Properties

Label 1540.3.f.a
Level $1540$
Weight $3$
Character orbit 1540.f
Analytic conductor $41.962$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1540,3,Mod(1429,1540)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1540.1429"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1540, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1540 = 2^{2} \cdot 5 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1540.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.9619607115\)
Analytic rank: \(0\)
Dimension: \(72\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 72 q + 6 q^{5} - 232 q^{9} + 6 q^{11} + 26 q^{15} + 18 q^{25} + 92 q^{31} - 264 q^{45} + 504 q^{49} + 58 q^{55} - 228 q^{59} + 308 q^{69} - 396 q^{71} + 94 q^{75} + 608 q^{81} + 116 q^{89} - 84 q^{91} + 864 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1429.1 0 4.93754i 0 −2.01498 4.57601i 0 2.64575 0 −15.3793 0
1429.2 0 4.93754i 0 −2.01498 + 4.57601i 0 2.64575 0 −15.3793 0
1429.3 0 1.16268i 0 −0.499384 + 4.97500i 0 −2.64575 0 7.64817 0
1429.4 0 1.16268i 0 −0.499384 4.97500i 0 −2.64575 0 7.64817 0
1429.5 0 0.620613i 0 4.13274 2.81433i 0 2.64575 0 8.61484 0
1429.6 0 0.620613i 0 4.13274 + 2.81433i 0 2.64575 0 8.61484 0
1429.7 0 2.25266i 0 4.67965 + 1.76094i 0 2.64575 0 3.92554 0
1429.8 0 2.25266i 0 4.67965 1.76094i 0 2.64575 0 3.92554 0
1429.9 0 3.72296i 0 −3.95351 3.06101i 0 −2.64575 0 −4.86047 0
1429.10 0 3.72296i 0 −3.95351 + 3.06101i 0 −2.64575 0 −4.86047 0
1429.11 0 4.68761i 0 2.45713 4.35460i 0 −2.64575 0 −12.9737 0
1429.12 0 4.68761i 0 2.45713 + 4.35460i 0 −2.64575 0 −12.9737 0
1429.13 0 4.12266i 0 4.95701 + 0.654263i 0 2.64575 0 −7.99634 0
1429.14 0 4.12266i 0 4.95701 0.654263i 0 2.64575 0 −7.99634 0
1429.15 0 5.13443i 0 1.03590 + 4.89151i 0 2.64575 0 −17.3624 0
1429.16 0 5.13443i 0 1.03590 4.89151i 0 2.64575 0 −17.3624 0
1429.17 0 4.00453i 0 2.27812 + 4.45086i 0 2.64575 0 −7.03629 0
1429.18 0 4.00453i 0 2.27812 4.45086i 0 2.64575 0 −7.03629 0
1429.19 0 5.01331i 0 −4.04975 + 2.93249i 0 −2.64575 0 −16.1333 0
1429.20 0 5.01331i 0 −4.04975 2.93249i 0 −2.64575 0 −16.1333 0
See all 72 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1429.72
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
11.b odd 2 1 inner
55.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1540.3.f.a 72
5.b even 2 1 inner 1540.3.f.a 72
11.b odd 2 1 inner 1540.3.f.a 72
55.d odd 2 1 inner 1540.3.f.a 72
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1540.3.f.a 72 1.a even 1 1 trivial
1540.3.f.a 72 5.b even 2 1 inner
1540.3.f.a 72 11.b odd 2 1 inner
1540.3.f.a 72 55.d odd 2 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(1540, [\chi])\).