Properties

Label 1530.2.m.g.647.3
Level $1530$
Weight $2$
Character 1530.647
Analytic conductor $12.217$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1530,2,Mod(647,1530)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1530.647"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1530, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1530 = 2 \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1530.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,16,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2171115093\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 647.3
Root \(-0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 1530.647
Dual form 1530.2.m.g.953.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} -1.00000i q^{4} +(-1.73205 - 1.41421i) q^{5} +(2.00000 + 2.00000i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(-2.22474 + 0.224745i) q^{10} +2.82843i q^{11} +(-2.44949 + 2.44949i) q^{13} +2.82843 q^{14} -1.00000 q^{16} +(-0.707107 + 0.707107i) q^{17} +6.89898i q^{19} +(-1.41421 + 1.73205i) q^{20} +(2.00000 + 2.00000i) q^{22} +(-1.73205 - 1.73205i) q^{23} +(1.00000 + 4.89898i) q^{25} +3.46410i q^{26} +(2.00000 - 2.00000i) q^{28} +2.82843 q^{29} -7.34847 q^{31} +(-0.707107 + 0.707107i) q^{32} +1.00000i q^{34} +(-0.635674 - 6.29253i) q^{35} +(6.44949 + 6.44949i) q^{37} +(4.87832 + 4.87832i) q^{38} +(0.224745 + 2.22474i) q^{40} -0.635674i q^{41} +(3.44949 - 3.44949i) q^{43} +2.82843 q^{44} -2.44949 q^{46} +(-2.82843 + 2.82843i) q^{47} +1.00000i q^{49} +(4.17121 + 2.75699i) q^{50} +(2.44949 + 2.44949i) q^{52} +(5.51399 + 5.51399i) q^{53} +(4.00000 - 4.89898i) q^{55} -2.82843i q^{56} +(2.00000 - 2.00000i) q^{58} -4.87832 q^{59} +5.34847 q^{61} +(-5.19615 + 5.19615i) q^{62} +1.00000i q^{64} +(7.70674 - 0.778539i) q^{65} +(-1.44949 - 1.44949i) q^{67} +(0.707107 + 0.707107i) q^{68} +(-4.89898 - 4.00000i) q^{70} +0.635674i q^{71} +(-3.34847 + 3.34847i) q^{73} +9.12096 q^{74} +6.89898 q^{76} +(-5.65685 + 5.65685i) q^{77} +6.44949i q^{79} +(1.73205 + 1.41421i) q^{80} +(-0.449490 - 0.449490i) q^{82} +(-2.82843 - 2.82843i) q^{83} +(2.22474 - 0.224745i) q^{85} -4.87832i q^{86} +(2.00000 - 2.00000i) q^{88} +12.4422 q^{89} -9.79796 q^{91} +(-1.73205 + 1.73205i) q^{92} +4.00000i q^{94} +(9.75663 - 11.9494i) q^{95} +(6.44949 + 6.44949i) q^{97} +(0.707107 + 0.707107i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{7} - 8 q^{10} - 8 q^{16} + 16 q^{22} + 8 q^{25} + 16 q^{28} + 32 q^{37} - 8 q^{40} + 8 q^{43} + 32 q^{55} + 16 q^{58} - 16 q^{61} + 8 q^{67} + 32 q^{73} + 16 q^{76} + 16 q^{82} + 8 q^{85} + 16 q^{88}+ \cdots + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1530\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(1261\) \(1361\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −1.73205 1.41421i −0.774597 0.632456i
\(6\) 0 0
\(7\) 2.00000 + 2.00000i 0.755929 + 0.755929i 0.975579 0.219650i \(-0.0704915\pi\)
−0.219650 + 0.975579i \(0.570491\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 0 0
\(10\) −2.22474 + 0.224745i −0.703526 + 0.0710706i
\(11\) 2.82843i 0.852803i 0.904534 + 0.426401i \(0.140219\pi\)
−0.904534 + 0.426401i \(0.859781\pi\)
\(12\) 0 0
\(13\) −2.44949 + 2.44949i −0.679366 + 0.679366i −0.959857 0.280491i \(-0.909503\pi\)
0.280491 + 0.959857i \(0.409503\pi\)
\(14\) 2.82843 0.755929
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −0.707107 + 0.707107i −0.171499 + 0.171499i
\(18\) 0 0
\(19\) 6.89898i 1.58273i 0.611341 + 0.791367i \(0.290630\pi\)
−0.611341 + 0.791367i \(0.709370\pi\)
\(20\) −1.41421 + 1.73205i −0.316228 + 0.387298i
\(21\) 0 0
\(22\) 2.00000 + 2.00000i 0.426401 + 0.426401i
\(23\) −1.73205 1.73205i −0.361158 0.361158i 0.503081 0.864239i \(-0.332200\pi\)
−0.864239 + 0.503081i \(0.832200\pi\)
\(24\) 0 0
\(25\) 1.00000 + 4.89898i 0.200000 + 0.979796i
\(26\) 3.46410i 0.679366i
\(27\) 0 0
\(28\) 2.00000 2.00000i 0.377964 0.377964i
\(29\) 2.82843 0.525226 0.262613 0.964901i \(-0.415416\pi\)
0.262613 + 0.964901i \(0.415416\pi\)
\(30\) 0 0
\(31\) −7.34847 −1.31982 −0.659912 0.751343i \(-0.729406\pi\)
−0.659912 + 0.751343i \(0.729406\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) 0 0
\(34\) 1.00000i 0.171499i
\(35\) −0.635674 6.29253i −0.107449 1.06363i
\(36\) 0 0
\(37\) 6.44949 + 6.44949i 1.06029 + 1.06029i 0.998062 + 0.0622276i \(0.0198205\pi\)
0.0622276 + 0.998062i \(0.480180\pi\)
\(38\) 4.87832 + 4.87832i 0.791367 + 0.791367i
\(39\) 0 0
\(40\) 0.224745 + 2.22474i 0.0355353 + 0.351763i
\(41\) 0.635674i 0.0992757i −0.998767 0.0496378i \(-0.984193\pi\)
0.998767 0.0496378i \(-0.0158067\pi\)
\(42\) 0 0
\(43\) 3.44949 3.44949i 0.526042 0.526042i −0.393348 0.919390i \(-0.628683\pi\)
0.919390 + 0.393348i \(0.128683\pi\)
\(44\) 2.82843 0.426401
\(45\) 0 0
\(46\) −2.44949 −0.361158
\(47\) −2.82843 + 2.82843i −0.412568 + 0.412568i −0.882632 0.470064i \(-0.844231\pi\)
0.470064 + 0.882632i \(0.344231\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 4.17121 + 2.75699i 0.589898 + 0.389898i
\(51\) 0 0
\(52\) 2.44949 + 2.44949i 0.339683 + 0.339683i
\(53\) 5.51399 + 5.51399i 0.757405 + 0.757405i 0.975849 0.218445i \(-0.0700983\pi\)
−0.218445 + 0.975849i \(0.570098\pi\)
\(54\) 0 0
\(55\) 4.00000 4.89898i 0.539360 0.660578i
\(56\) 2.82843i 0.377964i
\(57\) 0 0
\(58\) 2.00000 2.00000i 0.262613 0.262613i
\(59\) −4.87832 −0.635103 −0.317551 0.948241i \(-0.602861\pi\)
−0.317551 + 0.948241i \(0.602861\pi\)
\(60\) 0 0
\(61\) 5.34847 0.684801 0.342401 0.939554i \(-0.388760\pi\)
0.342401 + 0.939554i \(0.388760\pi\)
\(62\) −5.19615 + 5.19615i −0.659912 + 0.659912i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 7.70674 0.778539i 0.955904 0.0965659i
\(66\) 0 0
\(67\) −1.44949 1.44949i −0.177083 0.177083i 0.613000 0.790083i \(-0.289963\pi\)
−0.790083 + 0.613000i \(0.789963\pi\)
\(68\) 0.707107 + 0.707107i 0.0857493 + 0.0857493i
\(69\) 0 0
\(70\) −4.89898 4.00000i −0.585540 0.478091i
\(71\) 0.635674i 0.0754407i 0.999288 + 0.0377203i \(0.0120096\pi\)
−0.999288 + 0.0377203i \(0.987990\pi\)
\(72\) 0 0
\(73\) −3.34847 + 3.34847i −0.391909 + 0.391909i −0.875367 0.483459i \(-0.839380\pi\)
0.483459 + 0.875367i \(0.339380\pi\)
\(74\) 9.12096 1.06029
\(75\) 0 0
\(76\) 6.89898 0.791367
\(77\) −5.65685 + 5.65685i −0.644658 + 0.644658i
\(78\) 0 0
\(79\) 6.44949i 0.725624i 0.931862 + 0.362812i \(0.118183\pi\)
−0.931862 + 0.362812i \(0.881817\pi\)
\(80\) 1.73205 + 1.41421i 0.193649 + 0.158114i
\(81\) 0 0
\(82\) −0.449490 0.449490i −0.0496378 0.0496378i
\(83\) −2.82843 2.82843i −0.310460 0.310460i 0.534628 0.845088i \(-0.320452\pi\)
−0.845088 + 0.534628i \(0.820452\pi\)
\(84\) 0 0
\(85\) 2.22474 0.224745i 0.241307 0.0243770i
\(86\) 4.87832i 0.526042i
\(87\) 0 0
\(88\) 2.00000 2.00000i 0.213201 0.213201i
\(89\) 12.4422 1.31887 0.659435 0.751762i \(-0.270796\pi\)
0.659435 + 0.751762i \(0.270796\pi\)
\(90\) 0 0
\(91\) −9.79796 −1.02711
\(92\) −1.73205 + 1.73205i −0.180579 + 0.180579i
\(93\) 0 0
\(94\) 4.00000i 0.412568i
\(95\) 9.75663 11.9494i 1.00101 1.22598i
\(96\) 0 0
\(97\) 6.44949 + 6.44949i 0.654846 + 0.654846i 0.954156 0.299310i \(-0.0967563\pi\)
−0.299310 + 0.954156i \(0.596756\pi\)
\(98\) 0.707107 + 0.707107i 0.0714286 + 0.0714286i
\(99\) 0 0
\(100\) 4.89898 1.00000i 0.489898 0.100000i
\(101\) 7.84961i 0.781065i −0.920589 0.390533i \(-0.872291\pi\)
0.920589 0.390533i \(-0.127709\pi\)
\(102\) 0 0
\(103\) −2.89898 + 2.89898i −0.285645 + 0.285645i −0.835355 0.549710i \(-0.814738\pi\)
0.549710 + 0.835355i \(0.314738\pi\)
\(104\) 3.46410 0.339683
\(105\) 0 0
\(106\) 7.79796 0.757405
\(107\) 1.27135 1.27135i 0.122906 0.122906i −0.642978 0.765884i \(-0.722302\pi\)
0.765884 + 0.642978i \(0.222302\pi\)
\(108\) 0 0
\(109\) 13.3485i 1.27855i 0.768978 + 0.639276i \(0.220766\pi\)
−0.768978 + 0.639276i \(0.779234\pi\)
\(110\) −0.635674 6.29253i −0.0606092 0.599969i
\(111\) 0 0
\(112\) −2.00000 2.00000i −0.188982 0.188982i
\(113\) −5.51399 5.51399i −0.518713 0.518713i 0.398469 0.917182i \(-0.369542\pi\)
−0.917182 + 0.398469i \(0.869542\pi\)
\(114\) 0 0
\(115\) 0.550510 + 5.44949i 0.0513353 + 0.508168i
\(116\) 2.82843i 0.262613i
\(117\) 0 0
\(118\) −3.44949 + 3.44949i −0.317551 + 0.317551i
\(119\) −2.82843 −0.259281
\(120\) 0 0
\(121\) 3.00000 0.272727
\(122\) 3.78194 3.78194i 0.342401 0.342401i
\(123\) 0 0
\(124\) 7.34847i 0.659912i
\(125\) 5.19615 9.89949i 0.464758 0.885438i
\(126\) 0 0
\(127\) 4.89898 + 4.89898i 0.434714 + 0.434714i 0.890228 0.455514i \(-0.150545\pi\)
−0.455514 + 0.890228i \(0.650545\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 4.89898 6.00000i 0.429669 0.526235i
\(131\) 5.65685i 0.494242i 0.968985 + 0.247121i \(0.0794845\pi\)
−0.968985 + 0.247121i \(0.920516\pi\)
\(132\) 0 0
\(133\) −13.7980 + 13.7980i −1.19643 + 1.19643i
\(134\) −2.04989 −0.177083
\(135\) 0 0
\(136\) 1.00000 0.0857493
\(137\) 2.68556 2.68556i 0.229443 0.229443i −0.583017 0.812460i \(-0.698128\pi\)
0.812460 + 0.583017i \(0.198128\pi\)
\(138\) 0 0
\(139\) 5.79796i 0.491776i −0.969298 0.245888i \(-0.920920\pi\)
0.969298 0.245888i \(-0.0790796\pi\)
\(140\) −6.29253 + 0.635674i −0.531816 + 0.0537243i
\(141\) 0 0
\(142\) 0.449490 + 0.449490i 0.0377203 + 0.0377203i
\(143\) −6.92820 6.92820i −0.579365 0.579365i
\(144\) 0 0
\(145\) −4.89898 4.00000i −0.406838 0.332182i
\(146\) 4.73545i 0.391909i
\(147\) 0 0
\(148\) 6.44949 6.44949i 0.530145 0.530145i
\(149\) −11.9494 −0.978932 −0.489466 0.872022i \(-0.662808\pi\)
−0.489466 + 0.872022i \(0.662808\pi\)
\(150\) 0 0
\(151\) −18.6969 −1.52154 −0.760768 0.649024i \(-0.775177\pi\)
−0.760768 + 0.649024i \(0.775177\pi\)
\(152\) 4.87832 4.87832i 0.395684 0.395684i
\(153\) 0 0
\(154\) 8.00000i 0.644658i
\(155\) 12.7279 + 10.3923i 1.02233 + 0.834730i
\(156\) 0 0
\(157\) −13.3485 13.3485i −1.06532 1.06532i −0.997712 0.0676121i \(-0.978462\pi\)
−0.0676121 0.997712i \(-0.521538\pi\)
\(158\) 4.56048 + 4.56048i 0.362812 + 0.362812i
\(159\) 0 0
\(160\) 2.22474 0.224745i 0.175882 0.0177676i
\(161\) 6.92820i 0.546019i
\(162\) 0 0
\(163\) 15.7980 15.7980i 1.23739 1.23739i 0.276328 0.961063i \(-0.410882\pi\)
0.961063 0.276328i \(-0.0891177\pi\)
\(164\) −0.635674 −0.0496378
\(165\) 0 0
\(166\) −4.00000 −0.310460
\(167\) −14.9528 + 14.9528i −1.15708 + 1.15708i −0.171981 + 0.985100i \(0.555017\pi\)
−0.985100 + 0.171981i \(0.944983\pi\)
\(168\) 0 0
\(169\) 1.00000i 0.0769231i
\(170\) 1.41421 1.73205i 0.108465 0.132842i
\(171\) 0 0
\(172\) −3.44949 3.44949i −0.263021 0.263021i
\(173\) 15.0956 + 15.0956i 1.14770 + 1.14770i 0.987004 + 0.160697i \(0.0513742\pi\)
0.160697 + 0.987004i \(0.448626\pi\)
\(174\) 0 0
\(175\) −7.79796 + 11.7980i −0.589470 + 0.891842i
\(176\) 2.82843i 0.213201i
\(177\) 0 0
\(178\) 8.79796 8.79796i 0.659435 0.659435i
\(179\) −13.3636 −0.998842 −0.499421 0.866359i \(-0.666454\pi\)
−0.499421 + 0.866359i \(0.666454\pi\)
\(180\) 0 0
\(181\) −25.3485 −1.88414 −0.942068 0.335421i \(-0.891122\pi\)
−0.942068 + 0.335421i \(0.891122\pi\)
\(182\) −6.92820 + 6.92820i −0.513553 + 0.513553i
\(183\) 0 0
\(184\) 2.44949i 0.180579i
\(185\) −2.04989 20.2918i −0.150711 1.49188i
\(186\) 0 0
\(187\) −2.00000 2.00000i −0.146254 0.146254i
\(188\) 2.82843 + 2.82843i 0.206284 + 0.206284i
\(189\) 0 0
\(190\) −1.55051 15.3485i −0.112486 1.11349i
\(191\) 11.3137i 0.818631i −0.912393 0.409316i \(-0.865768\pi\)
0.912393 0.409316i \(-0.134232\pi\)
\(192\) 0 0
\(193\) −0.651531 + 0.651531i −0.0468982 + 0.0468982i −0.730167 0.683269i \(-0.760558\pi\)
0.683269 + 0.730167i \(0.260558\pi\)
\(194\) 9.12096 0.654846
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 12.9029 12.9029i 0.919293 0.919293i −0.0776848 0.996978i \(-0.524753\pi\)
0.996978 + 0.0776848i \(0.0247528\pi\)
\(198\) 0 0
\(199\) 18.4495i 1.30785i 0.756560 + 0.653925i \(0.226879\pi\)
−0.756560 + 0.653925i \(0.773121\pi\)
\(200\) 2.75699 4.17121i 0.194949 0.294949i
\(201\) 0 0
\(202\) −5.55051 5.55051i −0.390533 0.390533i
\(203\) 5.65685 + 5.65685i 0.397033 + 0.397033i
\(204\) 0 0
\(205\) −0.898979 + 1.10102i −0.0627875 + 0.0768986i
\(206\) 4.09978i 0.285645i
\(207\) 0 0
\(208\) 2.44949 2.44949i 0.169842 0.169842i
\(209\) −19.5133 −1.34976
\(210\) 0 0
\(211\) 24.4949 1.68630 0.843149 0.537680i \(-0.180699\pi\)
0.843149 + 0.537680i \(0.180699\pi\)
\(212\) 5.51399 5.51399i 0.378702 0.378702i
\(213\) 0 0
\(214\) 1.79796i 0.122906i
\(215\) −10.8530 + 1.09638i −0.740169 + 0.0747722i
\(216\) 0 0
\(217\) −14.6969 14.6969i −0.997693 0.997693i
\(218\) 9.43879 + 9.43879i 0.639276 + 0.639276i
\(219\) 0 0
\(220\) −4.89898 4.00000i −0.330289 0.269680i
\(221\) 3.46410i 0.233021i
\(222\) 0 0
\(223\) 5.10102 5.10102i 0.341590 0.341590i −0.515375 0.856965i \(-0.672347\pi\)
0.856965 + 0.515375i \(0.172347\pi\)
\(224\) −2.82843 −0.188982
\(225\) 0 0
\(226\) −7.79796 −0.518713
\(227\) −11.9494 + 11.9494i −0.793108 + 0.793108i −0.981998 0.188890i \(-0.939511\pi\)
0.188890 + 0.981998i \(0.439511\pi\)
\(228\) 0 0
\(229\) 29.5959i 1.95575i −0.209182 0.977877i \(-0.567080\pi\)
0.209182 0.977877i \(-0.432920\pi\)
\(230\) 4.24264 + 3.46410i 0.279751 + 0.228416i
\(231\) 0 0
\(232\) −2.00000 2.00000i −0.131306 0.131306i
\(233\) −7.70674 7.70674i −0.504885 0.504885i 0.408067 0.912952i \(-0.366203\pi\)
−0.912952 + 0.408067i \(0.866203\pi\)
\(234\) 0 0
\(235\) 8.89898 0.898979i 0.580505 0.0586430i
\(236\) 4.87832i 0.317551i
\(237\) 0 0
\(238\) −2.00000 + 2.00000i −0.129641 + 0.129641i
\(239\) −26.7272 −1.72884 −0.864419 0.502772i \(-0.832314\pi\)
−0.864419 + 0.502772i \(0.832314\pi\)
\(240\) 0 0
\(241\) −17.1010 −1.10157 −0.550787 0.834646i \(-0.685672\pi\)
−0.550787 + 0.834646i \(0.685672\pi\)
\(242\) 2.12132 2.12132i 0.136364 0.136364i
\(243\) 0 0
\(244\) 5.34847i 0.342401i
\(245\) 1.41421 1.73205i 0.0903508 0.110657i
\(246\) 0 0
\(247\) −16.8990 16.8990i −1.07526 1.07526i
\(248\) 5.19615 + 5.19615i 0.329956 + 0.329956i
\(249\) 0 0
\(250\) −3.32577 10.6742i −0.210340 0.675098i
\(251\) 15.9063i 1.00400i −0.864869 0.501998i \(-0.832598\pi\)
0.864869 0.501998i \(-0.167402\pi\)
\(252\) 0 0
\(253\) 4.89898 4.89898i 0.307996 0.307996i
\(254\) 6.92820 0.434714
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −6.92820 + 6.92820i −0.432169 + 0.432169i −0.889366 0.457196i \(-0.848854\pi\)
0.457196 + 0.889366i \(0.348854\pi\)
\(258\) 0 0
\(259\) 25.7980i 1.60301i
\(260\) −0.778539 7.70674i −0.0482829 0.477952i
\(261\) 0 0
\(262\) 4.00000 + 4.00000i 0.247121 + 0.247121i
\(263\) 13.5065 + 13.5065i 0.832844 + 0.832844i 0.987905 0.155061i \(-0.0495574\pi\)
−0.155061 + 0.987905i \(0.549557\pi\)
\(264\) 0 0
\(265\) −1.75255 17.3485i −0.107658 1.06571i
\(266\) 19.5133i 1.19643i
\(267\) 0 0
\(268\) −1.44949 + 1.44949i −0.0885417 + 0.0885417i
\(269\) 5.37113 0.327483 0.163742 0.986503i \(-0.447644\pi\)
0.163742 + 0.986503i \(0.447644\pi\)
\(270\) 0 0
\(271\) −11.1010 −0.674339 −0.337169 0.941444i \(-0.609470\pi\)
−0.337169 + 0.941444i \(0.609470\pi\)
\(272\) 0.707107 0.707107i 0.0428746 0.0428746i
\(273\) 0 0
\(274\) 3.79796i 0.229443i
\(275\) −13.8564 + 2.82843i −0.835573 + 0.170561i
\(276\) 0 0
\(277\) 18.0000 + 18.0000i 1.08152 + 1.08152i 0.996368 + 0.0851468i \(0.0271359\pi\)
0.0851468 + 0.996368i \(0.472864\pi\)
\(278\) −4.09978 4.09978i −0.245888 0.245888i
\(279\) 0 0
\(280\) −4.00000 + 4.89898i −0.239046 + 0.292770i
\(281\) 6.78534i 0.404779i −0.979305 0.202390i \(-0.935129\pi\)
0.979305 0.202390i \(-0.0648708\pi\)
\(282\) 0 0
\(283\) 22.8990 22.8990i 1.36120 1.36120i 0.488816 0.872387i \(-0.337429\pi\)
0.872387 0.488816i \(-0.162571\pi\)
\(284\) 0.635674 0.0377203
\(285\) 0 0
\(286\) −9.79796 −0.579365
\(287\) 1.27135 1.27135i 0.0750454 0.0750454i
\(288\) 0 0
\(289\) 1.00000i 0.0588235i
\(290\) −6.29253 + 0.635674i −0.369510 + 0.0373281i
\(291\) 0 0
\(292\) 3.34847 + 3.34847i 0.195954 + 0.195954i
\(293\) 20.9275 + 20.9275i 1.22260 + 1.22260i 0.966706 + 0.255890i \(0.0823686\pi\)
0.255890 + 0.966706i \(0.417631\pi\)
\(294\) 0 0
\(295\) 8.44949 + 6.89898i 0.491948 + 0.401674i
\(296\) 9.12096i 0.530145i
\(297\) 0 0
\(298\) −8.44949 + 8.44949i −0.489466 + 0.489466i
\(299\) 8.48528 0.490716
\(300\) 0 0
\(301\) 13.7980 0.795301
\(302\) −13.2207 + 13.2207i −0.760768 + 0.760768i
\(303\) 0 0
\(304\) 6.89898i 0.395684i
\(305\) −9.26382 7.56388i −0.530445 0.433106i
\(306\) 0 0
\(307\) 10.3485 + 10.3485i 0.590618 + 0.590618i 0.937798 0.347180i \(-0.112861\pi\)
−0.347180 + 0.937798i \(0.612861\pi\)
\(308\) 5.65685 + 5.65685i 0.322329 + 0.322329i
\(309\) 0 0
\(310\) 16.3485 1.65153i 0.928531 0.0938006i
\(311\) 24.5344i 1.39122i 0.718419 + 0.695610i \(0.244866\pi\)
−0.718419 + 0.695610i \(0.755134\pi\)
\(312\) 0 0
\(313\) 19.3485 19.3485i 1.09364 1.09364i 0.0985034 0.995137i \(-0.468594\pi\)
0.995137 0.0985034i \(-0.0314055\pi\)
\(314\) −18.8776 −1.06532
\(315\) 0 0
\(316\) 6.44949 0.362812
\(317\) −2.51059 + 2.51059i −0.141009 + 0.141009i −0.774087 0.633079i \(-0.781791\pi\)
0.633079 + 0.774087i \(0.281791\pi\)
\(318\) 0 0
\(319\) 8.00000i 0.447914i
\(320\) 1.41421 1.73205i 0.0790569 0.0968246i
\(321\) 0 0
\(322\) −4.89898 4.89898i −0.273009 0.273009i
\(323\) −4.87832 4.87832i −0.271437 0.271437i
\(324\) 0 0
\(325\) −14.4495 9.55051i −0.801513 0.529767i
\(326\) 22.3417i 1.23739i
\(327\) 0 0
\(328\) −0.449490 + 0.449490i −0.0248189 + 0.0248189i
\(329\) −11.3137 −0.623745
\(330\) 0 0
\(331\) 0.696938 0.0383072 0.0191536 0.999817i \(-0.493903\pi\)
0.0191536 + 0.999817i \(0.493903\pi\)
\(332\) −2.82843 + 2.82843i −0.155230 + 0.155230i
\(333\) 0 0
\(334\) 21.1464i 1.15708i
\(335\) 0.460702 + 4.56048i 0.0251708 + 0.249166i
\(336\) 0 0
\(337\) 12.2474 + 12.2474i 0.667161 + 0.667161i 0.957058 0.289897i \(-0.0936210\pi\)
−0.289897 + 0.957058i \(0.593621\pi\)
\(338\) 0.707107 + 0.707107i 0.0384615 + 0.0384615i
\(339\) 0 0
\(340\) −0.224745 2.22474i −0.0121885 0.120654i
\(341\) 20.7846i 1.12555i
\(342\) 0 0
\(343\) 12.0000 12.0000i 0.647939 0.647939i
\(344\) −4.87832 −0.263021
\(345\) 0 0
\(346\) 21.3485 1.14770
\(347\) 7.84961 7.84961i 0.421389 0.421389i −0.464293 0.885682i \(-0.653691\pi\)
0.885682 + 0.464293i \(0.153691\pi\)
\(348\) 0 0
\(349\) 19.7980i 1.05976i −0.848072 0.529880i \(-0.822237\pi\)
0.848072 0.529880i \(-0.177763\pi\)
\(350\) 2.82843 + 13.8564i 0.151186 + 0.740656i
\(351\) 0 0
\(352\) −2.00000 2.00000i −0.106600 0.106600i
\(353\) −12.5851 12.5851i −0.669835 0.669835i 0.287843 0.957678i \(-0.407062\pi\)
−0.957678 + 0.287843i \(0.907062\pi\)
\(354\) 0 0
\(355\) 0.898979 1.10102i 0.0477129 0.0584361i
\(356\) 12.4422i 0.659435i
\(357\) 0 0
\(358\) −9.44949 + 9.44949i −0.499421 + 0.499421i
\(359\) −21.0703 −1.11205 −0.556025 0.831166i \(-0.687674\pi\)
−0.556025 + 0.831166i \(0.687674\pi\)
\(360\) 0 0
\(361\) −28.5959 −1.50505
\(362\) −17.9241 + 17.9241i −0.942068 + 0.942068i
\(363\) 0 0
\(364\) 9.79796i 0.513553i
\(365\) 10.5352 1.06427i 0.551436 0.0557063i
\(366\) 0 0
\(367\) 3.79796 + 3.79796i 0.198252 + 0.198252i 0.799250 0.600998i \(-0.205230\pi\)
−0.600998 + 0.799250i \(0.705230\pi\)
\(368\) 1.73205 + 1.73205i 0.0902894 + 0.0902894i
\(369\) 0 0
\(370\) −15.7980 12.8990i −0.821297 0.670586i
\(371\) 22.0560i 1.14509i
\(372\) 0 0
\(373\) 18.2474 18.2474i 0.944817 0.944817i −0.0537380 0.998555i \(-0.517114\pi\)
0.998555 + 0.0537380i \(0.0171136\pi\)
\(374\) −2.82843 −0.146254
\(375\) 0 0
\(376\) 4.00000 0.206284
\(377\) −6.92820 + 6.92820i −0.356821 + 0.356821i
\(378\) 0 0
\(379\) 0.898979i 0.0461775i −0.999733 0.0230887i \(-0.992650\pi\)
0.999733 0.0230887i \(-0.00735003\pi\)
\(380\) −11.9494 9.75663i −0.612990 0.500505i
\(381\) 0 0
\(382\) −8.00000 8.00000i −0.409316 0.409316i
\(383\) −8.83523 8.83523i −0.451459 0.451459i 0.444380 0.895839i \(-0.353424\pi\)
−0.895839 + 0.444380i \(0.853424\pi\)
\(384\) 0 0
\(385\) 17.7980 1.79796i 0.907068 0.0916325i
\(386\) 0.921404i 0.0468982i
\(387\) 0 0
\(388\) 6.44949 6.44949i 0.327423 0.327423i
\(389\) 20.1489 1.02159 0.510796 0.859702i \(-0.329351\pi\)
0.510796 + 0.859702i \(0.329351\pi\)
\(390\) 0 0
\(391\) 2.44949 0.123876
\(392\) 0.707107 0.707107i 0.0357143 0.0357143i
\(393\) 0 0
\(394\) 18.2474i 0.919293i
\(395\) 9.12096 11.1708i 0.458925 0.562066i
\(396\) 0 0
\(397\) −4.69694 4.69694i −0.235733 0.235733i 0.579348 0.815080i \(-0.303307\pi\)
−0.815080 + 0.579348i \(0.803307\pi\)
\(398\) 13.0458 + 13.0458i 0.653925 + 0.653925i
\(399\) 0 0
\(400\) −1.00000 4.89898i −0.0500000 0.244949i
\(401\) 21.7060i 1.08395i 0.840396 + 0.541973i \(0.182323\pi\)
−0.840396 + 0.541973i \(0.817677\pi\)
\(402\) 0 0
\(403\) 18.0000 18.0000i 0.896644 0.896644i
\(404\) −7.84961 −0.390533
\(405\) 0 0
\(406\) 8.00000 0.397033
\(407\) −18.2419 + 18.2419i −0.904218 + 0.904218i
\(408\) 0 0
\(409\) 20.0000i 0.988936i 0.869196 + 0.494468i \(0.164637\pi\)
−0.869196 + 0.494468i \(0.835363\pi\)
\(410\) 0.142865 + 1.41421i 0.00705558 + 0.0698430i
\(411\) 0 0
\(412\) 2.89898 + 2.89898i 0.142822 + 0.142822i
\(413\) −9.75663 9.75663i −0.480092 0.480092i
\(414\) 0 0
\(415\) 0.898979 + 8.89898i 0.0441292 + 0.436834i
\(416\) 3.46410i 0.169842i
\(417\) 0 0
\(418\) −13.7980 + 13.7980i −0.674880 + 0.674880i
\(419\) 25.4558 1.24360 0.621800 0.783176i \(-0.286402\pi\)
0.621800 + 0.783176i \(0.286402\pi\)
\(420\) 0 0
\(421\) −25.1010 −1.22335 −0.611674 0.791110i \(-0.709504\pi\)
−0.611674 + 0.791110i \(0.709504\pi\)
\(422\) 17.3205 17.3205i 0.843149 0.843149i
\(423\) 0 0
\(424\) 7.79796i 0.378702i
\(425\) −4.17121 2.75699i −0.202333 0.133734i
\(426\) 0 0
\(427\) 10.6969 + 10.6969i 0.517661 + 0.517661i
\(428\) −1.27135 1.27135i −0.0614530 0.0614530i
\(429\) 0 0
\(430\) −6.89898 + 8.44949i −0.332698 + 0.407471i
\(431\) 15.7634i 0.759298i −0.925131 0.379649i \(-0.876045\pi\)
0.925131 0.379649i \(-0.123955\pi\)
\(432\) 0 0
\(433\) 12.7980 12.7980i 0.615031 0.615031i −0.329222 0.944253i \(-0.606786\pi\)
0.944253 + 0.329222i \(0.106786\pi\)
\(434\) −20.7846 −0.997693
\(435\) 0 0
\(436\) 13.3485 0.639276
\(437\) 11.9494 11.9494i 0.571617 0.571617i
\(438\) 0 0
\(439\) 30.4495i 1.45327i −0.687021 0.726637i \(-0.741082\pi\)
0.687021 0.726637i \(-0.258918\pi\)
\(440\) −6.29253 + 0.635674i −0.299985 + 0.0303046i
\(441\) 0 0
\(442\) −2.44949 2.44949i −0.116510 0.116510i
\(443\) −3.32124 3.32124i −0.157797 0.157797i 0.623793 0.781590i \(-0.285591\pi\)
−0.781590 + 0.623793i \(0.785591\pi\)
\(444\) 0 0
\(445\) −21.5505 17.5959i −1.02159 0.834127i
\(446\) 7.21393i 0.341590i
\(447\) 0 0
\(448\) −2.00000 + 2.00000i −0.0944911 + 0.0944911i
\(449\) −14.7778 −0.697408 −0.348704 0.937233i \(-0.613378\pi\)
−0.348704 + 0.937233i \(0.613378\pi\)
\(450\) 0 0
\(451\) 1.79796 0.0846626
\(452\) −5.51399 + 5.51399i −0.259356 + 0.259356i
\(453\) 0 0
\(454\) 16.8990i 0.793108i
\(455\) 16.9706 + 13.8564i 0.795592 + 0.649598i
\(456\) 0 0
\(457\) 3.20204 + 3.20204i 0.149785 + 0.149785i 0.778022 0.628237i \(-0.216223\pi\)
−0.628237 + 0.778022i \(0.716223\pi\)
\(458\) −20.9275 20.9275i −0.977877 0.977877i
\(459\) 0 0
\(460\) 5.44949 0.550510i 0.254084 0.0256677i
\(461\) 8.83523i 0.411498i 0.978605 + 0.205749i \(0.0659630\pi\)
−0.978605 + 0.205749i \(0.934037\pi\)
\(462\) 0 0
\(463\) −3.79796 + 3.79796i −0.176506 + 0.176506i −0.789831 0.613325i \(-0.789832\pi\)
0.613325 + 0.789831i \(0.289832\pi\)
\(464\) −2.82843 −0.131306
\(465\) 0 0
\(466\) −10.8990 −0.504885
\(467\) −22.3417 + 22.3417i −1.03385 + 1.03385i −0.0344434 + 0.999407i \(0.510966\pi\)
−0.999407 + 0.0344434i \(0.989034\pi\)
\(468\) 0 0
\(469\) 5.79796i 0.267725i
\(470\) 5.65685 6.92820i 0.260931 0.319574i
\(471\) 0 0
\(472\) 3.44949 + 3.44949i 0.158776 + 0.158776i
\(473\) 9.75663 + 9.75663i 0.448610 + 0.448610i
\(474\) 0 0
\(475\) −33.7980 + 6.89898i −1.55076 + 0.316547i
\(476\) 2.82843i 0.129641i
\(477\) 0 0
\(478\) −18.8990 + 18.8990i −0.864419 + 0.864419i
\(479\) −28.3485 −1.29528 −0.647638 0.761948i \(-0.724243\pi\)
−0.647638 + 0.761948i \(0.724243\pi\)
\(480\) 0 0
\(481\) −31.5959 −1.44065
\(482\) −12.0922 + 12.0922i −0.550787 + 0.550787i
\(483\) 0 0
\(484\) 3.00000i 0.136364i
\(485\) −2.04989 20.2918i −0.0930806 0.921403i
\(486\) 0 0
\(487\) −9.34847 9.34847i −0.423620 0.423620i 0.462828 0.886448i \(-0.346835\pi\)
−0.886448 + 0.462828i \(0.846835\pi\)
\(488\) −3.78194 3.78194i −0.171200 0.171200i
\(489\) 0 0
\(490\) −0.224745 2.22474i −0.0101529 0.100504i
\(491\) 40.0908i 1.80927i 0.426185 + 0.904636i \(0.359857\pi\)
−0.426185 + 0.904636i \(0.640143\pi\)
\(492\) 0 0
\(493\) −2.00000 + 2.00000i −0.0900755 + 0.0900755i
\(494\) −23.8988 −1.07526
\(495\) 0 0
\(496\) 7.34847 0.329956
\(497\) −1.27135 + 1.27135i −0.0570278 + 0.0570278i
\(498\) 0 0
\(499\) 30.2929i 1.35609i 0.735018 + 0.678047i \(0.237174\pi\)
−0.735018 + 0.678047i \(0.762826\pi\)
\(500\) −9.89949 5.19615i −0.442719 0.232379i
\(501\) 0 0
\(502\) −11.2474 11.2474i −0.501998 0.501998i
\(503\) 15.5885 + 15.5885i 0.695055 + 0.695055i 0.963340 0.268285i \(-0.0864568\pi\)
−0.268285 + 0.963340i \(0.586457\pi\)
\(504\) 0 0
\(505\) −11.1010 + 13.5959i −0.493989 + 0.605010i
\(506\) 6.92820i 0.307996i
\(507\) 0 0
\(508\) 4.89898 4.89898i 0.217357 0.217357i
\(509\) −31.4626 −1.39456 −0.697279 0.716800i \(-0.745606\pi\)
−0.697279 + 0.716800i \(0.745606\pi\)
\(510\) 0 0
\(511\) −13.3939 −0.592510
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) 9.79796i 0.432169i
\(515\) 9.12096 0.921404i 0.401917 0.0406019i
\(516\) 0 0
\(517\) −8.00000 8.00000i −0.351840 0.351840i
\(518\) 18.2419 + 18.2419i 0.801504 + 0.801504i
\(519\) 0 0
\(520\) −6.00000 4.89898i −0.263117 0.214834i
\(521\) 22.9774i 1.00666i 0.864095 + 0.503328i \(0.167891\pi\)
−0.864095 + 0.503328i \(0.832109\pi\)
\(522\) 0 0
\(523\) 31.2474 31.2474i 1.36636 1.36636i 0.500782 0.865573i \(-0.333046\pi\)
0.865573 0.500782i \(-0.166954\pi\)
\(524\) 5.65685 0.247121
\(525\) 0 0
\(526\) 19.1010 0.832844
\(527\) 5.19615 5.19615i 0.226348 0.226348i
\(528\) 0 0
\(529\) 17.0000i 0.739130i
\(530\) −13.5065 11.0280i −0.586683 0.479025i
\(531\) 0 0
\(532\) 13.7980 + 13.7980i 0.598217 + 0.598217i
\(533\) 1.55708 + 1.55708i 0.0674445 + 0.0674445i
\(534\) 0 0
\(535\) −4.00000 + 0.404082i −0.172935 + 0.0174700i
\(536\) 2.04989i 0.0885417i
\(537\) 0 0
\(538\) 3.79796 3.79796i 0.163742 0.163742i
\(539\) −2.82843 −0.121829
\(540\) 0 0
\(541\) 14.2474 0.612546 0.306273 0.951944i \(-0.400918\pi\)
0.306273 + 0.951944i \(0.400918\pi\)
\(542\) −7.84961 + 7.84961i −0.337169 + 0.337169i
\(543\) 0 0
\(544\) 1.00000i 0.0428746i
\(545\) 18.8776 23.1202i 0.808627 0.990362i
\(546\) 0 0
\(547\) 11.7980 + 11.7980i 0.504444 + 0.504444i 0.912816 0.408372i \(-0.133903\pi\)
−0.408372 + 0.912816i \(0.633903\pi\)
\(548\) −2.68556 2.68556i −0.114722 0.114722i
\(549\) 0 0
\(550\) −7.79796 + 11.7980i −0.332506 + 0.503067i
\(551\) 19.5133i 0.831293i
\(552\) 0 0
\(553\) −12.8990 + 12.8990i −0.548520 + 0.548520i
\(554\) 25.4558 1.08152
\(555\) 0 0
\(556\) −5.79796 −0.245888
\(557\) 20.9275 20.9275i 0.886726 0.886726i −0.107482 0.994207i \(-0.534279\pi\)
0.994207 + 0.107482i \(0.0342787\pi\)
\(558\) 0 0
\(559\) 16.8990i 0.714751i
\(560\) 0.635674 + 6.29253i 0.0268622 + 0.265908i
\(561\) 0 0
\(562\) −4.79796 4.79796i −0.202390 0.202390i
\(563\) 15.4135 + 15.4135i 0.649601 + 0.649601i 0.952897 0.303296i \(-0.0980870\pi\)
−0.303296 + 0.952897i \(0.598087\pi\)
\(564\) 0 0
\(565\) 1.75255 + 17.3485i 0.0737304 + 0.729856i
\(566\) 32.3840i 1.36120i
\(567\) 0 0
\(568\) 0.449490 0.449490i 0.0188602 0.0188602i
\(569\) 15.2706 0.640178 0.320089 0.947388i \(-0.396287\pi\)
0.320089 + 0.947388i \(0.396287\pi\)
\(570\) 0 0
\(571\) 12.8990 0.539805 0.269903 0.962888i \(-0.413008\pi\)
0.269903 + 0.962888i \(0.413008\pi\)
\(572\) −6.92820 + 6.92820i −0.289683 + 0.289683i
\(573\) 0 0
\(574\) 1.79796i 0.0750454i
\(575\) 6.75323 10.2173i 0.281629 0.426092i
\(576\) 0 0
\(577\) 16.1010 + 16.1010i 0.670294 + 0.670294i 0.957784 0.287490i \(-0.0928207\pi\)
−0.287490 + 0.957784i \(0.592821\pi\)
\(578\) −0.707107 0.707107i −0.0294118 0.0294118i
\(579\) 0 0
\(580\) −4.00000 + 4.89898i −0.166091 + 0.203419i
\(581\) 11.3137i 0.469372i
\(582\) 0 0
\(583\) −15.5959 + 15.5959i −0.645917 + 0.645917i
\(584\) 4.73545 0.195954
\(585\) 0 0
\(586\) 29.5959 1.22260
\(587\) −31.6055 + 31.6055i −1.30450 + 1.30450i −0.379173 + 0.925326i \(0.623792\pi\)
−0.925326 + 0.379173i \(0.876208\pi\)
\(588\) 0 0
\(589\) 50.6969i 2.08893i
\(590\) 10.8530 1.09638i 0.446811 0.0451371i
\(591\) 0 0
\(592\) −6.44949 6.44949i −0.265072 0.265072i
\(593\) −18.5276 18.5276i −0.760839 0.760839i 0.215635 0.976474i \(-0.430818\pi\)
−0.976474 + 0.215635i \(0.930818\pi\)
\(594\) 0 0
\(595\) 4.89898 + 4.00000i 0.200839 + 0.163984i
\(596\) 11.9494i 0.489466i
\(597\) 0 0
\(598\) 6.00000 6.00000i 0.245358 0.245358i
\(599\) 24.1845 0.988152 0.494076 0.869419i \(-0.335507\pi\)
0.494076 + 0.869419i \(0.335507\pi\)
\(600\) 0 0
\(601\) 13.1010 0.534402 0.267201 0.963641i \(-0.413901\pi\)
0.267201 + 0.963641i \(0.413901\pi\)
\(602\) 9.75663 9.75663i 0.397651 0.397651i
\(603\) 0 0
\(604\) 18.6969i 0.760768i
\(605\) −5.19615 4.24264i −0.211254 0.172488i
\(606\) 0 0
\(607\) 8.44949 + 8.44949i 0.342954 + 0.342954i 0.857477 0.514523i \(-0.172031\pi\)
−0.514523 + 0.857477i \(0.672031\pi\)
\(608\) −4.87832 4.87832i −0.197842 0.197842i
\(609\) 0 0
\(610\) −11.8990 + 1.20204i −0.481776 + 0.0486692i
\(611\) 13.8564i 0.560570i
\(612\) 0 0
\(613\) −30.9444 + 30.9444i −1.24983 + 1.24983i −0.294038 + 0.955794i \(0.594999\pi\)
−0.955794 + 0.294038i \(0.905001\pi\)
\(614\) 14.6349 0.590618
\(615\) 0 0
\(616\) 8.00000 0.322329
\(617\) 23.1202 23.1202i 0.930785 0.930785i −0.0669697 0.997755i \(-0.521333\pi\)
0.997755 + 0.0669697i \(0.0213331\pi\)
\(618\) 0 0
\(619\) 4.00000i 0.160774i 0.996764 + 0.0803868i \(0.0256155\pi\)
−0.996764 + 0.0803868i \(0.974384\pi\)
\(620\) 10.3923 12.7279i 0.417365 0.511166i
\(621\) 0 0
\(622\) 17.3485 + 17.3485i 0.695610 + 0.695610i
\(623\) 24.8844 + 24.8844i 0.996972 + 0.996972i
\(624\) 0 0
\(625\) −23.0000 + 9.79796i −0.920000 + 0.391918i
\(626\) 27.3629i 1.09364i
\(627\) 0 0
\(628\) −13.3485 + 13.3485i −0.532662 + 0.532662i
\(629\) −9.12096 −0.363676
\(630\) 0 0
\(631\) 40.4949 1.61208 0.806038 0.591864i \(-0.201608\pi\)
0.806038 + 0.591864i \(0.201608\pi\)
\(632\) 4.56048 4.56048i 0.181406 0.181406i
\(633\) 0 0
\(634\) 3.55051i 0.141009i
\(635\) −1.55708 15.4135i −0.0617908 0.611665i
\(636\) 0 0
\(637\) −2.44949 2.44949i −0.0970523 0.0970523i
\(638\) 5.65685 + 5.65685i 0.223957 + 0.223957i
\(639\) 0 0
\(640\) −0.224745 2.22474i −0.00888382 0.0879408i
\(641\) 17.3205i 0.684119i 0.939678 + 0.342059i \(0.111124\pi\)
−0.939678 + 0.342059i \(0.888876\pi\)
\(642\) 0 0
\(643\) 13.5959 13.5959i 0.536171 0.536171i −0.386231 0.922402i \(-0.626223\pi\)
0.922402 + 0.386231i \(0.126223\pi\)
\(644\) −6.92820 −0.273009
\(645\) 0 0
\(646\) −6.89898 −0.271437
\(647\) 6.00680 6.00680i 0.236152 0.236152i −0.579103 0.815254i \(-0.696597\pi\)
0.815254 + 0.579103i \(0.196597\pi\)
\(648\) 0 0
\(649\) 13.7980i 0.541617i
\(650\) −16.9706 + 3.46410i −0.665640 + 0.135873i
\(651\) 0 0
\(652\) −15.7980 15.7980i −0.618696 0.618696i
\(653\) 11.3458 + 11.3458i 0.443996 + 0.443996i 0.893353 0.449356i \(-0.148347\pi\)
−0.449356 + 0.893353i \(0.648347\pi\)
\(654\) 0 0
\(655\) 8.00000 9.79796i 0.312586 0.382838i
\(656\) 0.635674i 0.0248189i
\(657\) 0 0
\(658\) −8.00000 + 8.00000i −0.311872 + 0.311872i
\(659\) 21.2774 0.828851 0.414425 0.910083i \(-0.363983\pi\)
0.414425 + 0.910083i \(0.363983\pi\)
\(660\) 0 0
\(661\) 25.5959 0.995566 0.497783 0.867302i \(-0.334148\pi\)
0.497783 + 0.867302i \(0.334148\pi\)
\(662\) 0.492810 0.492810i 0.0191536 0.0191536i
\(663\) 0 0
\(664\) 4.00000i 0.155230i
\(665\) 43.4120 4.38551i 1.68345 0.170063i
\(666\) 0 0
\(667\) −4.89898 4.89898i −0.189689 0.189689i
\(668\) 14.9528 + 14.9528i 0.578541 + 0.578541i
\(669\) 0 0
\(670\) 3.55051 + 2.89898i 0.137168 + 0.111997i
\(671\) 15.1278i 0.584001i
\(672\) 0 0
\(673\) 26.4495 26.4495i 1.01955 1.01955i 0.0197479 0.999805i \(-0.493714\pi\)
0.999805 0.0197479i \(-0.00628636\pi\)
\(674\) 17.3205 0.667161
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) 26.4094 26.4094i 1.01499 1.01499i 0.0151081 0.999886i \(-0.495191\pi\)
0.999886 0.0151081i \(-0.00480925\pi\)
\(678\) 0 0
\(679\) 25.7980i 0.990035i
\(680\) −1.73205 1.41421i −0.0664211 0.0542326i
\(681\) 0 0
\(682\) −14.6969 14.6969i −0.562775 0.562775i
\(683\) 12.5851 + 12.5851i 0.481554 + 0.481554i 0.905628 0.424074i \(-0.139400\pi\)
−0.424074 + 0.905628i \(0.639400\pi\)
\(684\) 0 0
\(685\) −8.44949 + 0.853572i −0.322838 + 0.0326133i
\(686\) 16.9706i 0.647939i
\(687\) 0 0
\(688\) −3.44949 + 3.44949i −0.131511 + 0.131511i
\(689\) −27.0129 −1.02911
\(690\) 0 0
\(691\) −9.30306 −0.353905 −0.176953 0.984219i \(-0.556624\pi\)
−0.176953 + 0.984219i \(0.556624\pi\)
\(692\) 15.0956 15.0956i 0.573850 0.573850i
\(693\) 0 0
\(694\) 11.1010i 0.421389i
\(695\) −8.19955 + 10.0424i −0.311027 + 0.380928i
\(696\) 0 0
\(697\) 0.449490 + 0.449490i 0.0170256 + 0.0170256i
\(698\) −13.9993 13.9993i −0.529880 0.529880i
\(699\) 0 0
\(700\) 11.7980 + 7.79796i 0.445921 + 0.294735i
\(701\) 26.3772i 0.996255i −0.867104 0.498127i \(-0.834021\pi\)
0.867104 0.498127i \(-0.165979\pi\)
\(702\) 0 0
\(703\) −44.4949 + 44.4949i −1.67816 + 1.67816i
\(704\) −2.82843 −0.106600
\(705\) 0 0
\(706\) −17.7980 −0.669835
\(707\) 15.6992 15.6992i 0.590430 0.590430i
\(708\) 0 0
\(709\) 35.5505i 1.33513i −0.744553 0.667564i \(-0.767337\pi\)
0.744553 0.667564i \(-0.232663\pi\)
\(710\) −0.142865 1.41421i −0.00536161 0.0530745i
\(711\) 0 0
\(712\) −8.79796 8.79796i −0.329717 0.329717i
\(713\) 12.7279 + 12.7279i 0.476664 + 0.476664i
\(714\) 0 0
\(715\) 2.20204 + 21.7980i 0.0823517 + 0.815197i
\(716\) 13.3636i 0.499421i
\(717\) 0 0
\(718\) −14.8990 + 14.8990i −0.556025 + 0.556025i
\(719\) 47.8617 1.78494 0.892471 0.451105i \(-0.148970\pi\)
0.892471 + 0.451105i \(0.148970\pi\)
\(720\) 0 0
\(721\) −11.5959 −0.431855
\(722\) −20.2204 + 20.2204i −0.752524 + 0.752524i
\(723\) 0 0
\(724\) 25.3485i 0.942068i
\(725\) 2.82843 + 13.8564i 0.105045 + 0.514614i
\(726\) 0 0
\(727\) 12.0000 + 12.0000i 0.445055 + 0.445055i 0.893707 0.448651i \(-0.148096\pi\)
−0.448651 + 0.893707i \(0.648096\pi\)
\(728\) 6.92820 + 6.92820i 0.256776 + 0.256776i
\(729\) 0 0
\(730\) 6.69694 8.20204i 0.247865 0.303571i
\(731\) 4.87832i 0.180431i
\(732\) 0 0
\(733\) 16.0454 16.0454i 0.592651 0.592651i −0.345696 0.938347i \(-0.612357\pi\)
0.938347 + 0.345696i \(0.112357\pi\)
\(734\) 5.37113 0.198252
\(735\) 0 0
\(736\) 2.44949 0.0902894
\(737\) 4.09978 4.09978i 0.151017 0.151017i
\(738\) 0 0
\(739\) 44.0000i 1.61857i −0.587419 0.809283i \(-0.699856\pi\)
0.587419 0.809283i \(-0.300144\pi\)
\(740\) −20.2918 + 2.04989i −0.745941 + 0.0753554i
\(741\) 0 0
\(742\) 15.5959 + 15.5959i 0.572544 + 0.572544i
\(743\) −7.67463 7.67463i −0.281555 0.281555i 0.552174 0.833729i \(-0.313798\pi\)
−0.833729 + 0.552174i \(0.813798\pi\)
\(744\) 0 0
\(745\) 20.6969 + 16.8990i 0.758277 + 0.619131i
\(746\) 25.8058i 0.944817i
\(747\) 0 0
\(748\) −2.00000 + 2.00000i −0.0731272 + 0.0731272i
\(749\) 5.08540 0.185816
\(750\) 0 0
\(751\) −10.0454 −0.366562 −0.183281 0.983061i \(-0.558672\pi\)
−0.183281 + 0.983061i \(0.558672\pi\)
\(752\) 2.82843 2.82843i 0.103142 0.103142i
\(753\) 0 0
\(754\) 9.79796i 0.356821i
\(755\) 32.3840 + 26.4415i 1.17858 + 0.962303i
\(756\) 0 0
\(757\) 28.0454 + 28.0454i 1.01933 + 1.01933i 0.999810 + 0.0195182i \(0.00621322\pi\)
0.0195182 + 0.999810i \(0.493787\pi\)
\(758\) −0.635674 0.635674i −0.0230887 0.0230887i
\(759\) 0 0
\(760\) −15.3485 + 1.55051i −0.556747 + 0.0562429i
\(761\) 32.2412i 1.16874i 0.811487 + 0.584371i \(0.198659\pi\)
−0.811487 + 0.584371i \(0.801341\pi\)
\(762\) 0 0
\(763\) −26.6969 + 26.6969i −0.966494 + 0.966494i
\(764\) −11.3137 −0.409316
\(765\) 0 0
\(766\) −12.4949 −0.451459
\(767\) 11.9494 11.9494i 0.431467 0.431467i
\(768\) 0 0
\(769\) 6.00000i 0.216366i 0.994131 + 0.108183i \(0.0345032\pi\)
−0.994131 + 0.108183i \(0.965497\pi\)
\(770\) 11.3137 13.8564i 0.407718 0.499350i
\(771\) 0 0
\(772\) 0.651531 + 0.651531i 0.0234491 + 0.0234491i
\(773\) 31.6055 + 31.6055i 1.13677 + 1.13677i 0.989025 + 0.147746i \(0.0472017\pi\)
0.147746 + 0.989025i \(0.452798\pi\)
\(774\) 0 0
\(775\) −7.34847 36.0000i −0.263965 1.29316i
\(776\) 9.12096i 0.327423i
\(777\) 0 0
\(778\) 14.2474 14.2474i 0.510796 0.510796i
\(779\) 4.38551 0.157127
\(780\) 0 0
\(781\) −1.79796 −0.0643360
\(782\) 1.73205 1.73205i 0.0619380 0.0619380i
\(783\) 0 0
\(784\) 1.00000i 0.0357143i
\(785\) 4.24264 + 41.9978i 0.151426 + 1.49897i
\(786\) 0 0
\(787\) 6.20204 + 6.20204i 0.221079 + 0.221079i 0.808953 0.587874i \(-0.200035\pi\)
−0.587874 + 0.808953i \(0.700035\pi\)
\(788\) −12.9029 12.9029i −0.459647 0.459647i
\(789\) 0 0
\(790\) −1.44949 14.3485i −0.0515705 0.510496i
\(791\) 22.0560i 0.784220i
\(792\) 0 0
\(793\) −13.1010 + 13.1010i −0.465231 + 0.465231i
\(794\) −6.64247 −0.235733
\(795\) 0 0
\(796\) 18.4495 0.653925
\(797\) 7.99247 7.99247i 0.283108 0.283108i −0.551239 0.834347i \(-0.685845\pi\)
0.834347 + 0.551239i \(0.185845\pi\)
\(798\) 0 0
\(799\) 4.00000i 0.141510i
\(800\) −4.17121 2.75699i −0.147474 0.0974745i
\(801\) 0 0
\(802\) 15.3485 + 15.3485i 0.541973 + 0.541973i
\(803\) −9.47090 9.47090i −0.334221 0.334221i
\(804\) 0 0
\(805\) −9.79796 + 12.0000i −0.345333 + 0.422944i
\(806\) 25.4558i 0.896644i
\(807\) 0 0
\(808\) −5.55051 + 5.55051i −0.195266 + 0.195266i
\(809\) 20.1489 0.708399 0.354199 0.935170i \(-0.384753\pi\)
0.354199 + 0.935170i \(0.384753\pi\)
\(810\) 0 0
\(811\) −1.30306 −0.0457567 −0.0228783 0.999738i \(-0.507283\pi\)
−0.0228783 + 0.999738i \(0.507283\pi\)
\(812\) 5.65685 5.65685i 0.198517 0.198517i
\(813\) 0 0
\(814\) 25.7980i 0.904218i
\(815\) −49.7046 + 5.02118i −1.74107 + 0.175884i
\(816\) 0 0
\(817\) 23.7980 + 23.7980i 0.832585 + 0.832585i
\(818\) 14.1421 + 14.1421i 0.494468 + 0.494468i
\(819\) 0 0
\(820\) 1.10102 + 0.898979i 0.0384493 + 0.0313937i
\(821\) 48.1475i 1.68036i −0.542309 0.840179i \(-0.682450\pi\)
0.542309 0.840179i \(-0.317550\pi\)
\(822\) 0 0
\(823\) −3.79796 + 3.79796i −0.132389 + 0.132389i −0.770196 0.637807i \(-0.779842\pi\)
0.637807 + 0.770196i \(0.279842\pi\)
\(824\) 4.09978 0.142822
\(825\) 0 0
\(826\) −13.7980 −0.480092
\(827\) 6.57826 6.57826i 0.228748 0.228748i −0.583421 0.812170i \(-0.698286\pi\)
0.812170 + 0.583421i \(0.198286\pi\)
\(828\) 0 0
\(829\) 6.89898i 0.239611i 0.992797 + 0.119806i \(0.0382272\pi\)
−0.992797 + 0.119806i \(0.961773\pi\)
\(830\) 6.92820 + 5.65685i 0.240481 + 0.196352i
\(831\) 0 0
\(832\) −2.44949 2.44949i −0.0849208 0.0849208i
\(833\) −0.707107 0.707107i −0.0244998 0.0244998i
\(834\) 0 0
\(835\) 47.0454 4.75255i 1.62807 0.164469i
\(836\) 19.5133i 0.674880i
\(837\) 0 0
\(838\) 18.0000 18.0000i 0.621800 0.621800i
\(839\) −55.7114 −1.92337 −0.961685 0.274158i \(-0.911601\pi\)
−0.961685 + 0.274158i \(0.911601\pi\)
\(840\) 0 0
\(841\) −21.0000 −0.724138
\(842\) −17.7491 + 17.7491i −0.611674 + 0.611674i
\(843\) 0 0
\(844\) 24.4949i 0.843149i
\(845\) 1.41421 1.73205i 0.0486504 0.0595844i
\(846\) 0 0
\(847\) 6.00000 + 6.00000i 0.206162 + 0.206162i
\(848\) −5.51399 5.51399i −0.189351 0.189351i
\(849\) 0 0
\(850\) −4.89898 + 1.00000i −0.168034 + 0.0342997i
\(851\) 22.3417i 0.765863i
\(852\) 0 0
\(853\) 8.24745 8.24745i 0.282387 0.282387i −0.551673 0.834060i \(-0.686010\pi\)
0.834060 + 0.551673i \(0.186010\pi\)
\(854\) 15.1278 0.517661
\(855\) 0 0
\(856\) −1.79796 −0.0614530
\(857\) 17.1134 17.1134i 0.584584 0.584584i −0.351576 0.936159i \(-0.614354\pi\)
0.936159 + 0.351576i \(0.114354\pi\)
\(858\) 0 0
\(859\) 16.2929i 0.555905i −0.960595 0.277953i \(-0.910344\pi\)
0.960595 0.277953i \(-0.0896558\pi\)
\(860\) 1.09638 + 10.8530i 0.0373861 + 0.370084i
\(861\) 0 0
\(862\) −11.1464 11.1464i −0.379649 0.379649i
\(863\) −37.4052 37.4052i −1.27329 1.27329i −0.944352 0.328937i \(-0.893310\pi\)
−0.328937 0.944352i \(-0.606690\pi\)
\(864\) 0 0
\(865\) −4.79796 47.4949i −0.163135 1.61487i
\(866\) 18.0990i 0.615031i
\(867\) 0 0
\(868\) −14.6969 + 14.6969i −0.498847 + 0.498847i
\(869\) −18.2419 −0.618814
\(870\) 0 0
\(871\) 7.10102 0.240609
\(872\) 9.43879 9.43879i 0.319638 0.319638i
\(873\) 0 0
\(874\) 16.8990i 0.571617i
\(875\) 30.1913 9.40669i 1.02065 0.318004i
\(876\) 0 0
\(877\) 7.34847 + 7.34847i 0.248140 + 0.248140i 0.820207 0.572067i \(-0.193858\pi\)
−0.572067 + 0.820207i \(0.693858\pi\)
\(878\) −21.5310 21.5310i −0.726637 0.726637i
\(879\) 0 0
\(880\) −4.00000 + 4.89898i −0.134840 + 0.165145i
\(881\) 11.3779i 0.383332i 0.981460 + 0.191666i \(0.0613890\pi\)
−0.981460 + 0.191666i \(0.938611\pi\)
\(882\) 0 0
\(883\) −13.0454 + 13.0454i −0.439013 + 0.439013i −0.891680 0.452667i \(-0.850473\pi\)
0.452667 + 0.891680i \(0.350473\pi\)
\(884\) −3.46410 −0.116510
\(885\) 0 0
\(886\) −4.69694 −0.157797
\(887\) 0.810647 0.810647i 0.0272189 0.0272189i −0.693366 0.720585i \(-0.743873\pi\)
0.720585 + 0.693366i \(0.243873\pi\)
\(888\) 0 0
\(889\) 19.5959i 0.657226i
\(890\) −27.6807 + 2.79632i −0.927859 + 0.0937328i
\(891\) 0 0
\(892\) −5.10102 5.10102i −0.170795 0.170795i
\(893\) −19.5133 19.5133i −0.652986 0.652986i
\(894\) 0 0
\(895\) 23.1464 + 18.8990i 0.773700 + 0.631723i
\(896\) 2.82843i 0.0944911i
\(897\) 0 0
\(898\) −10.4495 + 10.4495i −0.348704 + 0.348704i
\(899\) −20.7846 −0.693206
\(900\) 0 0
\(901\) −7.79796 −0.259788
\(902\) 1.27135 1.27135i 0.0423313 0.0423313i
\(903\) 0 0
\(904\) 7.79796i 0.259356i
\(905\) 43.9048 + 35.8481i 1.45945 + 1.19163i
\(906\) 0 0
\(907\) 12.8990 + 12.8990i 0.428304 + 0.428304i 0.888050 0.459747i \(-0.152060\pi\)
−0.459747 + 0.888050i \(0.652060\pi\)
\(908\) 11.9494 + 11.9494i 0.396554 + 0.396554i
\(909\) 0 0
\(910\) 21.7980 2.20204i 0.722595 0.0729969i
\(911\) 13.2207i 0.438022i 0.975722 + 0.219011i \(0.0702831\pi\)
−0.975722 + 0.219011i \(0.929717\pi\)
\(912\) 0 0
\(913\) 8.00000 8.00000i 0.264761 0.264761i
\(914\) 4.52837 0.149785
\(915\) 0 0
\(916\) −29.5959 −0.977877
\(917\) −11.3137 + 11.3137i −0.373612 + 0.373612i
\(918\) 0 0
\(919\) 28.8990i 0.953289i 0.879096 + 0.476645i \(0.158147\pi\)
−0.879096 + 0.476645i \(0.841853\pi\)
\(920\) 3.46410 4.24264i 0.114208 0.139876i
\(921\) 0 0
\(922\) 6.24745 + 6.24745i 0.205749 + 0.205749i
\(923\) −1.55708 1.55708i −0.0512519 0.0512519i
\(924\) 0 0
\(925\) −25.1464 + 38.0454i −0.826809 + 1.25093i
\(926\) 5.37113i 0.176506i
\(927\) 0 0
\(928\) −2.00000 + 2.00000i −0.0656532 + 0.0656532i
\(929\) 26.3772 0.865409 0.432705 0.901536i \(-0.357559\pi\)
0.432705 + 0.901536i \(0.357559\pi\)
\(930\) 0 0
\(931\) −6.89898 −0.226105
\(932\) −7.70674 + 7.70674i −0.252443 + 0.252443i
\(933\) 0 0
\(934\) 31.5959i 1.03385i
\(935\) 0.635674 + 6.29253i 0.0207888 + 0.205788i
\(936\) 0 0
\(937\) 16.7980 + 16.7980i 0.548765 + 0.548765i 0.926084 0.377318i \(-0.123154\pi\)
−0.377318 + 0.926084i \(0.623154\pi\)
\(938\) −4.09978 4.09978i −0.133862 0.133862i
\(939\) 0 0
\(940\) −0.898979 8.89898i −0.0293215 0.290253i
\(941\) 25.5201i 0.831930i −0.909381 0.415965i \(-0.863444\pi\)
0.909381 0.415965i \(-0.136556\pi\)
\(942\) 0 0
\(943\) −1.10102 + 1.10102i −0.0358542 + 0.0358542i
\(944\) 4.87832 0.158776
\(945\) 0 0
\(946\) 13.7980 0.448610
\(947\) 8.77101 8.77101i 0.285020 0.285020i −0.550087 0.835107i \(-0.685406\pi\)
0.835107 + 0.550087i \(0.185406\pi\)
\(948\) 0 0
\(949\) 16.4041i 0.532499i
\(950\) −19.0205 + 28.7771i −0.617105 + 0.933652i
\(951\) 0 0
\(952\) 2.00000 + 2.00000i 0.0648204 + 0.0648204i
\(953\) −23.8988 23.8988i −0.774157 0.774157i 0.204673 0.978830i \(-0.434387\pi\)
−0.978830 + 0.204673i \(0.934387\pi\)
\(954\) 0 0
\(955\) −16.0000 + 19.5959i −0.517748 + 0.634109i
\(956\) 26.7272i 0.864419i
\(957\) 0 0
\(958\) −20.0454 + 20.0454i −0.647638 + 0.647638i
\(959\) 10.7423 0.346885
\(960\) 0 0
\(961\) 23.0000 0.741935
\(962\) −22.3417 + 22.3417i −0.720325 + 0.720325i
\(963\) 0 0
\(964\) 17.1010i 0.550787i
\(965\) 2.04989 0.207081i 0.0659882 0.00666617i
\(966\) 0 0
\(967\) 7.59592 + 7.59592i 0.244268 + 0.244268i 0.818613 0.574345i \(-0.194743\pi\)
−0.574345 + 0.818613i \(0.694743\pi\)
\(968\) −2.12132 2.12132i −0.0681818 0.0681818i
\(969\) 0 0
\(970\) −15.7980 12.8990i −0.507242 0.414161i
\(971\) 56.7756i 1.82202i −0.412388 0.911008i \(-0.635305\pi\)
0.412388 0.911008i \(-0.364695\pi\)
\(972\) 0 0
\(973\) 11.5959 11.5959i 0.371748 0.371748i
\(974\) −13.2207 −0.423620
\(975\) 0 0
\(976\) −5.34847 −0.171200
\(977\) 18.3848 18.3848i 0.588181 0.588181i −0.348957 0.937139i \(-0.613464\pi\)
0.937139 + 0.348957i \(0.113464\pi\)
\(978\) 0 0
\(979\) 35.1918i 1.12474i
\(980\) −1.73205 1.41421i −0.0553283 0.0451754i
\(981\) 0 0
\(982\) 28.3485 + 28.3485i 0.904636 + 0.904636i
\(983\) 33.1947 + 33.1947i 1.05875 + 1.05875i 0.998163 + 0.0605832i \(0.0192960\pi\)
0.0605832 + 0.998163i \(0.480704\pi\)
\(984\) 0 0
\(985\) −40.5959 + 4.10102i −1.29349 + 0.130669i
\(986\) 2.82843i 0.0900755i
\(987\) 0 0
\(988\) −16.8990 + 16.8990i −0.537628 + 0.537628i
\(989\) −11.9494 −0.379968
\(990\) 0 0
\(991\) −55.3485 −1.75820 −0.879101 0.476635i \(-0.841856\pi\)
−0.879101 + 0.476635i \(0.841856\pi\)
\(992\) 5.19615 5.19615i 0.164978 0.164978i
\(993\) 0 0
\(994\) 1.79796i 0.0570278i
\(995\) 26.0915 31.9555i 0.827157 1.01306i
\(996\) 0 0
\(997\) −22.8990 22.8990i −0.725218 0.725218i 0.244445 0.969663i \(-0.421394\pi\)
−0.969663 + 0.244445i \(0.921394\pi\)
\(998\) 21.4203 + 21.4203i 0.678047 + 0.678047i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1530.2.m.g.647.3 yes 8
3.2 odd 2 inner 1530.2.m.g.647.2 8
5.3 odd 4 inner 1530.2.m.g.953.2 yes 8
15.8 even 4 inner 1530.2.m.g.953.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1530.2.m.g.647.2 8 3.2 odd 2 inner
1530.2.m.g.647.3 yes 8 1.1 even 1 trivial
1530.2.m.g.953.2 yes 8 5.3 odd 4 inner
1530.2.m.g.953.3 yes 8 15.8 even 4 inner