Properties

Label 1530.2.m.h.647.3
Level $1530$
Weight $2$
Character 1530.647
Analytic conductor $12.217$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1530,2,Mod(647,1530)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1530.647"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1530, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1530 = 2 \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1530.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,-8,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2171115093\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.17364600040304039428096.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 20 x^{14} - 40 x^{13} + 104 x^{12} - 180 x^{11} + 242 x^{10} - 132 x^{9} - 302 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 647.3
Root \(0.776205 - 1.87392i\) of defining polynomial
Character \(\chi\) \(=\) 1530.647
Dual form 1530.2.m.h.953.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(1.64468 - 1.51493i) q^{5} +(0.552409 + 0.552409i) q^{7} +(0.707107 + 0.707107i) q^{8} +(-0.0917505 + 2.23418i) q^{10} +6.31923i q^{11} +(-2.87834 + 2.87834i) q^{13} -0.781225 q^{14} -1.00000 q^{16} +(-0.707107 + 0.707107i) q^{17} +0.819950i q^{19} +(-1.51493 - 1.64468i) q^{20} +(-4.46837 - 4.46837i) q^{22} +(1.74540 + 1.74540i) q^{23} +(0.409975 - 4.98316i) q^{25} -4.07059i q^{26} +(0.552409 - 0.552409i) q^{28} -4.59231 q^{29} -8.39314 q^{31} +(0.707107 - 0.707107i) q^{32} -1.00000i q^{34} +(1.74540 + 0.0716778i) q^{35} +(-5.24725 - 5.24725i) q^{37} +(-0.579792 - 0.579792i) q^{38} +(2.23418 + 0.0917505i) q^{40} +9.72745i q^{41} +(-6.34671 + 6.34671i) q^{43} +6.31923 q^{44} -2.46837 q^{46} +(0.839302 - 0.839302i) q^{47} -6.38969i q^{49} +(3.23373 + 3.81353i) q^{50} +(2.87834 + 2.87834i) q^{52} +(2.65638 + 2.65638i) q^{53} +(9.57319 + 10.3931i) q^{55} +0.781225i q^{56} +(3.24725 - 3.24725i) q^{58} +9.73233 q^{59} +12.1498 q^{61} +(5.93485 - 5.93485i) q^{62} +1.00000i q^{64} +(-0.373479 + 9.09446i) q^{65} +(-11.2680 - 11.2680i) q^{67} +(0.707107 + 0.707107i) q^{68} +(-1.28487 + 1.18350i) q^{70} +10.9353i q^{71} +(-2.69484 + 2.69484i) q^{73} +7.42074 q^{74} +0.819950 q^{76} +(-3.49080 + 3.49080i) q^{77} +16.7948i q^{79} +(-1.64468 + 1.51493i) q^{80} +(-6.87834 - 6.87834i) q^{82} +(6.72697 + 6.72697i) q^{83} +(-0.0917505 + 2.23418i) q^{85} -8.97561i q^{86} +(-4.46837 + 4.46837i) q^{88} -7.62705 q^{89} -3.18005 q^{91} +(1.74540 - 1.74540i) q^{92} +1.18695i q^{94} +(1.24217 + 1.34856i) q^{95} +(3.34671 + 3.34671i) q^{97} +(4.51819 + 4.51819i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{7} + 4 q^{10} + 8 q^{13} - 16 q^{16} - 8 q^{22} + 16 q^{25} - 8 q^{28} - 56 q^{31} - 24 q^{37} + 4 q^{40} + 16 q^{43} + 24 q^{46} - 8 q^{52} + 56 q^{55} - 8 q^{58} + 8 q^{61} - 40 q^{67} + 32 q^{70}+ \cdots - 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1530\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(1261\) \(1361\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 1.64468 1.51493i 0.735525 0.677497i
\(6\) 0 0
\(7\) 0.552409 + 0.552409i 0.208791 + 0.208791i 0.803754 0.594962i \(-0.202833\pi\)
−0.594962 + 0.803754i \(0.702833\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) −0.0917505 + 2.23418i −0.0290141 + 0.706511i
\(11\) 6.31923i 1.90532i 0.304039 + 0.952660i \(0.401665\pi\)
−0.304039 + 0.952660i \(0.598335\pi\)
\(12\) 0 0
\(13\) −2.87834 + 2.87834i −0.798309 + 0.798309i −0.982829 0.184520i \(-0.940927\pi\)
0.184520 + 0.982829i \(0.440927\pi\)
\(14\) −0.781225 −0.208791
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −0.707107 + 0.707107i −0.171499 + 0.171499i
\(18\) 0 0
\(19\) 0.819950i 0.188109i 0.995567 + 0.0940547i \(0.0299829\pi\)
−0.995567 + 0.0940547i \(0.970017\pi\)
\(20\) −1.51493 1.64468i −0.338749 0.367763i
\(21\) 0 0
\(22\) −4.46837 4.46837i −0.952660 0.952660i
\(23\) 1.74540 + 1.74540i 0.363941 + 0.363941i 0.865262 0.501320i \(-0.167152\pi\)
−0.501320 + 0.865262i \(0.667152\pi\)
\(24\) 0 0
\(25\) 0.409975 4.98316i 0.0819950 0.996633i
\(26\) 4.07059i 0.798309i
\(27\) 0 0
\(28\) 0.552409 0.552409i 0.104396 0.104396i
\(29\) −4.59231 −0.852770 −0.426385 0.904542i \(-0.640213\pi\)
−0.426385 + 0.904542i \(0.640213\pi\)
\(30\) 0 0
\(31\) −8.39314 −1.50745 −0.753726 0.657189i \(-0.771745\pi\)
−0.753726 + 0.657189i \(0.771745\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) 1.00000i 0.171499i
\(35\) 1.74540 + 0.0716778i 0.295027 + 0.0121158i
\(36\) 0 0
\(37\) −5.24725 5.24725i −0.862643 0.862643i 0.129001 0.991644i \(-0.458823\pi\)
−0.991644 + 0.129001i \(0.958823\pi\)
\(38\) −0.579792 0.579792i −0.0940547 0.0940547i
\(39\) 0 0
\(40\) 2.23418 + 0.0917505i 0.353256 + 0.0145070i
\(41\) 9.72745i 1.51917i 0.650407 + 0.759586i \(0.274598\pi\)
−0.650407 + 0.759586i \(0.725402\pi\)
\(42\) 0 0
\(43\) −6.34671 + 6.34671i −0.967865 + 0.967865i −0.999500 0.0316346i \(-0.989929\pi\)
0.0316346 + 0.999500i \(0.489929\pi\)
\(44\) 6.31923 0.952660
\(45\) 0 0
\(46\) −2.46837 −0.363941
\(47\) 0.839302 0.839302i 0.122425 0.122425i −0.643240 0.765665i \(-0.722410\pi\)
0.765665 + 0.643240i \(0.222410\pi\)
\(48\) 0 0
\(49\) 6.38969i 0.912813i
\(50\) 3.23373 + 3.81353i 0.457319 + 0.539314i
\(51\) 0 0
\(52\) 2.87834 + 2.87834i 0.399155 + 0.399155i
\(53\) 2.65638 + 2.65638i 0.364882 + 0.364882i 0.865607 0.500725i \(-0.166933\pi\)
−0.500725 + 0.865607i \(0.666933\pi\)
\(54\) 0 0
\(55\) 9.57319 + 10.3931i 1.29085 + 1.40141i
\(56\) 0.781225i 0.104396i
\(57\) 0 0
\(58\) 3.24725 3.24725i 0.426385 0.426385i
\(59\) 9.73233 1.26704 0.633521 0.773726i \(-0.281609\pi\)
0.633521 + 0.773726i \(0.281609\pi\)
\(60\) 0 0
\(61\) 12.1498 1.55563 0.777813 0.628496i \(-0.216329\pi\)
0.777813 + 0.628496i \(0.216329\pi\)
\(62\) 5.93485 5.93485i 0.753726 0.753726i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −0.373479 + 9.09446i −0.0463244 + 1.12803i
\(66\) 0 0
\(67\) −11.2680 11.2680i −1.37661 1.37661i −0.850282 0.526327i \(-0.823569\pi\)
−0.526327 0.850282i \(-0.676431\pi\)
\(68\) 0.707107 + 0.707107i 0.0857493 + 0.0857493i
\(69\) 0 0
\(70\) −1.28487 + 1.18350i −0.153571 + 0.141455i
\(71\) 10.9353i 1.29779i 0.760879 + 0.648894i \(0.224768\pi\)
−0.760879 + 0.648894i \(0.775232\pi\)
\(72\) 0 0
\(73\) −2.69484 + 2.69484i −0.315408 + 0.315408i −0.847000 0.531593i \(-0.821594\pi\)
0.531593 + 0.847000i \(0.321594\pi\)
\(74\) 7.42074 0.862643
\(75\) 0 0
\(76\) 0.819950 0.0940547
\(77\) −3.49080 + 3.49080i −0.397814 + 0.397814i
\(78\) 0 0
\(79\) 16.7948i 1.88956i 0.327702 + 0.944781i \(0.393726\pi\)
−0.327702 + 0.944781i \(0.606274\pi\)
\(80\) −1.64468 + 1.51493i −0.183881 + 0.169374i
\(81\) 0 0
\(82\) −6.87834 6.87834i −0.759586 0.759586i
\(83\) 6.72697 + 6.72697i 0.738381 + 0.738381i 0.972265 0.233883i \(-0.0751434\pi\)
−0.233883 + 0.972265i \(0.575143\pi\)
\(84\) 0 0
\(85\) −0.0917505 + 2.23418i −0.00995174 + 0.242331i
\(86\) 8.97561i 0.967865i
\(87\) 0 0
\(88\) −4.46837 + 4.46837i −0.476330 + 0.476330i
\(89\) −7.62705 −0.808466 −0.404233 0.914656i \(-0.632461\pi\)
−0.404233 + 0.914656i \(0.632461\pi\)
\(90\) 0 0
\(91\) −3.18005 −0.333360
\(92\) 1.74540 1.74540i 0.181971 0.181971i
\(93\) 0 0
\(94\) 1.18695i 0.122425i
\(95\) 1.24217 + 1.34856i 0.127444 + 0.138359i
\(96\) 0 0
\(97\) 3.34671 + 3.34671i 0.339807 + 0.339807i 0.856295 0.516487i \(-0.172761\pi\)
−0.516487 + 0.856295i \(0.672761\pi\)
\(98\) 4.51819 + 4.51819i 0.456406 + 0.456406i
\(99\) 0 0
\(100\) −4.98316 0.409975i −0.498316 0.0409975i
\(101\) 11.6558i 1.15980i 0.814689 + 0.579898i \(0.196908\pi\)
−0.814689 + 0.579898i \(0.803092\pi\)
\(102\) 0 0
\(103\) 7.49796 7.49796i 0.738796 0.738796i −0.233549 0.972345i \(-0.575034\pi\)
0.972345 + 0.233549i \(0.0750340\pi\)
\(104\) −4.07059 −0.399155
\(105\) 0 0
\(106\) −3.75669 −0.364882
\(107\) 5.33657 5.33657i 0.515906 0.515906i −0.400424 0.916330i \(-0.631137\pi\)
0.916330 + 0.400424i \(0.131137\pi\)
\(108\) 0 0
\(109\) 2.92822i 0.280473i −0.990118 0.140236i \(-0.955214\pi\)
0.990118 0.140236i \(-0.0447862\pi\)
\(110\) −14.1183 0.579792i −1.34613 0.0552810i
\(111\) 0 0
\(112\) −0.552409 0.552409i −0.0521978 0.0521978i
\(113\) −9.72257 9.72257i −0.914622 0.914622i 0.0820093 0.996632i \(-0.473866\pi\)
−0.996632 + 0.0820093i \(0.973866\pi\)
\(114\) 0 0
\(115\) 5.51479 + 0.226474i 0.514257 + 0.0211188i
\(116\) 4.59231i 0.426385i
\(117\) 0 0
\(118\) −6.88180 + 6.88180i −0.633521 + 0.633521i
\(119\) −0.781225 −0.0716148
\(120\) 0 0
\(121\) −28.9327 −2.63024
\(122\) −8.59123 + 8.59123i −0.777813 + 0.777813i
\(123\) 0 0
\(124\) 8.39314i 0.753726i
\(125\) −6.87486 8.81682i −0.614906 0.788600i
\(126\) 0 0
\(127\) 8.50993 + 8.50993i 0.755134 + 0.755134i 0.975433 0.220299i \(-0.0707031\pi\)
−0.220299 + 0.975433i \(0.570703\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) −6.16666 6.69484i −0.540852 0.587177i
\(131\) 5.45612i 0.476703i −0.971179 0.238352i \(-0.923393\pi\)
0.971179 0.238352i \(-0.0766071\pi\)
\(132\) 0 0
\(133\) −0.452948 + 0.452948i −0.0392756 + 0.0392756i
\(134\) 15.9354 1.37661
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) 6.38000 6.38000i 0.545080 0.545080i −0.379933 0.925014i \(-0.624053\pi\)
0.925014 + 0.379933i \(0.124053\pi\)
\(138\) 0 0
\(139\) 10.1237i 0.858680i 0.903143 + 0.429340i \(0.141254\pi\)
−0.903143 + 0.429340i \(0.858746\pi\)
\(140\) 0.0716778 1.74540i 0.00605788 0.147513i
\(141\) 0 0
\(142\) −7.73246 7.73246i −0.648894 0.648894i
\(143\) −18.1889 18.1889i −1.52103 1.52103i
\(144\) 0 0
\(145\) −7.55290 + 6.95703i −0.627234 + 0.577750i
\(146\) 3.81108i 0.315408i
\(147\) 0 0
\(148\) −5.24725 + 5.24725i −0.431322 + 0.431322i
\(149\) 8.42451 0.690163 0.345081 0.938573i \(-0.387851\pi\)
0.345081 + 0.938573i \(0.387851\pi\)
\(150\) 0 0
\(151\) 2.66259 0.216678 0.108339 0.994114i \(-0.465447\pi\)
0.108339 + 0.994114i \(0.465447\pi\)
\(152\) −0.579792 + 0.579792i −0.0470274 + 0.0470274i
\(153\) 0 0
\(154\) 4.93674i 0.397814i
\(155\) −13.8041 + 12.7150i −1.10877 + 1.02129i
\(156\) 0 0
\(157\) 9.98316 + 9.98316i 0.796743 + 0.796743i 0.982581 0.185837i \(-0.0594997\pi\)
−0.185837 + 0.982581i \(0.559500\pi\)
\(158\) −11.8757 11.8757i −0.944781 0.944781i
\(159\) 0 0
\(160\) 0.0917505 2.23418i 0.00725351 0.176628i
\(161\) 1.92835i 0.151975i
\(162\) 0 0
\(163\) 11.3037 11.3037i 0.885377 0.885377i −0.108698 0.994075i \(-0.534668\pi\)
0.994075 + 0.108698i \(0.0346680\pi\)
\(164\) 9.72745 0.759586
\(165\) 0 0
\(166\) −9.51338 −0.738381
\(167\) −5.35505 + 5.35505i −0.414386 + 0.414386i −0.883263 0.468877i \(-0.844659\pi\)
0.468877 + 0.883263i \(0.344659\pi\)
\(168\) 0 0
\(169\) 3.56974i 0.274595i
\(170\) −1.51493 1.64468i −0.116190 0.126142i
\(171\) 0 0
\(172\) 6.34671 + 6.34671i 0.483932 + 0.483932i
\(173\) −13.4088 13.4088i −1.01945 1.01945i −0.999807 0.0196435i \(-0.993747\pi\)
−0.0196435 0.999807i \(-0.506253\pi\)
\(174\) 0 0
\(175\) 2.97922 2.52627i 0.225208 0.190968i
\(176\) 6.31923i 0.476330i
\(177\) 0 0
\(178\) 5.39314 5.39314i 0.404233 0.404233i
\(179\) 11.5445 0.862878 0.431439 0.902142i \(-0.358006\pi\)
0.431439 + 0.902142i \(0.358006\pi\)
\(180\) 0 0
\(181\) 11.2952 0.839567 0.419784 0.907624i \(-0.362106\pi\)
0.419784 + 0.907624i \(0.362106\pi\)
\(182\) 2.24863 2.24863i 0.166680 0.166680i
\(183\) 0 0
\(184\) 2.46837i 0.181971i
\(185\) −16.5793 0.680856i −1.21893 0.0500575i
\(186\) 0 0
\(187\) −4.46837 4.46837i −0.326760 0.326760i
\(188\) −0.839302 0.839302i −0.0612124 0.0612124i
\(189\) 0 0
\(190\) −1.83192 0.0752308i −0.132901 0.00545782i
\(191\) 12.2356i 0.885336i 0.896685 + 0.442668i \(0.145968\pi\)
−0.896685 + 0.442668i \(0.854032\pi\)
\(192\) 0 0
\(193\) −11.7137 + 11.7137i −0.843172 + 0.843172i −0.989270 0.146098i \(-0.953328\pi\)
0.146098 + 0.989270i \(0.453328\pi\)
\(194\) −4.73297 −0.339807
\(195\) 0 0
\(196\) −6.38969 −0.456406
\(197\) −5.18301 + 5.18301i −0.369274 + 0.369274i −0.867212 0.497938i \(-0.834091\pi\)
0.497938 + 0.867212i \(0.334091\pi\)
\(198\) 0 0
\(199\) 4.76014i 0.337437i −0.985664 0.168719i \(-0.946037\pi\)
0.985664 0.168719i \(-0.0539629\pi\)
\(200\) 3.81353 3.23373i 0.269657 0.228659i
\(201\) 0 0
\(202\) −8.24190 8.24190i −0.579898 0.579898i
\(203\) −2.53684 2.53684i −0.178051 0.178051i
\(204\) 0 0
\(205\) 14.7364 + 15.9986i 1.02923 + 1.11739i
\(206\) 10.6037i 0.738796i
\(207\) 0 0
\(208\) 2.87834 2.87834i 0.199577 0.199577i
\(209\) −5.18145 −0.358409
\(210\) 0 0
\(211\) 16.0831 1.10721 0.553604 0.832780i \(-0.313252\pi\)
0.553604 + 0.832780i \(0.313252\pi\)
\(212\) 2.65638 2.65638i 0.182441 0.182441i
\(213\) 0 0
\(214\) 7.54705i 0.515906i
\(215\) −0.823517 + 20.0532i −0.0561634 + 1.36761i
\(216\) 0 0
\(217\) −4.63645 4.63645i −0.314743 0.314743i
\(218\) 2.07056 + 2.07056i 0.140236 + 0.140236i
\(219\) 0 0
\(220\) 10.3931 9.57319i 0.700705 0.645424i
\(221\) 4.07059i 0.273818i
\(222\) 0 0
\(223\) 16.5852 16.5852i 1.11062 1.11062i 0.117558 0.993066i \(-0.462493\pi\)
0.993066 0.117558i \(-0.0375067\pi\)
\(224\) 0.781225 0.0521978
\(225\) 0 0
\(226\) 13.7498 0.914622
\(227\) 8.56786 8.56786i 0.568669 0.568669i −0.363086 0.931755i \(-0.618277\pi\)
0.931755 + 0.363086i \(0.118277\pi\)
\(228\) 0 0
\(229\) 1.63300i 0.107912i 0.998543 + 0.0539558i \(0.0171830\pi\)
−0.998543 + 0.0539558i \(0.982817\pi\)
\(230\) −4.05969 + 3.73941i −0.267688 + 0.246569i
\(231\) 0 0
\(232\) −3.24725 3.24725i −0.213193 0.213193i
\(233\) −7.07107 7.07107i −0.463241 0.463241i 0.436475 0.899716i \(-0.356227\pi\)
−0.899716 + 0.436475i \(0.856227\pi\)
\(234\) 0 0
\(235\) 0.108903 2.65187i 0.00710408 0.172989i
\(236\) 9.73233i 0.633521i
\(237\) 0 0
\(238\) 0.552409 0.552409i 0.0358074 0.0358074i
\(239\) 8.36913 0.541354 0.270677 0.962670i \(-0.412752\pi\)
0.270677 + 0.962670i \(0.412752\pi\)
\(240\) 0 0
\(241\) 3.87348 0.249513 0.124756 0.992187i \(-0.460185\pi\)
0.124756 + 0.992187i \(0.460185\pi\)
\(242\) 20.4585 20.4585i 1.31512 1.31512i
\(243\) 0 0
\(244\) 12.1498i 0.777813i
\(245\) −9.67993 10.5090i −0.618428 0.671397i
\(246\) 0 0
\(247\) −2.36010 2.36010i −0.150170 0.150170i
\(248\) −5.93485 5.93485i −0.376863 0.376863i
\(249\) 0 0
\(250\) 11.0957 + 1.37317i 0.701753 + 0.0868468i
\(251\) 10.5163i 0.663780i 0.943318 + 0.331890i \(0.107686\pi\)
−0.943318 + 0.331890i \(0.892314\pi\)
\(252\) 0 0
\(253\) −11.0296 + 11.0296i −0.693424 + 0.693424i
\(254\) −12.0349 −0.755134
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −13.3295 + 13.3295i −0.831473 + 0.831473i −0.987718 0.156245i \(-0.950061\pi\)
0.156245 + 0.987718i \(0.450061\pi\)
\(258\) 0 0
\(259\) 5.79726i 0.360224i
\(260\) 9.09446 + 0.373479i 0.564014 + 0.0231622i
\(261\) 0 0
\(262\) 3.85806 + 3.85806i 0.238352 + 0.238352i
\(263\) 0.625412 + 0.625412i 0.0385645 + 0.0385645i 0.726126 0.687562i \(-0.241319\pi\)
−0.687562 + 0.726126i \(0.741319\pi\)
\(264\) 0 0
\(265\) 8.39314 + 0.344678i 0.515586 + 0.0211734i
\(266\) 0.640566i 0.0392756i
\(267\) 0 0
\(268\) −11.2680 + 11.2680i −0.688305 + 0.688305i
\(269\) 26.7692 1.63215 0.816075 0.577946i \(-0.196146\pi\)
0.816075 + 0.577946i \(0.196146\pi\)
\(270\) 0 0
\(271\) 4.11679 0.250077 0.125039 0.992152i \(-0.460095\pi\)
0.125039 + 0.992152i \(0.460095\pi\)
\(272\) 0.707107 0.707107i 0.0428746 0.0428746i
\(273\) 0 0
\(274\) 9.02269i 0.545080i
\(275\) 31.4898 + 2.59073i 1.89890 + 0.156227i
\(276\) 0 0
\(277\) −12.3744 12.3744i −0.743505 0.743505i 0.229745 0.973251i \(-0.426211\pi\)
−0.973251 + 0.229745i \(0.926211\pi\)
\(278\) −7.15853 7.15853i −0.429340 0.429340i
\(279\) 0 0
\(280\) 1.18350 + 1.28487i 0.0707277 + 0.0767856i
\(281\) 21.7216i 1.29580i 0.761725 + 0.647900i \(0.224353\pi\)
−0.761725 + 0.647900i \(0.775647\pi\)
\(282\) 0 0
\(283\) −11.1048 + 11.1048i −0.660113 + 0.660113i −0.955407 0.295294i \(-0.904583\pi\)
0.295294 + 0.955407i \(0.404583\pi\)
\(284\) 10.9353 0.648894
\(285\) 0 0
\(286\) 25.7230 1.52103
\(287\) −5.37353 + 5.37353i −0.317190 + 0.317190i
\(288\) 0 0
\(289\) 1.00000i 0.0588235i
\(290\) 0.421347 10.2601i 0.0247423 0.602492i
\(291\) 0 0
\(292\) 2.69484 + 2.69484i 0.157704 + 0.157704i
\(293\) −13.4967 13.4967i −0.788485 0.788485i 0.192761 0.981246i \(-0.438256\pi\)
−0.981246 + 0.192761i \(0.938256\pi\)
\(294\) 0 0
\(295\) 16.0066 14.7438i 0.931941 0.858417i
\(296\) 7.42074i 0.431322i
\(297\) 0 0
\(298\) −5.95703 + 5.95703i −0.345081 + 0.345081i
\(299\) −10.0477 −0.581075
\(300\) 0 0
\(301\) −7.01197 −0.404163
\(302\) −1.88273 + 1.88273i −0.108339 + 0.108339i
\(303\) 0 0
\(304\) 0.819950i 0.0470274i
\(305\) 19.9826 18.4061i 1.14420 1.05393i
\(306\) 0 0
\(307\) −20.4704 20.4704i −1.16831 1.16831i −0.982606 0.185702i \(-0.940544\pi\)
−0.185702 0.982606i \(-0.559456\pi\)
\(308\) 3.49080 + 3.49080i 0.198907 + 0.198907i
\(309\) 0 0
\(310\) 0.770075 18.7518i 0.0437373 1.06503i
\(311\) 11.8572i 0.672362i −0.941797 0.336181i \(-0.890865\pi\)
0.941797 0.336181i \(-0.109135\pi\)
\(312\) 0 0
\(313\) 8.53367 8.53367i 0.482351 0.482351i −0.423530 0.905882i \(-0.639209\pi\)
0.905882 + 0.423530i \(0.139209\pi\)
\(314\) −14.1183 −0.796743
\(315\) 0 0
\(316\) 16.7948 0.944781
\(317\) −11.7037 + 11.7037i −0.657343 + 0.657343i −0.954751 0.297407i \(-0.903878\pi\)
0.297407 + 0.954751i \(0.403878\pi\)
\(318\) 0 0
\(319\) 29.0199i 1.62480i
\(320\) 1.51493 + 1.64468i 0.0846872 + 0.0919407i
\(321\) 0 0
\(322\) −1.36355 1.36355i −0.0759877 0.0759877i
\(323\) −0.579792 0.579792i −0.0322605 0.0322605i
\(324\) 0 0
\(325\) 13.1632 + 15.5233i 0.730164 + 0.861078i
\(326\) 15.9859i 0.885377i
\(327\) 0 0
\(328\) −6.87834 + 6.87834i −0.379793 + 0.379793i
\(329\) 0.927277 0.0511224
\(330\) 0 0
\(331\) 5.74979 0.316037 0.158018 0.987436i \(-0.449489\pi\)
0.158018 + 0.987436i \(0.449489\pi\)
\(332\) 6.72697 6.72697i 0.369191 0.369191i
\(333\) 0 0
\(334\) 7.57319i 0.414386i
\(335\) −35.6026 1.46208i −1.94518 0.0798820i
\(336\) 0 0
\(337\) 12.0845 + 12.0845i 0.658286 + 0.658286i 0.954974 0.296688i \(-0.0958822\pi\)
−0.296688 + 0.954974i \(0.595882\pi\)
\(338\) 2.52419 + 2.52419i 0.137298 + 0.137298i
\(339\) 0 0
\(340\) 2.23418 + 0.0917505i 0.121166 + 0.00497587i
\(341\) 53.0382i 2.87218i
\(342\) 0 0
\(343\) 7.39659 7.39659i 0.399378 0.399378i
\(344\) −8.97561 −0.483932
\(345\) 0 0
\(346\) 18.9629 1.01945
\(347\) 18.5092 18.5092i 0.993626 0.993626i −0.00635376 0.999980i \(-0.502022\pi\)
0.999980 + 0.00635376i \(0.00202248\pi\)
\(348\) 0 0
\(349\) 10.6034i 0.567588i −0.958885 0.283794i \(-0.908407\pi\)
0.958885 0.283794i \(-0.0915931\pi\)
\(350\) −0.320283 + 3.89297i −0.0171198 + 0.208088i
\(351\) 0 0
\(352\) 4.46837 + 4.46837i 0.238165 + 0.238165i
\(353\) 13.1944 + 13.1944i 0.702269 + 0.702269i 0.964897 0.262628i \(-0.0845892\pi\)
−0.262628 + 0.964897i \(0.584589\pi\)
\(354\) 0 0
\(355\) 16.5663 + 17.9852i 0.879247 + 0.954555i
\(356\) 7.62705i 0.404233i
\(357\) 0 0
\(358\) −8.16321 + 8.16321i −0.431439 + 0.431439i
\(359\) 31.5841 1.66694 0.833472 0.552561i \(-0.186349\pi\)
0.833472 + 0.552561i \(0.186349\pi\)
\(360\) 0 0
\(361\) 18.3277 0.964615
\(362\) −7.98693 + 7.98693i −0.419784 + 0.419784i
\(363\) 0 0
\(364\) 3.18005i 0.166680i
\(365\) −0.349669 + 8.51467i −0.0183025 + 0.445678i
\(366\) 0 0
\(367\) 11.7671 + 11.7671i 0.614238 + 0.614238i 0.944048 0.329809i \(-0.106984\pi\)
−0.329809 + 0.944048i \(0.606984\pi\)
\(368\) −1.74540 1.74540i −0.0909853 0.0909853i
\(369\) 0 0
\(370\) 12.2048 11.2419i 0.634496 0.584438i
\(371\) 2.93482i 0.152368i
\(372\) 0 0
\(373\) −16.1415 + 16.1415i −0.835776 + 0.835776i −0.988300 0.152524i \(-0.951260\pi\)
0.152524 + 0.988300i \(0.451260\pi\)
\(374\) 6.31923 0.326760
\(375\) 0 0
\(376\) 1.18695 0.0612124
\(377\) 13.2183 13.2183i 0.680775 0.680775i
\(378\) 0 0
\(379\) 3.54705i 0.182200i −0.995842 0.0910999i \(-0.970962\pi\)
0.995842 0.0910999i \(-0.0290383\pi\)
\(380\) 1.34856 1.24217i 0.0691796 0.0637218i
\(381\) 0 0
\(382\) −8.65187 8.65187i −0.442668 0.442668i
\(383\) −3.72850 3.72850i −0.190518 0.190518i 0.605402 0.795920i \(-0.293012\pi\)
−0.795920 + 0.605402i \(0.793012\pi\)
\(384\) 0 0
\(385\) −0.452948 + 11.0296i −0.0230844 + 0.562120i
\(386\) 16.5657i 0.843172i
\(387\) 0 0
\(388\) 3.34671 3.34671i 0.169904 0.169904i
\(389\) 7.26492 0.368346 0.184173 0.982894i \(-0.441039\pi\)
0.184173 + 0.982894i \(0.441039\pi\)
\(390\) 0 0
\(391\) −2.46837 −0.124831
\(392\) 4.51819 4.51819i 0.228203 0.228203i
\(393\) 0 0
\(394\) 7.32988i 0.369274i
\(395\) 25.4429 + 27.6221i 1.28017 + 1.38982i
\(396\) 0 0
\(397\) 18.5019 + 18.5019i 0.928584 + 0.928584i 0.997615 0.0690308i \(-0.0219907\pi\)
−0.0690308 + 0.997615i \(0.521991\pi\)
\(398\) 3.36593 + 3.36593i 0.168719 + 0.168719i
\(399\) 0 0
\(400\) −0.409975 + 4.98316i −0.0204988 + 0.249158i
\(401\) 30.8512i 1.54063i 0.637661 + 0.770317i \(0.279902\pi\)
−0.637661 + 0.770317i \(0.720098\pi\)
\(402\) 0 0
\(403\) 24.1583 24.1583i 1.20341 1.20341i
\(404\) 11.6558 0.579898
\(405\) 0 0
\(406\) 3.58763 0.178051
\(407\) 33.1586 33.1586i 1.64361 1.64361i
\(408\) 0 0
\(409\) 28.4769i 1.40809i −0.710155 0.704046i \(-0.751375\pi\)
0.710155 0.704046i \(-0.248625\pi\)
\(410\) −21.7329 0.892498i −1.07331 0.0440773i
\(411\) 0 0
\(412\) −7.49796 7.49796i −0.369398 0.369398i
\(413\) 5.37623 + 5.37623i 0.264547 + 0.264547i
\(414\) 0 0
\(415\) 21.2546 + 0.872857i 1.04335 + 0.0428469i
\(416\) 4.07059i 0.199577i
\(417\) 0 0
\(418\) 3.66384 3.66384i 0.179204 0.179204i
\(419\) −31.2672 −1.52750 −0.763751 0.645510i \(-0.776645\pi\)
−0.763751 + 0.645510i \(0.776645\pi\)
\(420\) 0 0
\(421\) −14.8171 −0.722142 −0.361071 0.932538i \(-0.617589\pi\)
−0.361071 + 0.932538i \(0.617589\pi\)
\(422\) −11.3725 + 11.3725i −0.553604 + 0.553604i
\(423\) 0 0
\(424\) 3.75669i 0.182441i
\(425\) 3.23373 + 3.81353i 0.156859 + 0.184983i
\(426\) 0 0
\(427\) 6.71168 + 6.71168i 0.324801 + 0.324801i
\(428\) −5.33657 5.33657i −0.257953 0.257953i
\(429\) 0 0
\(430\) −13.5974 14.7620i −0.655726 0.711889i
\(431\) 2.74115i 0.132036i −0.997818 0.0660182i \(-0.978970\pi\)
0.997818 0.0660182i \(-0.0210295\pi\)
\(432\) 0 0
\(433\) −5.33396 + 5.33396i −0.256334 + 0.256334i −0.823561 0.567227i \(-0.808016\pi\)
0.567227 + 0.823561i \(0.308016\pi\)
\(434\) 6.55693 0.314743
\(435\) 0 0
\(436\) −2.92822 −0.140236
\(437\) −1.43114 + 1.43114i −0.0684608 + 0.0684608i
\(438\) 0 0
\(439\) 16.9667i 0.809776i 0.914366 + 0.404888i \(0.132689\pi\)
−0.914366 + 0.404888i \(0.867311\pi\)
\(440\) −0.579792 + 14.1183i −0.0276405 + 0.673065i
\(441\) 0 0
\(442\) 2.87834 + 2.87834i 0.136909 + 0.136909i
\(443\) −9.75414 9.75414i −0.463433 0.463433i 0.436346 0.899779i \(-0.356272\pi\)
−0.899779 + 0.436346i \(0.856272\pi\)
\(444\) 0 0
\(445\) −12.5441 + 11.5544i −0.594647 + 0.547733i
\(446\) 23.4550i 1.11062i
\(447\) 0 0
\(448\) −0.552409 + 0.552409i −0.0260989 + 0.0260989i
\(449\) −7.20526 −0.340037 −0.170019 0.985441i \(-0.554383\pi\)
−0.170019 + 0.985441i \(0.554383\pi\)
\(450\) 0 0
\(451\) −61.4700 −2.89451
\(452\) −9.72257 + 9.72257i −0.457311 + 0.457311i
\(453\) 0 0
\(454\) 12.1168i 0.568669i
\(455\) −5.23018 + 4.81755i −0.245195 + 0.225850i
\(456\) 0 0
\(457\) −8.32298 8.32298i −0.389332 0.389332i 0.485117 0.874449i \(-0.338777\pi\)
−0.874449 + 0.485117i \(0.838777\pi\)
\(458\) −1.15470 1.15470i −0.0539558 0.0539558i
\(459\) 0 0
\(460\) 0.226474 5.51479i 0.0105594 0.257129i
\(461\) 36.8317i 1.71542i −0.514130 0.857712i \(-0.671885\pi\)
0.514130 0.857712i \(-0.328115\pi\)
\(462\) 0 0
\(463\) 14.1914 14.1914i 0.659530 0.659530i −0.295739 0.955269i \(-0.595566\pi\)
0.955269 + 0.295739i \(0.0955659\pi\)
\(464\) 4.59231 0.213193
\(465\) 0 0
\(466\) 10.0000 0.463241
\(467\) −3.46899 + 3.46899i −0.160526 + 0.160526i −0.782800 0.622274i \(-0.786209\pi\)
0.622274 + 0.782800i \(0.286209\pi\)
\(468\) 0 0
\(469\) 12.4491i 0.574848i
\(470\) 1.79815 + 1.95216i 0.0829424 + 0.0900465i
\(471\) 0 0
\(472\) 6.88180 + 6.88180i 0.316760 + 0.316760i
\(473\) −40.1063 40.1063i −1.84409 1.84409i
\(474\) 0 0
\(475\) 4.08595 + 0.336159i 0.187476 + 0.0154240i
\(476\) 0.781225i 0.0358074i
\(477\) 0 0
\(478\) −5.91787 + 5.91787i −0.270677 + 0.270677i
\(479\) −8.28724 −0.378654 −0.189327 0.981914i \(-0.560631\pi\)
−0.189327 + 0.981914i \(0.560631\pi\)
\(480\) 0 0
\(481\) 30.2068 1.37731
\(482\) −2.73896 + 2.73896i −0.124756 + 0.124756i
\(483\) 0 0
\(484\) 28.9327i 1.31512i
\(485\) 10.5743 + 0.434252i 0.480155 + 0.0197184i
\(486\) 0 0
\(487\) −0.0771373 0.0771373i −0.00349543 0.00349543i 0.705357 0.708852i \(-0.250787\pi\)
−0.708852 + 0.705357i \(0.750787\pi\)
\(488\) 8.59123 + 8.59123i 0.388907 + 0.388907i
\(489\) 0 0
\(490\) 14.2757 + 0.586257i 0.644912 + 0.0264844i
\(491\) 3.53465i 0.159516i 0.996814 + 0.0797582i \(0.0254148\pi\)
−0.996814 + 0.0797582i \(0.974585\pi\)
\(492\) 0 0
\(493\) 3.24725 3.24725i 0.146249 0.146249i
\(494\) 3.33768 0.150170
\(495\) 0 0
\(496\) 8.39314 0.376863
\(497\) −6.04079 + 6.04079i −0.270966 + 0.270966i
\(498\) 0 0
\(499\) 22.5628i 1.01005i −0.863104 0.505026i \(-0.831483\pi\)
0.863104 0.505026i \(-0.168517\pi\)
\(500\) −8.81682 + 6.87486i −0.394300 + 0.307453i
\(501\) 0 0
\(502\) −7.43611 7.43611i −0.331890 0.331890i
\(503\) 10.4056 + 10.4056i 0.463963 + 0.463963i 0.899952 0.435989i \(-0.143601\pi\)
−0.435989 + 0.899952i \(0.643601\pi\)
\(504\) 0 0
\(505\) 17.6577 + 19.1701i 0.785758 + 0.853059i
\(506\) 15.5982i 0.693424i
\(507\) 0 0
\(508\) 8.50993 8.50993i 0.377567 0.377567i
\(509\) 0.570031 0.0252662 0.0126331 0.999920i \(-0.495979\pi\)
0.0126331 + 0.999920i \(0.495979\pi\)
\(510\) 0 0
\(511\) −2.97731 −0.131709
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 18.8508i 0.831473i
\(515\) 0.972896 23.6907i 0.0428709 1.04394i
\(516\) 0 0
\(517\) 5.30374 + 5.30374i 0.233258 + 0.233258i
\(518\) 4.09929 + 4.09929i 0.180112 + 0.180112i
\(519\) 0 0
\(520\) −6.69484 + 6.16666i −0.293588 + 0.270426i
\(521\) 37.8328i 1.65748i 0.559630 + 0.828742i \(0.310943\pi\)
−0.559630 + 0.828742i \(0.689057\pi\)
\(522\) 0 0
\(523\) −19.0316 + 19.0316i −0.832195 + 0.832195i −0.987817 0.155622i \(-0.950262\pi\)
0.155622 + 0.987817i \(0.450262\pi\)
\(524\) −5.45612 −0.238352
\(525\) 0 0
\(526\) −0.884466 −0.0385645
\(527\) 5.93485 5.93485i 0.258526 0.258526i
\(528\) 0 0
\(529\) 16.9072i 0.735094i
\(530\) −6.17857 + 5.69112i −0.268380 + 0.247207i
\(531\) 0 0
\(532\) 0.452948 + 0.452948i 0.0196378 + 0.0196378i
\(533\) −27.9990 27.9990i −1.21277 1.21277i
\(534\) 0 0
\(535\) 0.692446 16.8615i 0.0299370 0.728987i
\(536\) 15.9354i 0.688305i
\(537\) 0 0
\(538\) −18.9287 + 18.9287i −0.816075 + 0.816075i
\(539\) 40.3779 1.73920
\(540\) 0 0
\(541\) 33.9710 1.46053 0.730264 0.683165i \(-0.239397\pi\)
0.730264 + 0.683165i \(0.239397\pi\)
\(542\) −2.91101 + 2.91101i −0.125039 + 0.125039i
\(543\) 0 0
\(544\) 1.00000i 0.0428746i
\(545\) −4.43605 4.81600i −0.190019 0.206295i
\(546\) 0 0
\(547\) −22.5845 22.5845i −0.965645 0.965645i 0.0337846 0.999429i \(-0.489244\pi\)
−0.999429 + 0.0337846i \(0.989244\pi\)
\(548\) −6.38000 6.38000i −0.272540 0.272540i
\(549\) 0 0
\(550\) −24.0985 + 20.4347i −1.02757 + 0.871338i
\(551\) 3.76547i 0.160414i
\(552\) 0 0
\(553\) −9.27760 + 9.27760i −0.394524 + 0.394524i
\(554\) 17.5000 0.743505
\(555\) 0 0
\(556\) 10.1237 0.429340
\(557\) 14.6694 14.6694i 0.621564 0.621564i −0.324368 0.945931i \(-0.605151\pi\)
0.945931 + 0.324368i \(0.105151\pi\)
\(558\) 0 0
\(559\) 36.5361i 1.54531i
\(560\) −1.74540 0.0716778i −0.0737567 0.00302894i
\(561\) 0 0
\(562\) −15.3595 15.3595i −0.647900 0.647900i
\(563\) −5.63016 5.63016i −0.237283 0.237283i 0.578441 0.815724i \(-0.303661\pi\)
−0.815724 + 0.578441i \(0.803661\pi\)
\(564\) 0 0
\(565\) −30.7196 1.26155i −1.29238 0.0530738i
\(566\) 15.7046i 0.660113i
\(567\) 0 0
\(568\) −7.73246 + 7.73246i −0.324447 + 0.324447i
\(569\) −26.7387 −1.12095 −0.560473 0.828172i \(-0.689381\pi\)
−0.560473 + 0.828172i \(0.689381\pi\)
\(570\) 0 0
\(571\) −26.6934 −1.11709 −0.558543 0.829476i \(-0.688639\pi\)
−0.558543 + 0.829476i \(0.688639\pi\)
\(572\) −18.1889 + 18.1889i −0.760517 + 0.760517i
\(573\) 0 0
\(574\) 7.59933i 0.317190i
\(575\) 9.41319 7.98205i 0.392557 0.332874i
\(576\) 0 0
\(577\) 9.94364 + 9.94364i 0.413959 + 0.413959i 0.883115 0.469156i \(-0.155442\pi\)
−0.469156 + 0.883115i \(0.655442\pi\)
\(578\) 0.707107 + 0.707107i 0.0294118 + 0.0294118i
\(579\) 0 0
\(580\) 6.95703 + 7.55290i 0.288875 + 0.313617i
\(581\) 7.43209i 0.308335i
\(582\) 0 0
\(583\) −16.7863 + 16.7863i −0.695217 + 0.695217i
\(584\) −3.81108 −0.157704
\(585\) 0 0
\(586\) 19.0872 0.788485
\(587\) −5.48481 + 5.48481i −0.226382 + 0.226382i −0.811179 0.584797i \(-0.801174\pi\)
0.584797 + 0.811179i \(0.301174\pi\)
\(588\) 0 0
\(589\) 6.88196i 0.283566i
\(590\) −0.892946 + 21.7438i −0.0367620 + 0.895179i
\(591\) 0 0
\(592\) 5.24725 + 5.24725i 0.215661 + 0.215661i
\(593\) −20.4424 20.4424i −0.839470 0.839470i 0.149319 0.988789i \(-0.452292\pi\)
−0.988789 + 0.149319i \(0.952292\pi\)
\(594\) 0 0
\(595\) −1.28487 + 1.18350i −0.0526745 + 0.0485188i
\(596\) 8.42451i 0.345081i
\(597\) 0 0
\(598\) 7.10482 7.10482i 0.290538 0.290538i
\(599\) 15.7731 0.644472 0.322236 0.946659i \(-0.395566\pi\)
0.322236 + 0.946659i \(0.395566\pi\)
\(600\) 0 0
\(601\) −45.8776 −1.87138 −0.935692 0.352817i \(-0.885224\pi\)
−0.935692 + 0.352817i \(0.885224\pi\)
\(602\) 4.95821 4.95821i 0.202082 0.202082i
\(603\) 0 0
\(604\) 2.66259i 0.108339i
\(605\) −47.5851 + 43.8309i −1.93461 + 1.78198i
\(606\) 0 0
\(607\) 3.62419 + 3.62419i 0.147101 + 0.147101i 0.776822 0.629720i \(-0.216831\pi\)
−0.629720 + 0.776822i \(0.716831\pi\)
\(608\) 0.579792 + 0.579792i 0.0235137 + 0.0235137i
\(609\) 0 0
\(610\) −1.11475 + 27.1450i −0.0451350 + 1.09907i
\(611\) 4.83160i 0.195466i
\(612\) 0 0
\(613\) 4.78931 4.78931i 0.193438 0.193438i −0.603742 0.797180i \(-0.706324\pi\)
0.797180 + 0.603742i \(0.206324\pi\)
\(614\) 28.9495 1.16831
\(615\) 0 0
\(616\) −4.93674 −0.198907
\(617\) 20.9181 20.9181i 0.842132 0.842132i −0.147004 0.989136i \(-0.546963\pi\)
0.989136 + 0.147004i \(0.0469630\pi\)
\(618\) 0 0
\(619\) 7.48254i 0.300749i 0.988629 + 0.150374i \(0.0480479\pi\)
−0.988629 + 0.150374i \(0.951952\pi\)
\(620\) 12.7150 + 13.8041i 0.510647 + 0.554385i
\(621\) 0 0
\(622\) 8.38433 + 8.38433i 0.336181 + 0.336181i
\(623\) −4.21325 4.21325i −0.168800 0.168800i
\(624\) 0 0
\(625\) −24.6638 4.08595i −0.986554 0.163438i
\(626\) 12.0684i 0.482351i
\(627\) 0 0
\(628\) 9.98316 9.98316i 0.398372 0.398372i
\(629\) 7.42074 0.295884
\(630\) 0 0
\(631\) 6.62891 0.263893 0.131946 0.991257i \(-0.457877\pi\)
0.131946 + 0.991257i \(0.457877\pi\)
\(632\) −11.8757 + 11.8757i −0.472391 + 0.472391i
\(633\) 0 0
\(634\) 16.5515i 0.657343i
\(635\) 26.8881 + 1.10420i 1.06702 + 0.0438190i
\(636\) 0 0
\(637\) 18.3917 + 18.3917i 0.728707 + 0.728707i
\(638\) 20.5201 + 20.5201i 0.812400 + 0.812400i
\(639\) 0 0
\(640\) −2.23418 0.0917505i −0.0883139 0.00362676i
\(641\) 16.5341i 0.653059i −0.945187 0.326529i \(-0.894121\pi\)
0.945187 0.326529i \(-0.105879\pi\)
\(642\) 0 0
\(643\) 7.80896 7.80896i 0.307955 0.307955i −0.536161 0.844116i \(-0.680126\pi\)
0.844116 + 0.536161i \(0.180126\pi\)
\(644\) 1.92835 0.0759877
\(645\) 0 0
\(646\) 0.819950 0.0322605
\(647\) −6.10644 + 6.10644i −0.240069 + 0.240069i −0.816879 0.576810i \(-0.804297\pi\)
0.576810 + 0.816879i \(0.304297\pi\)
\(648\) 0 0
\(649\) 61.5008i 2.41412i
\(650\) −20.2844 1.66884i −0.795621 0.0654574i
\(651\) 0 0
\(652\) −11.3037 11.3037i −0.442689 0.442689i
\(653\) 22.6032 + 22.6032i 0.884530 + 0.884530i 0.993991 0.109461i \(-0.0349125\pi\)
−0.109461 + 0.993991i \(0.534913\pi\)
\(654\) 0 0
\(655\) −8.26563 8.97359i −0.322965 0.350627i
\(656\) 9.72745i 0.379793i
\(657\) 0 0
\(658\) −0.655684 + 0.655684i −0.0255612 + 0.0255612i
\(659\) −9.04414 −0.352310 −0.176155 0.984362i \(-0.556366\pi\)
−0.176155 + 0.984362i \(0.556366\pi\)
\(660\) 0 0
\(661\) −43.4205 −1.68886 −0.844431 0.535664i \(-0.820062\pi\)
−0.844431 + 0.535664i \(0.820062\pi\)
\(662\) −4.06571 + 4.06571i −0.158018 + 0.158018i
\(663\) 0 0
\(664\) 9.51338i 0.369191i
\(665\) −0.0587722 + 1.43114i −0.00227909 + 0.0554973i
\(666\) 0 0
\(667\) −8.01542 8.01542i −0.310358 0.310358i
\(668\) 5.35505 + 5.35505i 0.207193 + 0.207193i
\(669\) 0 0
\(670\) 26.2087 24.1410i 1.01253 0.932649i
\(671\) 76.7775i 2.96396i
\(672\) 0 0
\(673\) 19.5969 19.5969i 0.755406 0.755406i −0.220077 0.975483i \(-0.570631\pi\)
0.975483 + 0.220077i \(0.0706307\pi\)
\(674\) −17.0901 −0.658286
\(675\) 0 0
\(676\) −3.56974 −0.137298
\(677\) 11.5755 11.5755i 0.444881 0.444881i −0.448767 0.893649i \(-0.648137\pi\)
0.893649 + 0.448767i \(0.148137\pi\)
\(678\) 0 0
\(679\) 3.69751i 0.141898i
\(680\) −1.64468 + 1.51493i −0.0630708 + 0.0580949i
\(681\) 0 0
\(682\) 37.5036 + 37.5036i 1.43609 + 1.43609i
\(683\) 15.7415 + 15.7415i 0.602334 + 0.602334i 0.940931 0.338598i \(-0.109953\pi\)
−0.338598 + 0.940931i \(0.609953\pi\)
\(684\) 0 0
\(685\) 0.827836 20.1583i 0.0316300 0.770211i
\(686\) 10.4604i 0.399378i
\(687\) 0 0
\(688\) 6.34671 6.34671i 0.241966 0.241966i
\(689\) −15.2920 −0.582577
\(690\) 0 0
\(691\) 3.94773 0.150179 0.0750893 0.997177i \(-0.476076\pi\)
0.0750893 + 0.997177i \(0.476076\pi\)
\(692\) −13.4088 + 13.4088i −0.509725 + 0.509725i
\(693\) 0 0
\(694\) 26.1760i 0.993626i
\(695\) 15.3367 + 16.6503i 0.581754 + 0.631581i
\(696\) 0 0
\(697\) −6.87834 6.87834i −0.260536 0.260536i
\(698\) 7.49774 + 7.49774i 0.283794 + 0.283794i
\(699\) 0 0
\(700\) −2.52627 2.97922i −0.0954841 0.112604i
\(701\) 9.46794i 0.357599i 0.983886 + 0.178800i \(0.0572214\pi\)
−0.983886 + 0.178800i \(0.942779\pi\)
\(702\) 0 0
\(703\) 4.30249 4.30249i 0.162271 0.162271i
\(704\) −6.31923 −0.238165
\(705\) 0 0
\(706\) −18.6598 −0.702269
\(707\) −6.43877 + 6.43877i −0.242155 + 0.242155i
\(708\) 0 0
\(709\) 46.9302i 1.76250i −0.472650 0.881250i \(-0.656703\pi\)
0.472650 0.881250i \(-0.343297\pi\)
\(710\) −24.4316 1.00332i −0.916901 0.0376541i
\(711\) 0 0
\(712\) −5.39314 5.39314i −0.202116 0.202116i
\(713\) −14.6494 14.6494i −0.548624 0.548624i
\(714\) 0 0
\(715\) −57.4700 2.36010i −2.14926 0.0882627i
\(716\) 11.5445i 0.431439i
\(717\) 0 0
\(718\) −22.3333 + 22.3333i −0.833472 + 0.833472i
\(719\) 8.90289 0.332022 0.166011 0.986124i \(-0.446911\pi\)
0.166011 + 0.986124i \(0.446911\pi\)
\(720\) 0 0
\(721\) 8.28389 0.308508
\(722\) −12.9596 + 12.9596i −0.482307 + 0.482307i
\(723\) 0 0
\(724\) 11.2952i 0.419784i
\(725\) −1.88273 + 22.8842i −0.0699229 + 0.849899i
\(726\) 0 0
\(727\) −5.11334 5.11334i −0.189643 0.189643i 0.605899 0.795542i \(-0.292814\pi\)
−0.795542 + 0.605899i \(0.792814\pi\)
\(728\) −2.24863 2.24863i −0.0833399 0.0833399i
\(729\) 0 0
\(730\) −5.77353 6.26803i −0.213688 0.231990i
\(731\) 8.97561i 0.331975i
\(732\) 0 0
\(733\) 11.8220 11.8220i 0.436655 0.436655i −0.454230 0.890885i \(-0.650085\pi\)
0.890885 + 0.454230i \(0.150085\pi\)
\(734\) −16.6412 −0.614238
\(735\) 0 0
\(736\) 2.46837 0.0909853
\(737\) 71.2053 71.2053i 2.62288 2.62288i
\(738\) 0 0
\(739\) 27.1841i 0.999984i 0.866030 + 0.499992i \(0.166664\pi\)
−0.866030 + 0.499992i \(0.833336\pi\)
\(740\) −0.680856 + 16.5793i −0.0250288 + 0.609467i
\(741\) 0 0
\(742\) −2.07523 2.07523i −0.0761841 0.0761841i
\(743\) 26.0283 + 26.0283i 0.954886 + 0.954886i 0.999025 0.0441394i \(-0.0140546\pi\)
−0.0441394 + 0.999025i \(0.514055\pi\)
\(744\) 0 0
\(745\) 13.8557 12.7625i 0.507632 0.467583i
\(746\) 22.8275i 0.835776i
\(747\) 0 0
\(748\) −4.46837 + 4.46837i −0.163380 + 0.163380i
\(749\) 5.89595 0.215433
\(750\) 0 0
\(751\) 18.1123 0.660929 0.330464 0.943818i \(-0.392795\pi\)
0.330464 + 0.943818i \(0.392795\pi\)
\(752\) −0.839302 + 0.839302i −0.0306062 + 0.0306062i
\(753\) 0 0
\(754\) 18.6934i 0.680775i
\(755\) 4.37911 4.03363i 0.159372 0.146799i
\(756\) 0 0
\(757\) −8.99895 8.99895i −0.327072 0.327072i 0.524400 0.851472i \(-0.324290\pi\)
−0.851472 + 0.524400i \(0.824290\pi\)
\(758\) 2.50814 + 2.50814i 0.0910999 + 0.0910999i
\(759\) 0 0
\(760\) −0.0752308 + 1.83192i −0.00272891 + 0.0664507i
\(761\) 38.6454i 1.40089i −0.713704 0.700447i \(-0.752984\pi\)
0.713704 0.700447i \(-0.247016\pi\)
\(762\) 0 0
\(763\) 1.61758 1.61758i 0.0585602 0.0585602i
\(764\) 12.2356 0.442668
\(765\) 0 0
\(766\) 5.27290 0.190518
\(767\) −28.0130 + 28.0130i −1.01149 + 1.01149i
\(768\) 0 0
\(769\) 16.3759i 0.590529i 0.955416 + 0.295265i \(0.0954078\pi\)
−0.955416 + 0.295265i \(0.904592\pi\)
\(770\) −7.47881 8.11938i −0.269518 0.292602i
\(771\) 0 0
\(772\) 11.7137 + 11.7137i 0.421586 + 0.421586i
\(773\) 7.37620 + 7.37620i 0.265303 + 0.265303i 0.827204 0.561901i \(-0.189930\pi\)
−0.561901 + 0.827204i \(0.689930\pi\)
\(774\) 0 0
\(775\) −3.44098 + 41.8244i −0.123604 + 1.50238i
\(776\) 4.73297i 0.169904i
\(777\) 0 0
\(778\) −5.13708 + 5.13708i −0.184173 + 0.184173i
\(779\) −7.97602 −0.285771
\(780\) 0 0
\(781\) −69.1030 −2.47270
\(782\) 1.74540 1.74540i 0.0624154 0.0624154i
\(783\) 0 0
\(784\) 6.38969i 0.228203i
\(785\) 31.5429 + 1.29536i 1.12582 + 0.0462335i
\(786\) 0 0
\(787\) 19.9625 + 19.9625i 0.711587 + 0.711587i 0.966867 0.255280i \(-0.0821677\pi\)
−0.255280 + 0.966867i \(0.582168\pi\)
\(788\) 5.18301 + 5.18301i 0.184637 + 0.184637i
\(789\) 0 0
\(790\) −37.5227 1.54093i −1.33500 0.0548239i
\(791\) 10.7417i 0.381930i
\(792\) 0 0
\(793\) −34.9714 + 34.9714i −1.24187 + 1.24187i
\(794\) −26.1656 −0.928584
\(795\) 0 0
\(796\) −4.76014 −0.168719
\(797\) 14.1373 14.1373i 0.500767 0.500767i −0.410909 0.911676i \(-0.634789\pi\)
0.911676 + 0.410909i \(0.134789\pi\)
\(798\) 0 0
\(799\) 1.18695i 0.0419914i
\(800\) −3.23373 3.81353i −0.114330 0.134828i
\(801\) 0 0
\(802\) −21.8151 21.8151i −0.770317 0.770317i
\(803\) −17.0293 17.0293i −0.600952 0.600952i
\(804\) 0 0
\(805\) 2.92132 + 3.17153i 0.102963 + 0.111782i
\(806\) 34.1651i 1.20341i
\(807\) 0 0
\(808\) −8.24190 + 8.24190i −0.289949 + 0.289949i
\(809\) −46.7263 −1.64281 −0.821405 0.570345i \(-0.806809\pi\)
−0.821405 + 0.570345i \(0.806809\pi\)
\(810\) 0 0
\(811\) −15.2247 −0.534611 −0.267306 0.963612i \(-0.586133\pi\)
−0.267306 + 0.963612i \(0.586133\pi\)
\(812\) −2.53684 + 2.53684i −0.0890255 + 0.0890255i
\(813\) 0 0
\(814\) 46.8933i 1.64361i
\(815\) 1.46671 35.7155i 0.0513768 1.25106i
\(816\) 0 0
\(817\) −5.20399 5.20399i −0.182065 0.182065i
\(818\) 20.1362 + 20.1362i 0.704046 + 0.704046i
\(819\) 0 0
\(820\) 15.9986 14.7364i 0.558695 0.514617i
\(821\) 4.68804i 0.163614i 0.996648 + 0.0818069i \(0.0260691\pi\)
−0.996648 + 0.0818069i \(0.973931\pi\)
\(822\) 0 0
\(823\) −28.9865 + 28.9865i −1.01040 + 1.01040i −0.0104596 + 0.999945i \(0.503329\pi\)
−0.999945 + 0.0104596i \(0.996671\pi\)
\(824\) 10.6037 0.369398
\(825\) 0 0
\(826\) −7.60314 −0.264547
\(827\) 31.9500 31.9500i 1.11101 1.11101i 0.117996 0.993014i \(-0.462353\pi\)
0.993014 0.117996i \(-0.0376471\pi\)
\(828\) 0 0
\(829\) 39.5175i 1.37250i 0.727367 + 0.686249i \(0.240744\pi\)
−0.727367 + 0.686249i \(0.759256\pi\)
\(830\) −15.6465 + 14.4121i −0.543098 + 0.500251i
\(831\) 0 0
\(832\) −2.87834 2.87834i −0.0997887 0.0997887i
\(833\) 4.51819 + 4.51819i 0.156546 + 0.156546i
\(834\) 0 0
\(835\) −0.694844 + 16.9199i −0.0240461 + 0.585537i
\(836\) 5.18145i 0.179204i
\(837\) 0 0
\(838\) 22.1093 22.1093i 0.763751 0.763751i
\(839\) −2.25909 −0.0779925 −0.0389962 0.999239i \(-0.512416\pi\)
−0.0389962 + 0.999239i \(0.512416\pi\)
\(840\) 0 0
\(841\) −7.91069 −0.272783
\(842\) 10.4773 10.4773i 0.361071 0.361071i
\(843\) 0 0
\(844\) 16.0831i 0.553604i
\(845\) −5.40790 5.87109i −0.186037 0.201972i
\(846\) 0 0
\(847\) −15.9827 15.9827i −0.549171 0.549171i
\(848\) −2.65638 2.65638i −0.0912205 0.0912205i
\(849\) 0 0
\(850\) −4.98316 0.409975i −0.170921 0.0140620i
\(851\) 18.3171i 0.627903i
\(852\) 0 0
\(853\) −26.6517 + 26.6517i −0.912538 + 0.912538i −0.996471 0.0839335i \(-0.973252\pi\)
0.0839335 + 0.996471i \(0.473252\pi\)
\(854\) −9.49175 −0.324801
\(855\) 0 0
\(856\) 7.54705 0.257953
\(857\) −16.2775 + 16.2775i −0.556029 + 0.556029i −0.928174 0.372146i \(-0.878622\pi\)
0.372146 + 0.928174i \(0.378622\pi\)
\(858\) 0 0
\(859\) 27.9594i 0.953963i −0.878913 0.476982i \(-0.841731\pi\)
0.878913 0.476982i \(-0.158269\pi\)
\(860\) 20.0532 + 0.823517i 0.683807 + 0.0280817i
\(861\) 0 0
\(862\) 1.93828 + 1.93828i 0.0660182 + 0.0660182i
\(863\) 3.25510 + 3.25510i 0.110805 + 0.110805i 0.760336 0.649531i \(-0.225035\pi\)
−0.649531 + 0.760336i \(0.725035\pi\)
\(864\) 0 0
\(865\) −42.3666 1.73985i −1.44051 0.0591568i
\(866\) 7.54336i 0.256334i
\(867\) 0 0
\(868\) −4.63645 + 4.63645i −0.157371 + 0.157371i
\(869\) −106.130 −3.60022
\(870\) 0 0
\(871\) 64.8666 2.19792
\(872\) 2.07056 2.07056i 0.0701182 0.0701182i
\(873\) 0 0
\(874\) 2.02394i 0.0684608i
\(875\) 1.07275 8.66823i 0.0362657 0.293040i
\(876\) 0 0
\(877\) 35.0861 + 35.0861i 1.18477 + 1.18477i 0.978493 + 0.206279i \(0.0661356\pi\)
0.206279 + 0.978493i \(0.433864\pi\)
\(878\) −11.9973 11.9973i −0.404888 0.404888i
\(879\) 0 0
\(880\) −9.57319 10.3931i −0.322712 0.350353i
\(881\) 24.4474i 0.823653i 0.911262 + 0.411827i \(0.135109\pi\)
−0.911262 + 0.411827i \(0.864891\pi\)
\(882\) 0 0
\(883\) 3.42823 3.42823i 0.115369 0.115369i −0.647065 0.762434i \(-0.724004\pi\)
0.762434 + 0.647065i \(0.224004\pi\)
\(884\) −4.07059 −0.136909
\(885\) 0 0
\(886\) 13.7944 0.463433
\(887\) −19.6281 + 19.6281i −0.659047 + 0.659047i −0.955155 0.296108i \(-0.904311\pi\)
0.296108 + 0.955155i \(0.404311\pi\)
\(888\) 0 0
\(889\) 9.40193i 0.315331i
\(890\) 0.699786 17.0402i 0.0234569 0.571190i
\(891\) 0 0
\(892\) −16.5852 16.5852i −0.555312 0.555312i
\(893\) 0.688186 + 0.688186i 0.0230293 + 0.0230293i
\(894\) 0 0
\(895\) 18.9871 17.4891i 0.634669 0.584598i
\(896\) 0.781225i 0.0260989i
\(897\) 0 0
\(898\) 5.09489 5.09489i 0.170019 0.170019i
\(899\) 38.5439 1.28551
\(900\) 0 0
\(901\) −3.75669 −0.125153
\(902\) 43.4658 43.4658i 1.44725 1.44725i
\(903\) 0 0
\(904\) 13.7498i 0.457311i
\(905\) 18.5771 17.1115i 0.617523 0.568804i
\(906\) 0 0
\(907\) −33.7577 33.7577i −1.12091 1.12091i −0.991606 0.129300i \(-0.958727\pi\)
−0.129300 0.991606i \(-0.541273\pi\)
\(908\) −8.56786 8.56786i −0.284335 0.284335i
\(909\) 0 0
\(910\) 0.291771 7.10482i 0.00967212 0.235522i
\(911\) 18.1016i 0.599734i 0.953981 + 0.299867i \(0.0969423\pi\)
−0.953981 + 0.299867i \(0.903058\pi\)
\(912\) 0 0
\(913\) −42.5093 + 42.5093i −1.40685 + 1.40685i
\(914\) 11.7705 0.389332
\(915\) 0 0
\(916\) 1.63300 0.0539558
\(917\) 3.01401 3.01401i 0.0995314 0.0995314i
\(918\) 0 0
\(919\) 12.3195i 0.406384i −0.979139 0.203192i \(-0.934869\pi\)
0.979139 0.203192i \(-0.0651315\pi\)
\(920\) 3.73941 + 4.05969i 0.123285 + 0.133844i
\(921\) 0 0
\(922\) 26.0440 + 26.0440i 0.857712 + 0.857712i
\(923\) −31.4757 31.4757i −1.03604 1.03604i
\(924\) 0 0
\(925\) −28.2992 + 23.9967i −0.930471 + 0.789006i
\(926\) 20.0697i 0.659530i
\(927\) 0 0
\(928\) −3.24725 + 3.24725i −0.106596 + 0.106596i
\(929\) 50.3422 1.65167 0.825836 0.563910i \(-0.190704\pi\)
0.825836 + 0.563910i \(0.190704\pi\)
\(930\) 0 0
\(931\) 5.23923 0.171709
\(932\) −7.07107 + 7.07107i −0.231621 + 0.231621i
\(933\) 0 0
\(934\) 4.90590i 0.160526i
\(935\) −14.1183 0.579792i −0.461719 0.0189612i
\(936\) 0 0
\(937\) −6.28451 6.28451i −0.205306 0.205306i 0.596963 0.802269i \(-0.296374\pi\)
−0.802269 + 0.596963i \(0.796374\pi\)
\(938\) 8.80287 + 8.80287i 0.287424 + 0.287424i
\(939\) 0 0
\(940\) −2.65187 0.108903i −0.0864945 0.00355204i
\(941\) 5.84624i 0.190582i 0.995449 + 0.0952910i \(0.0303782\pi\)
−0.995449 + 0.0952910i \(0.969622\pi\)
\(942\) 0 0
\(943\) −16.9783 + 16.9783i −0.552889 + 0.552889i
\(944\) −9.73233 −0.316760
\(945\) 0 0
\(946\) 56.7189 1.84409
\(947\) −34.9447 + 34.9447i −1.13555 + 1.13555i −0.146311 + 0.989239i \(0.546740\pi\)
−0.989239 + 0.146311i \(0.953260\pi\)
\(948\) 0 0
\(949\) 15.5134i 0.503586i
\(950\) −3.12690 + 2.65150i −0.101450 + 0.0860260i
\(951\) 0 0
\(952\) −0.552409 0.552409i −0.0179037 0.0179037i
\(953\) −11.1076 11.1076i −0.359810 0.359810i 0.503933 0.863743i \(-0.331886\pi\)
−0.863743 + 0.503933i \(0.831886\pi\)
\(954\) 0 0
\(955\) 18.5361 + 20.1237i 0.599813 + 0.651187i
\(956\) 8.36913i 0.270677i
\(957\) 0 0
\(958\) 5.85996 5.85996i 0.189327 0.189327i
\(959\) 7.04875 0.227616
\(960\) 0 0
\(961\) 39.4448 1.27241
\(962\) −21.3594 + 21.3594i −0.688656 + 0.688656i
\(963\) 0 0
\(964\) 3.87348i 0.124756i
\(965\) −1.51991 + 37.0108i −0.0489277 + 1.19142i
\(966\) 0 0
\(967\) 17.9679 + 17.9679i 0.577810 + 0.577810i 0.934299 0.356489i \(-0.116026\pi\)
−0.356489 + 0.934299i \(0.616026\pi\)
\(968\) −20.4585 20.4585i −0.657560 0.657560i
\(969\) 0 0
\(970\) −7.78424 + 7.17012i −0.249937 + 0.230219i
\(971\) 27.8430i 0.893523i 0.894653 + 0.446761i \(0.147423\pi\)
−0.894653 + 0.446761i \(0.852577\pi\)
\(972\) 0 0
\(973\) −5.59242 + 5.59242i −0.179285 + 0.179285i
\(974\) 0.109089 0.00349543
\(975\) 0 0
\(976\) −12.1498 −0.388907
\(977\) −17.2183 + 17.2183i −0.550863 + 0.550863i −0.926690 0.375827i \(-0.877359\pi\)
0.375827 + 0.926690i \(0.377359\pi\)
\(978\) 0 0
\(979\) 48.1971i 1.54039i
\(980\) −10.5090 + 9.67993i −0.335698 + 0.309214i
\(981\) 0 0
\(982\) −2.49937 2.49937i −0.0797582 0.0797582i
\(983\) 19.6352 + 19.6352i 0.626264 + 0.626264i 0.947126 0.320862i \(-0.103973\pi\)
−0.320862 + 0.947126i \(0.603973\pi\)
\(984\) 0 0
\(985\) −0.672520 + 16.3763i −0.0214283 + 0.521792i
\(986\) 4.59231i 0.146249i
\(987\) 0 0
\(988\) −2.36010 + 2.36010i −0.0750848 + 0.0750848i
\(989\) −22.1551 −0.704492
\(990\) 0 0
\(991\) 9.56912 0.303973 0.151986 0.988383i \(-0.451433\pi\)
0.151986 + 0.988383i \(0.451433\pi\)
\(992\) −5.93485 + 5.93485i −0.188432 + 0.188432i
\(993\) 0 0
\(994\) 8.54297i 0.270966i
\(995\) −7.21128 7.82893i −0.228613 0.248194i
\(996\) 0 0
\(997\) 5.78395 + 5.78395i 0.183180 + 0.183180i 0.792740 0.609560i \(-0.208654\pi\)
−0.609560 + 0.792740i \(0.708654\pi\)
\(998\) 15.9543 + 15.9543i 0.505026 + 0.505026i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1530.2.m.h.647.3 16
3.2 odd 2 inner 1530.2.m.h.647.6 yes 16
5.3 odd 4 inner 1530.2.m.h.953.6 yes 16
15.8 even 4 inner 1530.2.m.h.953.3 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1530.2.m.h.647.3 16 1.1 even 1 trivial
1530.2.m.h.647.6 yes 16 3.2 odd 2 inner
1530.2.m.h.953.3 yes 16 15.8 even 4 inner
1530.2.m.h.953.6 yes 16 5.3 odd 4 inner