857\) 19.2142 0.656345 0.328173 0.944618i \(-0.393567\pi\)
0.328173 + 0.944618i \(0.393567\pi\)
\(858\) 0.349229 0.0119225
\(859\) −2.62517 −0.0895698 −0.0447849 0.998997i \(-0.514260\pi\)
−0.0447849 + 0.998997i \(0.514260\pi\)
\(860\) 24.0963 0.821676
\(861\) 12.6006 0.429427
\(862\) −11.7136 −0.398965
\(863\) 25.9186 0.882279 0.441139 0.897439i \(-0.354574\pi\)
0.441139 + 0.897439i \(0.354574\pi\)
\(864\) 19.1210 0.650509
\(865\) −44.7660 −1.52209
\(866\) 3.76979 0.128103
\(867\) −1.20477 −0.0409160
\(868\) 2.22709 0.0755923
\(869\) −15.2476 −0.517241
\(870\) 2.92417 0.0991388
\(871\) −1.15178 −0.0390264
\(872\) −15.4287 −0.522483
\(873\) −10.9831 −0.371720
\(874\) 0.113488 0.00383880
\(875\) −12.1319 −0.410132
\(876\) −34.9702 −1.18153
\(877\) −26.5243 −0.895661 −0.447831 0.894118i \(-0.647803\pi\)
−0.447831 + 0.894118i \(0.647803\pi\)
\(878\) 6.97574 0.235420
\(879\) −19.0301 −0.641871
\(880\) 6.11875 0.206263
\(881\) −25.7113 −0.866236 −0.433118 0.901337i \(-0.642587\pi\)
−0.433118 + 0.901337i \(0.642587\pi\)
\(882\) −0.480800 −0.0161894
\(883\) −58.8214 −1.97950 −0.989749 0.142819i \(-0.954383\pi\)
−0.989749 + 0.142819i \(0.954383\pi\)
\(884\) 1.90360 0.0640249
\(885\) 13.4149 0.450939
\(886\) −10.5970 −0.356014
\(887\) −34.6852 −1.16462 −0.582308 0.812968i \(-0.697850\pi\)
−0.582308 + 0.812968i \(0.697850\pi\)
\(888\) 10.3720 0.348060
\(889\) −12.2117 −0.409567
\(890\) −6.84560 −0.229465
\(891\) −1.82654 −0.0611912
\(892\) −7.11393 −0.238192
\(893\) −4.29971 −0.143884
\(894\) −1.19291 −0.0398969
\(895\) 14.9744 0.500540
\(896\) −8.77266 −0.293074
\(897\) −0.171993 −0.00574268
\(898\) −12.2718 −0.409516
\(899\) 4.78769 0.159678
\(900\) −3.98217 −0.132739
\(901\) 7.52913 0.250832
\(902\) −3.03177 −0.100947
\(903\) 7.98334 0.265669
\(904\) 21.0599 0.700441
\(905\) −12.9167 −0.429366
\(906\) −4.50505 −0.149670
\(907\) −35.9075 −1.19229 −0.596145 0.802877i \(-0.703302\pi\)
−0.596145 + 0.802877i \(0.703302\pi\)
\(908\) −44.0249 −1.46102
\(909\) −21.1344 −0.700983
\(910\) −0.593111 −0.0196614
\(911\) 41.2503 1.36668 0.683341 0.730099i \(-0.260526\pi\)
0.683341 + 0.730099i \(0.260526\pi\)
\(912\) 10.5830 0.350439
\(913\) −9.04891 −0.299475
\(914\) −7.27464 −0.240624
\(915\) 21.5987 0.714032
\(916\) 10.8394 0.358145
\(917\) 5.01677 0.165668
\(918\) 1.70145 0.0561561
\(919\) −19.3066 −0.636865 −0.318432 0.947946i \(-0.603156\pi\)
−0.318432 + 0.947946i \(0.603156\pi\)
\(920\) 0.330528 0.0108972
\(921\) −11.9530 −0.393865
\(922\) 9.04266 0.297804
\(923\) 9.83677 0.323781
\(924\) 2.14113 0.0704380
\(925\) −9.59561 −0.315502
\(926\) −1.11190 −0.0365394
\(927\) −29.9594 −0.983996
\(928\) −14.2790 −0.468733
\(929\) 41.8922 1.37444 0.687219 0.726450i \(-0.258831\pi\)
0.687219 + 0.726450i \(0.258831\pi\)
\(930\) 0.835991 0.0274132
\(931\) −2.56036 −0.0839124
\(932\) −45.8969 −1.50340
\(933\) −10.6421 −0.348408
\(934\) −2.86661 −0.0937985
\(935\) 1.78343 0.0583246
\(936\) −1.87685 −0.0613468
\(937\) 14.8004 0.483509 0.241755 0.970337i \(-0.422277\pi\)
0.241755 + 0.970337i \(0.422277\pi\)
\(938\) 0.357611 0.0116764
\(939\) 23.2149 0.757591
\(940\) −6.10670 −0.199179
\(941\) 15.7966 0.514955 0.257477 0.966284i \(-0.417109\pi\)
0.257477 + 0.966284i \(0.417109\pi\)
\(942\) 8.07079 0.262960
\(943\) 1.49312 0.0486228
\(944\) −19.9986 −0.650898
\(945\) 10.4681 0.340527
\(946\) −1.92083 −0.0624516
\(947\) −23.2036 −0.754017 −0.377009 0.926210i \(-0.623047\pi\)
−0.377009 + 0.926210i \(0.623047\pi\)
\(948\) −37.4556 −1.21650
\(949\) 15.2483 0.494979
\(950\) 1.07391 0.0348422
\(951\) −17.0851 −0.554022
\(952\) −1.21202 −0.0392817
\(953\) 44.9816 1.45710 0.728548 0.684994i \(-0.240195\pi\)
0.728548 + 0.684994i \(0.240195\pi\)
\(954\) −3.62001 −0.117202
\(955\) −28.2774 −0.915034
\(956\) −32.5286 −1.05205
\(957\) 4.60290 0.148791
\(958\) 2.48766 0.0803726
\(959\) −11.9450 −0.385723
\(960\) 13.2985 0.429207
\(961\) −29.6312 −0.955847
\(962\) −2.20543 −0.0711058
\(963\) 13.4052 0.431977
\(964\) −39.0392 −1.25737
\(965\) 19.9053 0.640774
\(966\) 0.0534015 0.00171817
\(967\) −29.2472 −0.940525 −0.470263 0.882527i \(-0.655841\pi\)
−0.470263 + 0.882527i \(0.655841\pi\)
\(968\) 12.2758 0.394558
\(969\) 3.08464 0.0990928
\(970\) 4.20667 0.135068
\(971\) −42.7010 −1.37034 −0.685169 0.728384i \(-0.740272\pi\)
−0.685169 + 0.728384i \(0.740272\pi\)
\(972\) 26.8079 0.859863
\(973\) 10.3283 0.331109
\(974\) −8.42164 −0.269847
\(975\) −1.62752 −0.0521224
\(976\) −32.1986 −1.03065
\(977\) 29.9756 0.959003 0.479502 0.877541i \(-0.340817\pi\)
0.479502 + 0.877541i \(0.340817\pi\)
\(978\) −0.201414 −0.00644050
\(979\) −10.7756 −0.344389
\(980\) −3.63637 −0.116160
\(981\) −19.7126 −0.629374
\(982\) 2.29542 0.0732499
\(983\) −10.1260 −0.322968 −0.161484 0.986875i \(-0.551628\pi\)
−0.161484 + 0.986875i \(0.551628\pi\)
\(984\) −15.2721 −0.486858
\(985\) −2.54932 −0.0812279
\(986\) −1.27060 −0.0404640
\(987\) −2.02321 −0.0643996
\(988\) −4.87389 −0.155059
\(989\) 0.945995 0.0300809
\(990\) −0.857476 −0.0272524
\(991\) 17.2851 0.549080 0.274540 0.961576i \(-0.411474\pi\)
0.274540 + 0.961576i \(0.411474\pi\)
\(992\) −4.08223 −0.129611
\(993\) 9.96355 0.316184
\(994\) −3.05419 −0.0968729
\(995\) 28.4338 0.901413
\(996\) −22.2285 −0.704337
\(997\) −34.8725 −1.10442 −0.552211 0.833705i \(-0.686216\pi\)
−0.552211 + 0.833705i \(0.686216\pi\)
\(998\) −7.77341 −0.246063
\(999\) 38.9246 1.23152
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1547.2.a.g.1.6 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1547.2.a.g.1.6 9 1.1 even 1 trivial