Newspace parameters
| Level: | \( N \) | \(=\) | \( 1540 = 2^{2} \cdot 5 \cdot 7 \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1540.f (of order \(2\), degree \(1\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(41.9619607115\) |
| Analytic rank: | \(0\) |
| Dimension: | \(72\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1429.1 | 0 | − | 4.93754i | 0 | −2.01498 | − | 4.57601i | 0 | 2.64575 | 0 | −15.3793 | 0 | |||||||||||||||
| 1429.2 | 0 | 4.93754i | 0 | −2.01498 | + | 4.57601i | 0 | 2.64575 | 0 | −15.3793 | 0 | ||||||||||||||||
| 1429.3 | 0 | − | 1.16268i | 0 | −0.499384 | + | 4.97500i | 0 | −2.64575 | 0 | 7.64817 | 0 | |||||||||||||||
| 1429.4 | 0 | 1.16268i | 0 | −0.499384 | − | 4.97500i | 0 | −2.64575 | 0 | 7.64817 | 0 | ||||||||||||||||
| 1429.5 | 0 | − | 0.620613i | 0 | 4.13274 | − | 2.81433i | 0 | 2.64575 | 0 | 8.61484 | 0 | |||||||||||||||
| 1429.6 | 0 | 0.620613i | 0 | 4.13274 | + | 2.81433i | 0 | 2.64575 | 0 | 8.61484 | 0 | ||||||||||||||||
| 1429.7 | 0 | − | 2.25266i | 0 | 4.67965 | + | 1.76094i | 0 | 2.64575 | 0 | 3.92554 | 0 | |||||||||||||||
| 1429.8 | 0 | 2.25266i | 0 | 4.67965 | − | 1.76094i | 0 | 2.64575 | 0 | 3.92554 | 0 | ||||||||||||||||
| 1429.9 | 0 | − | 3.72296i | 0 | −3.95351 | − | 3.06101i | 0 | −2.64575 | 0 | −4.86047 | 0 | |||||||||||||||
| 1429.10 | 0 | 3.72296i | 0 | −3.95351 | + | 3.06101i | 0 | −2.64575 | 0 | −4.86047 | 0 | ||||||||||||||||
| 1429.11 | 0 | − | 4.68761i | 0 | 2.45713 | − | 4.35460i | 0 | −2.64575 | 0 | −12.9737 | 0 | |||||||||||||||
| 1429.12 | 0 | 4.68761i | 0 | 2.45713 | + | 4.35460i | 0 | −2.64575 | 0 | −12.9737 | 0 | ||||||||||||||||
| 1429.13 | 0 | − | 4.12266i | 0 | 4.95701 | + | 0.654263i | 0 | 2.64575 | 0 | −7.99634 | 0 | |||||||||||||||
| 1429.14 | 0 | 4.12266i | 0 | 4.95701 | − | 0.654263i | 0 | 2.64575 | 0 | −7.99634 | 0 | ||||||||||||||||
| 1429.15 | 0 | − | 5.13443i | 0 | 1.03590 | + | 4.89151i | 0 | 2.64575 | 0 | −17.3624 | 0 | |||||||||||||||
| 1429.16 | 0 | 5.13443i | 0 | 1.03590 | − | 4.89151i | 0 | 2.64575 | 0 | −17.3624 | 0 | ||||||||||||||||
| 1429.17 | 0 | − | 4.00453i | 0 | 2.27812 | + | 4.45086i | 0 | 2.64575 | 0 | −7.03629 | 0 | |||||||||||||||
| 1429.18 | 0 | 4.00453i | 0 | 2.27812 | − | 4.45086i | 0 | 2.64575 | 0 | −7.03629 | 0 | ||||||||||||||||
| 1429.19 | 0 | − | 5.01331i | 0 | −4.04975 | + | 2.93249i | 0 | −2.64575 | 0 | −16.1333 | 0 | |||||||||||||||
| 1429.20 | 0 | 5.01331i | 0 | −4.04975 | − | 2.93249i | 0 | −2.64575 | 0 | −16.1333 | 0 | ||||||||||||||||
| See all 72 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 5.b | even | 2 | 1 | inner |
| 11.b | odd | 2 | 1 | inner |
| 55.d | odd | 2 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 1540.3.f.a | ✓ | 72 |
| 5.b | even | 2 | 1 | inner | 1540.3.f.a | ✓ | 72 |
| 11.b | odd | 2 | 1 | inner | 1540.3.f.a | ✓ | 72 |
| 55.d | odd | 2 | 1 | inner | 1540.3.f.a | ✓ | 72 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 1540.3.f.a | ✓ | 72 | 1.a | even | 1 | 1 | trivial |
| 1540.3.f.a | ✓ | 72 | 5.b | even | 2 | 1 | inner |
| 1540.3.f.a | ✓ | 72 | 11.b | odd | 2 | 1 | inner |
| 1540.3.f.a | ✓ | 72 | 55.d | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(1540, [\chi])\).