Learn more

Refine search


Results (24 matches)

  displayed columns for results
Label Char Prim Dim $A$ Field CM RM Minimal twist Traces Fricke sign Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1547.1.e.a 1547.e 1547.e $1$ $0.772$ \(\Q\) \(\Q(\sqrt{-1547}) \) None 1547.1.e.a \(0\) \(-1\) \(0\) \(-1\) \(q-q^{3}+q^{4}-q^{7}+q^{11}-q^{12}-q^{13}+\cdots\)
1547.1.e.b 1547.e 1547.e $1$ $0.772$ \(\Q\) \(\Q(\sqrt{-1547}) \) None 1547.1.e.a \(0\) \(-1\) \(0\) \(1\) \(q-q^{3}+q^{4}+q^{7}-q^{11}-q^{12}+q^{13}+\cdots\)
1547.1.e.c 1547.e 1547.e $1$ $0.772$ \(\Q\) \(\Q(\sqrt{-1547}) \) None 1547.1.e.a \(0\) \(1\) \(0\) \(-1\) \(q+q^{3}+q^{4}-q^{7}+q^{11}+q^{12}+q^{13}+\cdots\)
1547.1.e.d 1547.e 1547.e $1$ $0.772$ \(\Q\) \(\Q(\sqrt{-1547}) \) None 1547.1.e.a \(0\) \(1\) \(0\) \(1\) \(q+q^{3}+q^{4}+q^{7}-q^{11}+q^{12}-q^{13}+\cdots\)
1547.2.a.a 1547.a 1.a $1$ $12.353$ \(\Q\) None None 1547.2.a.a \(-1\) \(-2\) \(0\) \(-1\) $+$ $\mathrm{SU}(2)$ \(q-q^{2}-2q^{3}-q^{4}+2q^{6}-q^{7}+3q^{8}+\cdots\)
1547.2.a.b 1547.a 1.a $2$ $12.353$ \(\Q(\sqrt{5}) \) None None 1547.2.a.b \(-2\) \(-2\) \(2\) \(2\) $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(-1+\beta )q^{3}-q^{4}+(1+\beta )q^{5}+\cdots\)
1547.2.a.c 1547.a 1.a $4$ $12.353$ 4.4.17417.1 None None 1547.2.a.c \(0\) \(2\) \(1\) \(-4\) $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2})q^{3}-2q^{4}+(-\beta _{1}-\beta _{2}-\beta _{3})q^{5}+\cdots\)
1547.2.a.d 1547.a 1.a $6$ $12.353$ 6.6.5611169.1 None None 1547.2.a.d \(-1\) \(0\) \(-2\) \(-6\) $+$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{2}-\beta _{1}q^{3}+(\beta _{2}-\beta _{4})q^{4}+(-1+\cdots)q^{5}+\cdots\)
1547.2.a.e 1547.a 1.a $6$ $12.353$ 6.6.3319769.1 None None 1547.2.a.e \(0\) \(-2\) \(-3\) \(6\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{2}q^{3}+\beta _{2}q^{4}+(-1+\beta _{5})q^{5}+\cdots\)
1547.2.a.f 1547.a 1.a $7$ $12.353$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None None 1547.2.a.f \(2\) \(0\) \(4\) \(-7\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{5}q^{2}+\beta _{1}q^{3}+(2+\beta _{1})q^{4}+(1+\beta _{1}+\cdots)q^{5}+\cdots\)
1547.2.a.g 1547.a 1.a $9$ $12.353$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None None 1547.2.a.g \(-3\) \(-4\) \(-6\) \(9\) $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+\beta _{5}q^{3}+(\beta _{1}+\beta _{2})q^{4}+(-1+\cdots)q^{5}+\cdots\)
1547.2.a.h 1547.a 1.a $14$ $12.353$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None None 1547.2.a.h \(-1\) \(8\) \(8\) \(-14\) $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1-\beta _{5})q^{3}+(1+\beta _{2})q^{4}+\cdots\)
1547.2.a.i 1547.a 1.a $14$ $12.353$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None None 1547.2.a.i \(1\) \(-4\) \(-9\) \(-14\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{10}q^{3}+(1+\beta _{2})q^{4}+(-1+\cdots)q^{5}+\cdots\)
1547.2.a.j 1547.a 1.a $14$ $12.353$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None None 1547.2.a.j \(2\) \(2\) \(4\) \(14\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{7}q^{3}+(1+\beta _{2})q^{4}+\beta _{6}q^{5}+\cdots\)
1547.2.a.k 1547.a 1.a $18$ $12.353$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None None 1547.2.a.k \(4\) \(6\) \(3\) \(18\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{8}q^{3}+(2+\beta _{2})q^{4}-\beta _{16}q^{5}+\cdots\)
1547.4.a.a 1547.a 1.a $1$ $91.276$ \(\Q\) None None 1547.4.a.a \(1\) \(-8\) \(-6\) \(-7\) $+$ $\mathrm{SU}(2)$ \(q+q^{2}-8q^{3}-7q^{4}-6q^{5}-8q^{6}+\cdots\)
1547.4.a.b 1547.a 1.a $27$ $91.276$ None None 1547.4.a.b \(-6\) \(-23\) \(-36\) \(189\) $-$ $\mathrm{SU}(2)$
1547.4.a.c 1547.a 1.a $34$ $91.276$ None None 1547.4.a.c \(-5\) \(13\) \(44\) \(-238\) $+$ $\mathrm{SU}(2)$
1547.4.a.d 1547.a 1.a $34$ $91.276$ None None 1547.4.a.d \(-1\) \(-23\) \(-28\) \(-238\) $-$ $\mathrm{SU}(2)$
1547.4.a.e 1547.a 1.a $34$ $91.276$ None None 1547.4.a.e \(0\) \(-5\) \(-14\) \(238\) $-$ $\mathrm{SU}(2)$
1547.4.a.f 1547.a 1.a $37$ $91.276$ None None 1547.4.a.f \(-7\) \(-5\) \(-26\) \(-259\) $-$ $\mathrm{SU}(2)$
1547.4.a.g 1547.a 1.a $39$ $91.276$ None None 1547.4.a.g \(10\) \(13\) \(36\) \(273\) $+$ $\mathrm{SU}(2)$
1547.4.a.h 1547.a 1.a $40$ $91.276$ None None 1547.4.a.h \(0\) \(15\) \(28\) \(-280\) $+$ $\mathrm{SU}(2)$
1547.4.a.i 1547.a 1.a $42$ $91.276$ None None 1547.4.a.i \(4\) \(7\) \(34\) \(294\) $+$ $\mathrm{SU}(2)$
  displayed columns for results