Properties

Label 153.3.i.a.50.20
Level $153$
Weight $3$
Character 153.50
Analytic conductor $4.169$
Analytic rank $0$
Dimension $68$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [153,3,Mod(50,153)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(153, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("153.50"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 153.i (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.16894804471\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(34\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 50.20
Character \(\chi\) \(=\) 153.50
Dual form 153.3.i.a.101.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.542321 - 0.313109i) q^{2} +(2.45367 - 1.72612i) q^{3} +(-1.80392 + 3.12449i) q^{4} +(-3.87159 + 6.70579i) q^{5} +(0.790215 - 1.70438i) q^{6} +(10.9773 - 6.33772i) q^{7} +4.76418i q^{8} +(3.04102 - 8.47067i) q^{9} +4.84893i q^{10} +(8.44140 + 14.6209i) q^{11} +(0.967004 + 10.7803i) q^{12} +(-4.57710 + 7.92777i) q^{13} +(3.96880 - 6.87416i) q^{14} +(2.07539 + 23.1366i) q^{15} +(-5.72399 - 9.91424i) q^{16} +(16.8414 - 2.31664i) q^{17} +(-1.00304 - 5.54600i) q^{18} -10.9564 q^{19} +(-13.9681 - 24.1935i) q^{20} +(15.9949 - 34.4988i) q^{21} +(9.15591 + 5.28617i) q^{22} +(4.67192 - 8.09201i) q^{23} +(8.22355 + 11.6897i) q^{24} +(-17.4784 - 30.2735i) q^{25} +5.73253i q^{26} +(-7.15973 - 26.0334i) q^{27} +45.7311i q^{28} +(-5.93786 - 10.2847i) q^{29} +(8.36983 + 11.8977i) q^{30} +(-35.3634 - 20.4171i) q^{31} +(-22.7121 - 13.1128i) q^{32} +(45.9499 + 21.3041i) q^{33} +(8.40810 - 6.52957i) q^{34} +98.1483i q^{35} +(20.9807 + 24.7821i) q^{36} -32.8577i q^{37} +(-5.94189 + 3.43055i) q^{38} +(2.45358 + 27.3528i) q^{39} +(-31.9476 - 18.4450i) q^{40} +(-8.44003 + 14.6186i) q^{41} +(-2.12750 - 23.7176i) q^{42} +(7.58448 + 13.1367i) q^{43} -60.9106 q^{44} +(45.0290 + 53.1874i) q^{45} -5.85129i q^{46} +(-15.6837 + 9.05501i) q^{47} +(-31.1580 - 14.4460i) q^{48} +(55.8334 - 96.7063i) q^{49} +(-18.9579 - 10.9453i) q^{50} +(37.3245 - 34.7546i) q^{51} +(-16.5135 - 28.6022i) q^{52} -21.5435i q^{53} +(-12.0342 - 11.8767i) q^{54} -130.727 q^{55} +(30.1940 + 52.2976i) q^{56} +(-26.8834 + 18.9121i) q^{57} +(-6.44046 - 3.71840i) q^{58} +(-5.02914 - 2.90357i) q^{59} +(-76.0341 - 35.2523i) q^{60} +(65.6535 - 37.9051i) q^{61} -25.5711 q^{62} +(-20.3027 - 112.258i) q^{63} +29.3689 q^{64} +(-35.4413 - 61.3862i) q^{65} +(31.5902 - 2.83368i) q^{66} +(-16.9553 + 29.3674i) q^{67} +(-23.1423 + 56.7999i) q^{68} +(-2.50441 - 27.9194i) q^{69} +(30.7311 + 53.2279i) q^{70} +32.6164 q^{71} +(40.3558 + 14.4880i) q^{72} +73.7502i q^{73} +(-10.2880 - 17.8194i) q^{74} +(-95.1421 - 44.1114i) q^{75} +(19.7645 - 34.2331i) q^{76} +(185.327 + 106.999i) q^{77} +(9.89504 + 14.0658i) q^{78} +(67.6514 - 39.0586i) q^{79} +88.6438 q^{80} +(-62.5044 - 51.5189i) q^{81} +10.5706i q^{82} +(-86.4969 + 49.9390i) q^{83} +(78.9374 + 112.209i) q^{84} +(-49.6682 + 121.904i) q^{85} +(8.22645 + 4.74955i) q^{86} +(-32.3222 - 14.9858i) q^{87} +(-69.6568 + 40.2164i) q^{88} -100.949i q^{89} +(41.0736 + 14.7457i) q^{90} +116.034i q^{91} +(16.8556 + 29.1948i) q^{92} +(-122.013 + 10.9447i) q^{93} +(-5.67041 + 9.82145i) q^{94} +(42.4187 - 73.4713i) q^{95} +(-78.3623 + 7.02920i) q^{96} +(-6.59417 + 3.80715i) q^{97} -69.9279i q^{98} +(149.520 - 27.0418i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q - 6 q^{2} + 62 q^{4} - 8 q^{9} - 2 q^{13} - 106 q^{16} - 2 q^{18} - 32 q^{19} - 28 q^{21} - 132 q^{25} + 180 q^{30} - 98 q^{33} - 27 q^{34} + 158 q^{36} - 102 q^{38} + 110 q^{42} + 58 q^{43} - 312 q^{47}+ \cdots - 18 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/153\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.542321 0.313109i 0.271161 0.156555i −0.358254 0.933624i \(-0.616628\pi\)
0.629415 + 0.777069i \(0.283295\pi\)
\(3\) 2.45367 1.72612i 0.817891 0.575373i
\(4\) −1.80392 + 3.12449i −0.450981 + 0.781122i
\(5\) −3.87159 + 6.70579i −0.774318 + 1.34116i 0.160859 + 0.986977i \(0.448574\pi\)
−0.935177 + 0.354181i \(0.884760\pi\)
\(6\) 0.790215 1.70438i 0.131702 0.284063i
\(7\) 10.9773 6.33772i 1.56818 0.905389i 0.571798 0.820394i \(-0.306246\pi\)
0.996381 0.0849943i \(-0.0270872\pi\)
\(8\) 4.76418i 0.595522i
\(9\) 3.04102 8.47067i 0.337891 0.941185i
\(10\) 4.84893i 0.484893i
\(11\) 8.44140 + 14.6209i 0.767400 + 1.32918i 0.938968 + 0.344004i \(0.111783\pi\)
−0.171568 + 0.985172i \(0.554883\pi\)
\(12\) 0.967004 + 10.7803i 0.0805836 + 0.898356i
\(13\) −4.57710 + 7.92777i −0.352085 + 0.609829i −0.986615 0.163070i \(-0.947860\pi\)
0.634530 + 0.772898i \(0.281194\pi\)
\(14\) 3.96880 6.87416i 0.283486 0.491012i
\(15\) 2.07539 + 23.1366i 0.138359 + 1.54244i
\(16\) −5.72399 9.91424i −0.357749 0.619640i
\(17\) 16.8414 2.31664i 0.990671 0.136273i
\(18\) −1.00304 5.54600i −0.0557243 0.308111i
\(19\) −10.9564 −0.576652 −0.288326 0.957532i \(-0.593099\pi\)
−0.288326 + 0.957532i \(0.593099\pi\)
\(20\) −13.9681 24.1935i −0.698406 1.20967i
\(21\) 15.9949 34.4988i 0.761663 1.64280i
\(22\) 9.15591 + 5.28617i 0.416178 + 0.240280i
\(23\) 4.67192 8.09201i 0.203127 0.351826i −0.746407 0.665489i \(-0.768223\pi\)
0.949534 + 0.313663i \(0.101556\pi\)
\(24\) 8.22355 + 11.6897i 0.342648 + 0.487072i
\(25\) −17.4784 30.2735i −0.699137 1.21094i
\(26\) 5.73253i 0.220482i
\(27\) −7.15973 26.0334i −0.265175 0.964200i
\(28\) 45.7311i 1.63325i
\(29\) −5.93786 10.2847i −0.204754 0.354644i 0.745300 0.666729i \(-0.232306\pi\)
−0.950054 + 0.312085i \(0.898973\pi\)
\(30\) 8.36983 + 11.8977i 0.278994 + 0.396589i
\(31\) −35.3634 20.4171i −1.14076 0.658616i −0.194138 0.980974i \(-0.562191\pi\)
−0.946618 + 0.322358i \(0.895524\pi\)
\(32\) −22.7121 13.1128i −0.709753 0.409776i
\(33\) 45.9499 + 21.3041i 1.39242 + 0.645579i
\(34\) 8.40810 6.52957i 0.247297 0.192046i
\(35\) 98.1483i 2.80424i
\(36\) 20.9807 + 24.7821i 0.582799 + 0.688391i
\(37\) 32.8577i 0.888046i −0.896016 0.444023i \(-0.853551\pi\)
0.896016 0.444023i \(-0.146449\pi\)
\(38\) −5.94189 + 3.43055i −0.156365 + 0.0902776i
\(39\) 2.45358 + 27.3528i 0.0629123 + 0.701353i
\(40\) −31.9476 18.4450i −0.798690 0.461124i
\(41\) −8.44003 + 14.6186i −0.205854 + 0.356550i −0.950405 0.311016i \(-0.899331\pi\)
0.744550 + 0.667566i \(0.232664\pi\)
\(42\) −2.12750 23.7176i −0.0506547 0.564704i
\(43\) 7.58448 + 13.1367i 0.176383 + 0.305505i 0.940639 0.339408i \(-0.110227\pi\)
−0.764256 + 0.644913i \(0.776894\pi\)
\(44\) −60.9106 −1.38433
\(45\) 45.0290 + 53.1874i 1.00064 + 1.18194i
\(46\) 5.85129i 0.127202i
\(47\) −15.6837 + 9.05501i −0.333696 + 0.192660i −0.657481 0.753471i \(-0.728378\pi\)
0.323785 + 0.946131i \(0.395045\pi\)
\(48\) −31.1580 14.4460i −0.649124 0.300959i
\(49\) 55.8334 96.7063i 1.13946 1.97360i
\(50\) −18.9579 10.9453i −0.379157 0.218906i
\(51\) 37.3245 34.7546i 0.731853 0.681462i
\(52\) −16.5135 28.6022i −0.317567 0.550043i
\(53\) 21.5435i 0.406481i −0.979129 0.203240i \(-0.934853\pi\)
0.979129 0.203240i \(-0.0651473\pi\)
\(54\) −12.0342 11.8767i −0.222855 0.219939i
\(55\) −130.727 −2.37685
\(56\) 30.1940 + 52.2976i 0.539179 + 0.933886i
\(57\) −26.8834 + 18.9121i −0.471639 + 0.331790i
\(58\) −6.44046 3.71840i −0.111042 0.0641103i
\(59\) −5.02914 2.90357i −0.0852396 0.0492131i 0.456774 0.889583i \(-0.349005\pi\)
−0.542014 + 0.840369i \(0.682338\pi\)
\(60\) −76.0341 35.2523i −1.26723 0.587538i
\(61\) 65.6535 37.9051i 1.07629 0.621395i 0.146395 0.989226i \(-0.453233\pi\)
0.929892 + 0.367831i \(0.119900\pi\)
\(62\) −25.5711 −0.412438
\(63\) −20.3027 112.258i −0.322265 1.78187i
\(64\) 29.3689 0.458889
\(65\) −35.4413 61.3862i −0.545251 0.944403i
\(66\) 31.5902 2.83368i 0.478639 0.0429345i
\(67\) −16.9553 + 29.3674i −0.253064 + 0.438319i −0.964368 0.264565i \(-0.914772\pi\)
0.711304 + 0.702885i \(0.248105\pi\)
\(68\) −23.1423 + 56.7999i −0.340329 + 0.835292i
\(69\) −2.50441 27.9194i −0.0362958 0.404630i
\(70\) 30.7311 + 53.2279i 0.439016 + 0.760399i
\(71\) 32.6164 0.459385 0.229693 0.973263i \(-0.426228\pi\)
0.229693 + 0.973263i \(0.426228\pi\)
\(72\) 40.3558 + 14.4880i 0.560497 + 0.201222i
\(73\) 73.7502i 1.01028i 0.863038 + 0.505138i \(0.168558\pi\)
−0.863038 + 0.505138i \(0.831442\pi\)
\(74\) −10.2880 17.8194i −0.139028 0.240803i
\(75\) −95.1421 44.1114i −1.26856 0.588153i
\(76\) 19.7645 34.2331i 0.260059 0.450436i
\(77\) 185.327 + 106.999i 2.40684 + 1.38959i
\(78\) 9.89504 + 14.0658i 0.126860 + 0.180330i
\(79\) 67.6514 39.0586i 0.856347 0.494412i −0.00644008 0.999979i \(-0.502050\pi\)
0.862787 + 0.505567i \(0.168717\pi\)
\(80\) 88.6438 1.10805
\(81\) −62.5044 51.5189i −0.771660 0.636036i
\(82\) 10.5706i 0.128910i
\(83\) −86.4969 + 49.9390i −1.04213 + 0.601675i −0.920436 0.390893i \(-0.872166\pi\)
−0.121695 + 0.992568i \(0.538833\pi\)
\(84\) 78.9374 + 112.209i 0.939731 + 1.33582i
\(85\) −49.6682 + 121.904i −0.584331 + 1.43417i
\(86\) 8.22645 + 4.74955i 0.0956564 + 0.0552273i
\(87\) −32.3222 14.9858i −0.371519 0.172250i
\(88\) −69.6568 + 40.2164i −0.791554 + 0.457004i
\(89\) 100.949i 1.13425i −0.823631 0.567127i \(-0.808055\pi\)
0.823631 0.567127i \(-0.191945\pi\)
\(90\) 41.0736 + 14.7457i 0.456374 + 0.163841i
\(91\) 116.034i 1.27509i
\(92\) 16.8556 + 29.1948i 0.183213 + 0.317334i
\(93\) −122.013 + 10.9447i −1.31196 + 0.117685i
\(94\) −5.67041 + 9.82145i −0.0603236 + 0.104483i
\(95\) 42.4187 73.4713i 0.446512 0.773382i
\(96\) −78.3623 + 7.02920i −0.816274 + 0.0732209i
\(97\) −6.59417 + 3.80715i −0.0679812 + 0.0392489i −0.533605 0.845734i \(-0.679163\pi\)
0.465624 + 0.884983i \(0.345830\pi\)
\(98\) 69.9279i 0.713550i
\(99\) 149.520 27.0418i 1.51030 0.273149i
\(100\) 126.119 1.26119
\(101\) −30.8119 + 17.7893i −0.305069 + 0.176131i −0.644718 0.764421i \(-0.723025\pi\)
0.339649 + 0.940552i \(0.389692\pi\)
\(102\) 9.35990 30.5348i 0.0917637 0.299361i
\(103\) 80.5139 139.454i 0.781688 1.35392i −0.149269 0.988797i \(-0.547692\pi\)
0.930958 0.365127i \(-0.118975\pi\)
\(104\) −37.7693 21.8061i −0.363167 0.209674i
\(105\) 169.416 + 240.824i 1.61348 + 2.29356i
\(106\) −6.74547 11.6835i −0.0636365 0.110222i
\(107\) 9.34659 0.0873513 0.0436756 0.999046i \(-0.486093\pi\)
0.0436756 + 0.999046i \(0.486093\pi\)
\(108\) 94.2567 + 24.5918i 0.872747 + 0.227702i
\(109\) 142.540i 1.30770i −0.756623 0.653851i \(-0.773152\pi\)
0.756623 0.653851i \(-0.226848\pi\)
\(110\) −70.8958 + 40.9317i −0.644508 + 0.372107i
\(111\) −56.7163 80.6220i −0.510958 0.726324i
\(112\) −125.667 72.5541i −1.12203 0.647805i
\(113\) −3.13589 + 5.43153i −0.0277513 + 0.0480666i −0.879568 0.475774i \(-0.842168\pi\)
0.851816 + 0.523841i \(0.175501\pi\)
\(114\) −8.65790 + 18.6739i −0.0759465 + 0.163806i
\(115\) 36.1755 + 62.6579i 0.314570 + 0.544851i
\(116\) 42.8458 0.369361
\(117\) 53.2345 + 62.8796i 0.454996 + 0.537433i
\(118\) −3.63654 −0.0308182
\(119\) 170.190 132.166i 1.43017 1.11064i
\(120\) −110.227 + 9.88752i −0.918559 + 0.0823960i
\(121\) −82.0146 + 142.053i −0.677806 + 1.17399i
\(122\) 23.7369 41.1135i 0.194565 0.336996i
\(123\) 4.52432 + 50.4376i 0.0367831 + 0.410062i
\(124\) 127.586 73.6618i 1.02892 0.594047i
\(125\) 77.0977 0.616782
\(126\) −46.1596 54.5228i −0.366346 0.432721i
\(127\) 15.5272 0.122261 0.0611307 0.998130i \(-0.480529\pi\)
0.0611307 + 0.998130i \(0.480529\pi\)
\(128\) 106.776 61.6470i 0.834185 0.481617i
\(129\) 41.2854 + 19.1415i 0.320042 + 0.148383i
\(130\) −38.4412 22.1940i −0.295701 0.170723i
\(131\) −80.0490 + 138.649i −0.611061 + 1.05839i 0.380001 + 0.924986i \(0.375924\pi\)
−0.991062 + 0.133403i \(0.957410\pi\)
\(132\) −149.455 + 105.139i −1.13223 + 0.796508i
\(133\) −120.271 + 69.4386i −0.904294 + 0.522095i
\(134\) 21.2354i 0.158473i
\(135\) 202.294 + 52.7790i 1.49848 + 0.390956i
\(136\) 11.0369 + 80.2355i 0.0811535 + 0.589967i
\(137\) −113.030 + 65.2577i −0.825034 + 0.476334i −0.852149 0.523298i \(-0.824701\pi\)
0.0271150 + 0.999632i \(0.491368\pi\)
\(138\) −10.1000 14.3572i −0.0731887 0.104037i
\(139\) 120.090 + 69.3341i 0.863958 + 0.498806i 0.865336 0.501193i \(-0.167105\pi\)
−0.00137798 + 0.999999i \(0.500439\pi\)
\(140\) −306.663 177.052i −2.19045 1.26466i
\(141\) −22.8527 + 49.2900i −0.162076 + 0.349575i
\(142\) 17.6886 10.2125i 0.124567 0.0719190i
\(143\) −154.549 −1.08076
\(144\) −101.387 + 18.3366i −0.704076 + 0.127338i
\(145\) 91.9559 0.634178
\(146\) 23.0919 + 39.9963i 0.158164 + 0.273947i
\(147\) −29.9298 333.661i −0.203604 2.26980i
\(148\) 102.663 + 59.2728i 0.693672 + 0.400492i
\(149\) −45.3375 26.1756i −0.304279 0.175675i 0.340085 0.940395i \(-0.389544\pi\)
−0.644363 + 0.764719i \(0.722878\pi\)
\(150\) −65.4093 + 5.86730i −0.436062 + 0.0391153i
\(151\) −30.8174 53.3773i −0.204089 0.353492i 0.745753 0.666222i \(-0.232090\pi\)
−0.949842 + 0.312730i \(0.898756\pi\)
\(152\) 52.1982i 0.343409i
\(153\) 31.5916 149.703i 0.206481 0.978451i
\(154\) 134.009 0.870188
\(155\) 273.825 158.093i 1.76662 1.01996i
\(156\) −89.8896 41.6762i −0.576215 0.267155i
\(157\) −30.0503 + 52.0487i −0.191403 + 0.331520i −0.945715 0.324996i \(-0.894637\pi\)
0.754312 + 0.656516i \(0.227970\pi\)
\(158\) 24.4592 42.3646i 0.154805 0.268130i
\(159\) −37.1866 52.8606i −0.233878 0.332457i
\(160\) 175.864 101.535i 1.09915 0.634594i
\(161\) 118.437i 0.735636i
\(162\) −50.0285 8.36908i −0.308818 0.0516610i
\(163\) 270.408i 1.65895i 0.558546 + 0.829474i \(0.311360\pi\)
−0.558546 + 0.829474i \(0.688640\pi\)
\(164\) −30.4504 52.7416i −0.185673 0.321595i
\(165\) −320.760 + 225.650i −1.94400 + 1.36757i
\(166\) −31.2727 + 54.1660i −0.188390 + 0.326301i
\(167\) −17.9365 + 31.0669i −0.107404 + 0.186029i −0.914718 0.404093i \(-0.867587\pi\)
0.807314 + 0.590122i \(0.200921\pi\)
\(168\) 164.358 + 76.2027i 0.978323 + 0.453587i
\(169\) 42.6003 + 73.7859i 0.252073 + 0.436603i
\(170\) 11.2332 + 81.6628i 0.0660776 + 0.480369i
\(171\) −33.3186 + 92.8080i −0.194846 + 0.542737i
\(172\) −54.7274 −0.318182
\(173\) 88.3600 + 153.044i 0.510752 + 0.884648i 0.999922 + 0.0124597i \(0.00396616\pi\)
−0.489171 + 0.872188i \(0.662701\pi\)
\(174\) −22.2212 + 1.99327i −0.127708 + 0.0114556i
\(175\) −383.730 221.547i −2.19274 1.26598i
\(176\) 96.6370 167.380i 0.549074 0.951024i
\(177\) −17.3518 + 1.55648i −0.0980326 + 0.00879365i
\(178\) −31.6079 54.7465i −0.177573 0.307565i
\(179\) 3.13712i 0.0175258i 0.999962 + 0.00876292i \(0.00278936\pi\)
−0.999962 + 0.00876292i \(0.997211\pi\)
\(180\) −247.412 + 44.7465i −1.37451 + 0.248591i
\(181\) 109.859i 0.606953i 0.952839 + 0.303477i \(0.0981475\pi\)
−0.952839 + 0.303477i \(0.901853\pi\)
\(182\) 36.3312 + 62.9275i 0.199622 + 0.345755i
\(183\) 95.6635 206.333i 0.522752 1.12750i
\(184\) 38.5518 + 22.2579i 0.209521 + 0.120967i
\(185\) 220.337 + 127.212i 1.19101 + 0.687630i
\(186\) −62.7432 + 44.1388i −0.337329 + 0.237306i
\(187\) 176.037 + 226.682i 0.941372 + 1.21220i
\(188\) 65.3382i 0.347544i
\(189\) −243.587 240.399i −1.28882 1.27195i
\(190\) 53.1267i 0.279614i
\(191\) −76.5270 + 44.1829i −0.400665 + 0.231324i −0.686771 0.726874i \(-0.740972\pi\)
0.286106 + 0.958198i \(0.407639\pi\)
\(192\) 72.0617 50.6943i 0.375322 0.264033i
\(193\) −270.243 156.025i −1.40022 0.808420i −0.405809 0.913958i \(-0.633010\pi\)
−0.994415 + 0.105538i \(0.966344\pi\)
\(194\) −2.38411 + 4.12940i −0.0122892 + 0.0212855i
\(195\) −192.921 89.4456i −0.989340 0.458695i
\(196\) 201.439 + 348.902i 1.02775 + 1.78011i
\(197\) −153.242 −0.777879 −0.388940 0.921263i \(-0.627159\pi\)
−0.388940 + 0.921263i \(0.627159\pi\)
\(198\) 72.6206 61.4813i 0.366771 0.310512i
\(199\) 166.292i 0.835639i −0.908530 0.417819i \(-0.862795\pi\)
0.908530 0.417819i \(-0.137205\pi\)
\(200\) 144.228 83.2704i 0.721142 0.416352i
\(201\) 9.08897 + 101.325i 0.0452188 + 0.504104i
\(202\) −11.1400 + 19.2950i −0.0551484 + 0.0955198i
\(203\) −130.363 75.2650i −0.642181 0.370764i
\(204\) 41.2597 + 179.315i 0.202253 + 0.878994i
\(205\) −65.3527 113.194i −0.318793 0.552166i
\(206\) 100.839i 0.489508i
\(207\) −54.3373 64.1823i −0.262499 0.310059i
\(208\) 104.797 0.503832
\(209\) −92.4873 160.193i −0.442523 0.766473i
\(210\) 167.282 + 77.5582i 0.796581 + 0.369325i
\(211\) 96.5019 + 55.7154i 0.457355 + 0.264054i 0.710931 0.703261i \(-0.248274\pi\)
−0.253577 + 0.967315i \(0.581607\pi\)
\(212\) 67.3124 + 38.8628i 0.317511 + 0.183315i
\(213\) 80.0299 56.2998i 0.375727 0.264318i
\(214\) 5.06885 2.92650i 0.0236862 0.0136753i
\(215\) −117.456 −0.546307
\(216\) 124.028 34.1102i 0.574203 0.157918i
\(217\) −517.591 −2.38521
\(218\) −44.6305 77.3023i −0.204727 0.354598i
\(219\) 127.302 + 180.959i 0.581286 + 0.826296i
\(220\) 235.821 408.454i 1.07191 1.85661i
\(221\) −58.7191 + 144.118i −0.265697 + 0.652119i
\(222\) −56.0020 25.9646i −0.252261 0.116958i
\(223\) −53.0210 91.8351i −0.237762 0.411817i 0.722309 0.691570i \(-0.243081\pi\)
−0.960072 + 0.279753i \(0.909747\pi\)
\(224\) −332.422 −1.48403
\(225\) −309.589 + 55.9916i −1.37595 + 0.248852i
\(226\) 3.92751i 0.0173784i
\(227\) −185.930 322.040i −0.819074 1.41868i −0.906366 0.422494i \(-0.861155\pi\)
0.0872920 0.996183i \(-0.472179\pi\)
\(228\) −10.5949 118.113i −0.0464688 0.518039i
\(229\) −134.192 + 232.428i −0.585993 + 1.01497i 0.408758 + 0.912643i \(0.365962\pi\)
−0.994751 + 0.102326i \(0.967371\pi\)
\(230\) 39.2375 + 22.6538i 0.170598 + 0.0984948i
\(231\) 639.424 57.3571i 2.76807 0.248299i
\(232\) 48.9980 28.2890i 0.211198 0.121935i
\(233\) 386.512 1.65885 0.829426 0.558617i \(-0.188668\pi\)
0.829426 + 0.558617i \(0.188668\pi\)
\(234\) 48.5584 + 17.4327i 0.207515 + 0.0744989i
\(235\) 140.229i 0.596720i
\(236\) 18.1444 10.4757i 0.0768829 0.0443884i
\(237\) 98.5747 212.611i 0.415927 0.897095i
\(238\) 50.9153 124.965i 0.213930 0.525063i
\(239\) −293.670 169.550i −1.22874 0.709416i −0.261977 0.965074i \(-0.584374\pi\)
−0.966767 + 0.255658i \(0.917708\pi\)
\(240\) 217.503 153.010i 0.906262 0.637541i
\(241\) −263.515 + 152.141i −1.09342 + 0.631289i −0.934486 0.356000i \(-0.884140\pi\)
−0.158938 + 0.987289i \(0.550807\pi\)
\(242\) 102.718i 0.424455i
\(243\) −242.293 18.5204i −0.997091 0.0762155i
\(244\) 273.512i 1.12095i
\(245\) 432.328 + 748.815i 1.76461 + 3.05639i
\(246\) 18.2461 + 25.9368i 0.0741713 + 0.105434i
\(247\) 50.1485 86.8598i 0.203030 0.351659i
\(248\) 97.2707 168.478i 0.392220 0.679346i
\(249\) −126.034 + 271.838i −0.506162 + 1.09172i
\(250\) 41.8118 24.1400i 0.167247 0.0965601i
\(251\) 265.520i 1.05785i 0.848669 + 0.528924i \(0.177404\pi\)
−0.848669 + 0.528924i \(0.822596\pi\)
\(252\) 387.373 + 139.069i 1.53719 + 0.551861i
\(253\) 157.750 0.623519
\(254\) 8.42073 4.86171i 0.0331525 0.0191406i
\(255\) 88.5517 + 384.846i 0.347261 + 1.50920i
\(256\) −20.1333 + 34.8720i −0.0786459 + 0.136219i
\(257\) 323.082 + 186.532i 1.25713 + 0.725804i 0.972516 0.232838i \(-0.0748012\pi\)
0.284614 + 0.958642i \(0.408135\pi\)
\(258\) 28.3833 2.54602i 0.110013 0.00986829i
\(259\) −208.243 360.687i −0.804026 1.39261i
\(260\) 255.734 0.983592
\(261\) −105.175 + 19.0218i −0.402970 + 0.0728803i
\(262\) 100.256i 0.382658i
\(263\) −291.372 + 168.224i −1.10788 + 0.639634i −0.938279 0.345879i \(-0.887581\pi\)
−0.169599 + 0.985513i \(0.554247\pi\)
\(264\) −101.497 + 218.914i −0.384457 + 0.829219i
\(265\) 144.466 + 83.4075i 0.545155 + 0.314745i
\(266\) −43.4837 + 75.3161i −0.163473 + 0.283143i
\(267\) −174.249 247.695i −0.652619 0.927695i
\(268\) −61.1721 105.953i −0.228254 0.395348i
\(269\) −78.2251 −0.290799 −0.145400 0.989373i \(-0.546447\pi\)
−0.145400 + 0.989373i \(0.546447\pi\)
\(270\) 126.234 34.7170i 0.467534 0.128581i
\(271\) 174.512 0.643956 0.321978 0.946747i \(-0.395652\pi\)
0.321978 + 0.946747i \(0.395652\pi\)
\(272\) −119.368 153.709i −0.438852 0.565108i
\(273\) 200.288 + 284.708i 0.733655 + 1.04289i
\(274\) −40.8656 + 70.7813i −0.149145 + 0.258326i
\(275\) 295.085 511.102i 1.07304 1.85855i
\(276\) 91.7518 + 42.5396i 0.332434 + 0.154129i
\(277\) 335.011 193.419i 1.20943 0.698263i 0.246793 0.969068i \(-0.420623\pi\)
0.962634 + 0.270805i \(0.0872898\pi\)
\(278\) 86.8366 0.312362
\(279\) −280.487 + 237.463i −1.00533 + 0.851122i
\(280\) −467.596 −1.66999
\(281\) −36.0547 + 20.8162i −0.128309 + 0.0740790i −0.562780 0.826606i \(-0.690268\pi\)
0.434472 + 0.900685i \(0.356935\pi\)
\(282\) 3.03966 + 33.8864i 0.0107789 + 0.120165i
\(283\) 439.568 + 253.785i 1.55324 + 0.896766i 0.997875 + 0.0651627i \(0.0207567\pi\)
0.555370 + 0.831603i \(0.312577\pi\)
\(284\) −58.8375 + 101.910i −0.207174 + 0.358836i
\(285\) −22.7388 253.494i −0.0797851 0.889454i
\(286\) −83.8150 + 48.3906i −0.293060 + 0.169198i
\(287\) 213.962i 0.745513i
\(288\) −180.142 + 152.510i −0.625494 + 0.529549i
\(289\) 278.266 78.0309i 0.962859 0.270003i
\(290\) 49.8696 28.7922i 0.171964 0.0992836i
\(291\) −9.60835 + 20.7238i −0.0330184 + 0.0712159i
\(292\) −230.432 133.040i −0.789150 0.455616i
\(293\) 169.676 + 97.9624i 0.579098 + 0.334343i 0.760775 0.649016i \(-0.224819\pi\)
−0.181677 + 0.983358i \(0.558152\pi\)
\(294\) −120.704 171.580i −0.410558 0.583606i
\(295\) 38.9415 22.4829i 0.132005 0.0762132i
\(296\) 156.540 0.528851
\(297\) 320.195 324.440i 1.07810 1.09239i
\(298\) −32.7833 −0.110011
\(299\) 42.7677 + 74.0759i 0.143036 + 0.247745i
\(300\) 309.455 217.697i 1.03152 0.725656i
\(301\) 166.514 + 96.1367i 0.553201 + 0.319391i
\(302\) −33.4258 19.2984i −0.110682 0.0639021i
\(303\) −44.8960 + 96.8341i −0.148171 + 0.319585i
\(304\) 62.7143 + 108.624i 0.206297 + 0.357317i
\(305\) 587.012i 1.92463i
\(306\) −29.7406 91.0787i −0.0971915 0.297643i
\(307\) −381.679 −1.24325 −0.621626 0.783314i \(-0.713528\pi\)
−0.621626 + 0.783314i \(0.713528\pi\)
\(308\) −668.632 + 386.035i −2.17088 + 1.25336i
\(309\) −43.1599 481.152i −0.139676 1.55712i
\(310\) 99.0009 171.475i 0.319358 0.553144i
\(311\) −248.756 + 430.858i −0.799858 + 1.38540i 0.119849 + 0.992792i \(0.461759\pi\)
−0.919708 + 0.392603i \(0.871575\pi\)
\(312\) −130.314 + 11.6893i −0.417672 + 0.0374657i
\(313\) 251.129 144.989i 0.802327 0.463224i −0.0419569 0.999119i \(-0.513359\pi\)
0.844284 + 0.535895i \(0.180026\pi\)
\(314\) 37.6361i 0.119860i
\(315\) 831.381 + 298.471i 2.63931 + 0.947526i
\(316\) 281.835i 0.891883i
\(317\) −135.434 234.579i −0.427237 0.739997i 0.569389 0.822068i \(-0.307180\pi\)
−0.996626 + 0.0820714i \(0.973846\pi\)
\(318\) −36.7183 17.0240i −0.115466 0.0535345i
\(319\) 100.248 173.634i 0.314256 0.544308i
\(320\) −113.704 + 196.942i −0.355326 + 0.615443i
\(321\) 22.9335 16.1333i 0.0714438 0.0502596i
\(322\) −37.0839 64.2311i −0.115167 0.199476i
\(323\) −184.521 + 25.3820i −0.571273 + 0.0785820i
\(324\) 273.724 102.358i 0.844826 0.315920i
\(325\) 320.002 0.984622
\(326\) 84.6674 + 146.648i 0.259716 + 0.449841i
\(327\) −246.041 349.746i −0.752417 1.06956i
\(328\) −69.6454 40.2098i −0.212334 0.122591i
\(329\) −114.776 + 198.798i −0.348864 + 0.604250i
\(330\) −103.302 + 222.808i −0.313037 + 0.675175i
\(331\) −112.717 195.231i −0.340533 0.589821i 0.643999 0.765027i \(-0.277274\pi\)
−0.984532 + 0.175206i \(0.943941\pi\)
\(332\) 360.345i 1.08538i
\(333\) −278.327 99.9208i −0.835815 0.300062i
\(334\) 22.4643i 0.0672584i
\(335\) −131.288 227.397i −0.391904 0.678797i
\(336\) −433.584 + 38.8930i −1.29043 + 0.115753i
\(337\) 288.134 + 166.354i 0.854996 + 0.493632i 0.862334 0.506341i \(-0.169002\pi\)
−0.00733716 + 0.999973i \(0.502336\pi\)
\(338\) 46.2061 + 26.6771i 0.136704 + 0.0789263i
\(339\) 1.68101 + 18.7401i 0.00495874 + 0.0552806i
\(340\) −291.290 375.094i −0.856736 1.10322i
\(341\) 689.395i 2.02169i
\(342\) 10.9897 + 60.7641i 0.0321335 + 0.177673i
\(343\) 794.330i 2.31583i
\(344\) −62.5856 + 36.1338i −0.181935 + 0.105040i
\(345\) 196.918 + 91.2986i 0.570777 + 0.264634i
\(346\) 95.8391 + 55.3327i 0.276992 + 0.159921i
\(347\) 30.1175 52.1651i 0.0867940 0.150332i −0.819360 0.573279i \(-0.805671\pi\)
0.906154 + 0.422947i \(0.139004\pi\)
\(348\) 105.130 73.9570i 0.302097 0.212520i
\(349\) −139.901 242.315i −0.400862 0.694313i 0.592969 0.805226i \(-0.297956\pi\)
−0.993830 + 0.110913i \(0.964623\pi\)
\(350\) −277.474 −0.792782
\(351\) 239.158 + 62.3968i 0.681361 + 0.177769i
\(352\) 442.763i 1.25785i
\(353\) −142.595 + 82.3272i −0.403951 + 0.233222i −0.688188 0.725533i \(-0.741593\pi\)
0.284236 + 0.958754i \(0.408260\pi\)
\(354\) −8.92289 + 6.27711i −0.0252059 + 0.0177320i
\(355\) −126.277 + 218.719i −0.355710 + 0.616109i
\(356\) 315.413 + 182.104i 0.885990 + 0.511527i
\(357\) 189.456 618.062i 0.530689 1.73127i
\(358\) 0.982263 + 1.70133i 0.00274375 + 0.00475232i
\(359\) 187.993i 0.523657i 0.965114 + 0.261828i \(0.0843254\pi\)
−0.965114 + 0.261828i \(0.915675\pi\)
\(360\) −253.394 + 214.526i −0.703873 + 0.595906i
\(361\) −240.957 −0.667472
\(362\) 34.3978 + 59.5787i 0.0950214 + 0.164582i
\(363\) 43.9643 + 490.119i 0.121114 + 1.35019i
\(364\) −362.546 209.316i −0.996005 0.575044i
\(365\) −494.553 285.531i −1.35494 0.782275i
\(366\) −12.7243 141.852i −0.0347658 0.387573i
\(367\) −277.801 + 160.389i −0.756952 + 0.437026i −0.828200 0.560432i \(-0.810635\pi\)
0.0712484 + 0.997459i \(0.477302\pi\)
\(368\) −106.968 −0.290674
\(369\) 98.1627 + 115.948i 0.266023 + 0.314222i
\(370\) 159.324 0.430607
\(371\) −136.537 236.488i −0.368023 0.637435i
\(372\) 185.905 400.971i 0.499745 1.07788i
\(373\) −233.696 + 404.773i −0.626530 + 1.08518i 0.361713 + 0.932289i \(0.382192\pi\)
−0.988243 + 0.152892i \(0.951141\pi\)
\(374\) 166.445 + 67.8156i 0.445039 + 0.181325i
\(375\) 189.173 133.080i 0.504460 0.354880i
\(376\) −43.1397 74.7201i −0.114733 0.198724i
\(377\) 108.713 0.288363
\(378\) −207.373 54.1042i −0.548607 0.143133i
\(379\) 169.143i 0.446287i −0.974786 0.223144i \(-0.928368\pi\)
0.974786 0.223144i \(-0.0716319\pi\)
\(380\) 153.040 + 265.073i 0.402737 + 0.697562i
\(381\) 38.0986 26.8018i 0.0999964 0.0703459i
\(382\) −27.6681 + 47.9226i −0.0724297 + 0.125452i
\(383\) 64.7447 + 37.3804i 0.169046 + 0.0975989i 0.582136 0.813091i \(-0.302217\pi\)
−0.413090 + 0.910690i \(0.635550\pi\)
\(384\) 155.583 335.569i 0.405163 0.873878i
\(385\) −1435.02 + 828.509i −3.72732 + 2.15197i
\(386\) −195.412 −0.506248
\(387\) 134.341 24.2967i 0.347135 0.0627821i
\(388\) 27.4712i 0.0708022i
\(389\) 373.746 215.782i 0.960787 0.554711i 0.0643719 0.997926i \(-0.479496\pi\)
0.896415 + 0.443215i \(0.146162\pi\)
\(390\) −132.632 + 11.8972i −0.340081 + 0.0305057i
\(391\) 59.9355 147.104i 0.153288 0.376225i
\(392\) 460.726 + 266.000i 1.17532 + 0.678573i
\(393\) 42.9107 + 478.373i 0.109188 + 1.21724i
\(394\) −83.1065 + 47.9816i −0.210930 + 0.121781i
\(395\) 604.875i 1.53133i
\(396\) −185.230 + 515.954i −0.467753 + 1.30291i
\(397\) 301.697i 0.759942i 0.924998 + 0.379971i \(0.124066\pi\)
−0.924998 + 0.379971i \(0.875934\pi\)
\(398\) −52.0676 90.1838i −0.130823 0.226592i
\(399\) −175.247 + 377.982i −0.439215 + 0.947323i
\(400\) −200.093 + 346.571i −0.500232 + 0.866427i
\(401\) 153.158 265.277i 0.381939 0.661538i −0.609400 0.792863i \(-0.708590\pi\)
0.991339 + 0.131325i \(0.0419230\pi\)
\(402\) 36.6549 + 52.1048i 0.0911814 + 0.129614i
\(403\) 323.724 186.902i 0.803285 0.463777i
\(404\) 128.362i 0.317728i
\(405\) 587.467 219.682i 1.45053 0.542424i
\(406\) −94.2647 −0.232179
\(407\) 480.410 277.365i 1.18037 0.681486i
\(408\) 165.577 + 177.821i 0.405826 + 0.435835i
\(409\) −398.853 + 690.833i −0.975190 + 1.68908i −0.295883 + 0.955224i \(0.595614\pi\)
−0.679307 + 0.733854i \(0.737719\pi\)
\(410\) −70.8843 40.9251i −0.172889 0.0998172i
\(411\) −164.695 + 355.224i −0.400718 + 0.864292i
\(412\) 290.482 + 503.130i 0.705054 + 1.22119i
\(413\) −73.6081 −0.178228
\(414\) −49.5644 17.7939i −0.119721 0.0429804i
\(415\) 773.373i 1.86355i
\(416\) 207.911 120.037i 0.499786 0.288552i
\(417\) 414.341 37.1669i 0.993623 0.0891292i
\(418\) −100.316 57.9173i −0.239990 0.138558i
\(419\) 329.737 571.121i 0.786962 1.36306i −0.140858 0.990030i \(-0.544986\pi\)
0.927820 0.373028i \(-0.121681\pi\)
\(420\) −1058.06 + 94.9097i −2.51920 + 0.225976i
\(421\) −68.8883 119.318i −0.163630 0.283416i 0.772538 0.634969i \(-0.218987\pi\)
−0.936168 + 0.351553i \(0.885654\pi\)
\(422\) 69.7800 0.165356
\(423\) 29.0074 + 160.388i 0.0685755 + 0.379168i
\(424\) 102.637 0.242068
\(425\) −364.494 469.358i −0.857633 1.10437i
\(426\) 25.7739 55.5907i 0.0605022 0.130495i
\(427\) 480.464 832.188i 1.12521 1.94892i
\(428\) −16.8605 + 29.2033i −0.0393938 + 0.0682321i
\(429\) −379.212 + 266.770i −0.883943 + 0.621840i
\(430\) −63.6989 + 36.7766i −0.148137 + 0.0855270i
\(431\) 306.231 0.710514 0.355257 0.934769i \(-0.384393\pi\)
0.355257 + 0.934769i \(0.384393\pi\)
\(432\) −217.119 + 219.998i −0.502591 + 0.509255i
\(433\) 550.337 1.27099 0.635493 0.772107i \(-0.280797\pi\)
0.635493 + 0.772107i \(0.280797\pi\)
\(434\) −280.701 + 162.063i −0.646776 + 0.373416i
\(435\) 225.630 158.727i 0.518689 0.364889i
\(436\) 445.364 + 257.131i 1.02148 + 0.589749i
\(437\) −51.1874 + 88.6592i −0.117134 + 0.202882i
\(438\) 125.698 + 58.2785i 0.286982 + 0.133056i
\(439\) −593.822 + 342.843i −1.35267 + 0.780964i −0.988623 0.150416i \(-0.951939\pi\)
−0.364047 + 0.931381i \(0.618605\pi\)
\(440\) 622.805i 1.41547i
\(441\) −649.377 767.032i −1.47251 1.73930i
\(442\) 13.2802 + 96.5440i 0.0300457 + 0.218425i
\(443\) −398.061 + 229.821i −0.898557 + 0.518782i −0.876732 0.480979i \(-0.840281\pi\)
−0.0218256 + 0.999762i \(0.506948\pi\)
\(444\) 354.215 31.7735i 0.797781 0.0715619i
\(445\) 676.940 + 390.831i 1.52121 + 0.878273i
\(446\) −57.5089 33.2028i −0.128944 0.0744456i
\(447\) −156.426 + 14.0316i −0.349946 + 0.0313906i
\(448\) 322.390 186.132i 0.719621 0.415473i
\(449\) 376.390 0.838284 0.419142 0.907921i \(-0.362331\pi\)
0.419142 + 0.907921i \(0.362331\pi\)
\(450\) −150.365 + 127.301i −0.334145 + 0.282891i
\(451\) −284.983 −0.631891
\(452\) −11.3138 19.5961i −0.0250306 0.0433543i
\(453\) −167.751 77.7758i −0.370312 0.171691i
\(454\) −201.667 116.433i −0.444201 0.256460i
\(455\) −778.097 449.235i −1.71010 0.987329i
\(456\) −90.1004 128.077i −0.197589 0.280871i
\(457\) 218.885 + 379.120i 0.478960 + 0.829583i 0.999709 0.0241267i \(-0.00768051\pi\)
−0.520749 + 0.853710i \(0.674347\pi\)
\(458\) 168.068i 0.366960i
\(459\) −180.890 421.853i −0.394096 0.919069i
\(460\) −261.032 −0.567461
\(461\) 348.000 200.918i 0.754880 0.435830i −0.0725746 0.997363i \(-0.523122\pi\)
0.827454 + 0.561533i \(0.189788\pi\)
\(462\) 328.814 231.316i 0.711719 0.500683i
\(463\) 188.028 325.675i 0.406109 0.703401i −0.588341 0.808613i \(-0.700219\pi\)
0.994450 + 0.105212i \(0.0335520\pi\)
\(464\) −67.9765 + 117.739i −0.146501 + 0.253747i
\(465\) 398.990 860.565i 0.858043 1.85068i
\(466\) 209.614 121.021i 0.449815 0.259701i
\(467\) 906.421i 1.94094i −0.241215 0.970472i \(-0.577546\pi\)
0.241215 0.970472i \(-0.422454\pi\)
\(468\) −292.498 + 52.9005i −0.624995 + 0.113035i
\(469\) 429.831i 0.916485i
\(470\) −43.9070 76.0492i −0.0934193 0.161807i
\(471\) 16.1086 + 179.581i 0.0342009 + 0.381276i
\(472\) 13.8331 23.9597i 0.0293075 0.0507621i
\(473\) −128.047 + 221.784i −0.270713 + 0.468889i
\(474\) −13.1115 146.168i −0.0276614 0.308372i
\(475\) 191.501 + 331.689i 0.403159 + 0.698292i
\(476\) 105.942 + 770.176i 0.222568 + 1.61802i
\(477\) −182.488 65.5141i −0.382574 0.137346i
\(478\) −212.351 −0.444250
\(479\) 226.867 + 392.945i 0.473626 + 0.820344i 0.999544 0.0301908i \(-0.00961149\pi\)
−0.525918 + 0.850535i \(0.676278\pi\)
\(480\) 256.251 552.696i 0.533855 1.15145i
\(481\) 260.488 + 150.393i 0.541556 + 0.312667i
\(482\) −95.2733 + 165.018i −0.197662 + 0.342361i
\(483\) −204.437 290.607i −0.423265 0.601670i
\(484\) −295.896 512.507i −0.611356 1.05890i
\(485\) 58.9589i 0.121565i
\(486\) −137.200 + 65.8203i −0.282304 + 0.135433i
\(487\) 442.969i 0.909588i −0.890597 0.454794i \(-0.849713\pi\)
0.890597 0.454794i \(-0.150287\pi\)
\(488\) 180.587 + 312.785i 0.370055 + 0.640953i
\(489\) 466.757 + 663.494i 0.954514 + 1.35684i
\(490\) 468.922 + 270.732i 0.956983 + 0.552515i
\(491\) 186.614 + 107.741i 0.380068 + 0.219433i 0.677848 0.735202i \(-0.262913\pi\)
−0.297780 + 0.954635i \(0.596246\pi\)
\(492\) −165.753 76.8495i −0.336897 0.156198i
\(493\) −123.828 159.453i −0.251172 0.323433i
\(494\) 62.8079i 0.127142i
\(495\) −397.542 + 1107.34i −0.803115 + 2.23705i
\(496\) 467.469i 0.942478i
\(497\) 358.038 206.713i 0.720399 0.415922i
\(498\) 16.7639 + 186.886i 0.0336625 + 0.375273i
\(499\) 438.298 + 253.051i 0.878352 + 0.507117i 0.870115 0.492849i \(-0.164045\pi\)
0.00823740 + 0.999966i \(0.497378\pi\)
\(500\) −139.079 + 240.891i −0.278157 + 0.481782i
\(501\) 9.61495 + 107.188i 0.0191915 + 0.213949i
\(502\) 83.1367 + 143.997i 0.165611 + 0.286847i
\(503\) −607.803 −1.20836 −0.604178 0.796849i \(-0.706499\pi\)
−0.604178 + 0.796849i \(0.706499\pi\)
\(504\) 534.816 96.7257i 1.06114 0.191916i
\(505\) 275.491i 0.545527i
\(506\) 85.5514 49.3931i 0.169074 0.0976149i
\(507\) 231.890 + 107.513i 0.457377 + 0.212057i
\(508\) −28.0099 + 48.5145i −0.0551376 + 0.0955011i
\(509\) −441.976 255.175i −0.868321 0.501326i −0.00153126 0.999999i \(-0.500487\pi\)
−0.866790 + 0.498673i \(0.833821\pi\)
\(510\) 168.522 + 180.984i 0.330436 + 0.354870i
\(511\) 467.408 + 809.575i 0.914693 + 1.58429i
\(512\) 518.392i 1.01248i
\(513\) 78.4448 + 285.232i 0.152914 + 0.556008i
\(514\) 233.619 0.454512
\(515\) 623.434 + 1079.82i 1.21055 + 2.09674i
\(516\) −134.283 + 94.4660i −0.260238 + 0.183074i
\(517\) −264.785 152.874i −0.512157 0.295694i
\(518\) −225.869 130.406i −0.436041 0.251748i
\(519\) 480.979 + 223.000i 0.926742 + 0.429672i
\(520\) 292.455 168.849i 0.562413 0.324709i
\(521\) −878.914 −1.68698 −0.843488 0.537149i \(-0.819501\pi\)
−0.843488 + 0.537149i \(0.819501\pi\)
\(522\) −51.0829 + 43.2473i −0.0978599 + 0.0828491i
\(523\) 953.748 1.82361 0.911805 0.410624i \(-0.134689\pi\)
0.911805 + 0.410624i \(0.134689\pi\)
\(524\) −288.805 500.225i −0.551154 0.954627i
\(525\) −1323.97 + 118.761i −2.52184 + 0.226212i
\(526\) −105.345 + 182.463i −0.200275 + 0.346887i
\(527\) −642.869 261.928i −1.21987 0.497018i
\(528\) −51.8028 577.503i −0.0981114 1.09376i
\(529\) 220.846 + 382.517i 0.417479 + 0.723094i
\(530\) 104.463 0.197099
\(531\) −39.8889 + 33.7703i −0.0751203 + 0.0635976i
\(532\) 501.048i 0.941819i
\(533\) −77.2617 133.821i −0.144956 0.251072i
\(534\) −172.055 79.7710i −0.322200 0.149384i
\(535\) −36.1862 + 62.6763i −0.0676377 + 0.117152i
\(536\) −139.912 80.7780i −0.261029 0.150705i
\(537\) 5.41505 + 7.69748i 0.0100839 + 0.0143342i
\(538\) −42.4231 + 24.4930i −0.0788534 + 0.0455260i
\(539\) 1885.25 3.49768
\(540\) −529.831 + 536.857i −0.981169 + 0.994179i
\(541\) 755.200i 1.39593i −0.716131 0.697966i \(-0.754089\pi\)
0.716131 0.697966i \(-0.245911\pi\)
\(542\) 94.6416 54.6414i 0.174616 0.100814i
\(543\) 189.629 + 269.557i 0.349225 + 0.496422i
\(544\) −412.881 168.223i −0.758973 0.309233i
\(545\) 955.841 + 551.855i 1.75384 + 1.01258i
\(546\) 197.765 + 91.6914i 0.362208 + 0.167933i
\(547\) 207.072 119.553i 0.378559 0.218561i −0.298632 0.954368i \(-0.596530\pi\)
0.677191 + 0.735807i \(0.263197\pi\)
\(548\) 470.880i 0.859271i
\(549\) −121.428 671.399i −0.221180 1.22295i
\(550\) 369.575i 0.671955i
\(551\) 65.0575 + 112.683i 0.118072 + 0.204506i
\(552\) 133.013 11.9315i 0.240966 0.0216150i
\(553\) 495.085 857.512i 0.895271 1.55065i
\(554\) 121.123 209.790i 0.218633 0.378683i
\(555\) 760.217 68.1924i 1.36976 0.122869i
\(556\) −433.267 + 250.147i −0.779257 + 0.449904i
\(557\) 101.467i 0.182167i 0.995843 + 0.0910835i \(0.0290330\pi\)
−0.995843 + 0.0910835i \(0.970967\pi\)
\(558\) −77.7623 + 216.605i −0.139359 + 0.388180i
\(559\) −138.860 −0.248407
\(560\) 973.066 561.800i 1.73762 1.00321i
\(561\) 823.216 + 252.342i 1.46741 + 0.449808i
\(562\) −13.0355 + 22.5781i −0.0231948 + 0.0401746i
\(563\) −781.603 451.259i −1.38828 0.801525i −0.395161 0.918612i \(-0.629311\pi\)
−0.993122 + 0.117087i \(0.962645\pi\)
\(564\) −112.782 160.319i −0.199967 0.284253i
\(565\) −24.2818 42.0573i −0.0429766 0.0744377i
\(566\) 317.850 0.561572
\(567\) −1012.64 169.401i −1.78596 0.298766i
\(568\) 155.390i 0.273574i
\(569\) 337.392 194.793i 0.592956 0.342344i −0.173309 0.984867i \(-0.555446\pi\)
0.766266 + 0.642524i \(0.222113\pi\)
\(570\) −91.7032 130.356i −0.160883 0.228694i
\(571\) −115.995 66.9697i −0.203144 0.117285i 0.394977 0.918691i \(-0.370752\pi\)
−0.598121 + 0.801406i \(0.704086\pi\)
\(572\) 278.794 482.886i 0.487402 0.844206i
\(573\) −111.507 + 240.505i −0.194602 + 0.419730i
\(574\) 66.9936 + 116.036i 0.116714 + 0.202154i
\(575\) −326.631 −0.568055
\(576\) 89.3114 248.774i 0.155055 0.431900i
\(577\) −595.553 −1.03215 −0.516077 0.856542i \(-0.672608\pi\)
−0.516077 + 0.856542i \(0.672608\pi\)
\(578\) 126.478 129.446i 0.218819 0.223954i
\(579\) −932.407 + 83.6381i −1.61037 + 0.144453i
\(580\) −165.881 + 287.315i −0.286003 + 0.495371i
\(581\) −632.999 + 1096.39i −1.08950 + 1.88707i
\(582\) 1.27801 + 14.2474i 0.00219590 + 0.0244801i
\(583\) 314.986 181.857i 0.540284 0.311933i
\(584\) −351.359 −0.601642
\(585\) −627.760 + 113.535i −1.07309 + 0.194077i
\(586\) 122.692 0.209372
\(587\) −645.818 + 372.863i −1.10020 + 0.635202i −0.936274 0.351271i \(-0.885750\pi\)
−0.163927 + 0.986472i \(0.552416\pi\)
\(588\) 1096.51 + 508.384i 1.86481 + 0.864598i
\(589\) 387.456 + 223.698i 0.657820 + 0.379792i
\(590\) 14.0792 24.3859i 0.0238631 0.0413320i
\(591\) −376.006 + 264.515i −0.636220 + 0.447571i
\(592\) −325.759 + 188.077i −0.550269 + 0.317698i
\(593\) 480.309i 0.809965i −0.914324 0.404983i \(-0.867278\pi\)
0.914324 0.404983i \(-0.132722\pi\)
\(594\) 72.0631 276.207i 0.121318 0.464995i
\(595\) 227.374 + 1652.96i 0.382141 + 2.77808i
\(596\) 163.571 94.4377i 0.274448 0.158453i
\(597\) −287.040 408.026i −0.480804 0.683461i
\(598\) 46.3877 + 26.7820i 0.0775714 + 0.0447859i
\(599\) 658.300 + 380.070i 1.09900 + 0.634507i 0.935958 0.352112i \(-0.114536\pi\)
0.163041 + 0.986619i \(0.447870\pi\)
\(600\) 210.155 453.274i 0.350258 0.755456i
\(601\) 56.5025 32.6217i 0.0940141 0.0542790i −0.452256 0.891888i \(-0.649381\pi\)
0.546270 + 0.837609i \(0.316047\pi\)
\(602\) 120.405 0.200009
\(603\) 197.200 + 232.929i 0.327032 + 0.386284i
\(604\) 222.369 0.368161
\(605\) −635.054 1099.94i −1.04968 1.81809i
\(606\) 5.97165 + 66.5726i 0.00985420 + 0.109856i
\(607\) −235.188 135.786i −0.387460 0.223700i 0.293599 0.955929i \(-0.405147\pi\)
−0.681059 + 0.732229i \(0.738480\pi\)
\(608\) 248.843 + 143.669i 0.409281 + 0.236298i
\(609\) −449.784 + 40.3462i −0.738562 + 0.0662499i
\(610\) 183.799 + 318.349i 0.301310 + 0.521884i
\(611\) 165.783i 0.271330i
\(612\) 410.756 + 368.760i 0.671171 + 0.602550i
\(613\) 348.795 0.568997 0.284499 0.958676i \(-0.408173\pi\)
0.284499 + 0.958676i \(0.408173\pi\)
\(614\) −206.992 + 119.507i −0.337121 + 0.194637i
\(615\) −355.741 164.935i −0.578440 0.268187i
\(616\) −509.760 + 882.930i −0.827533 + 1.43333i
\(617\) 528.808 915.922i 0.857063 1.48448i −0.0176549 0.999844i \(-0.505620\pi\)
0.874718 0.484632i \(-0.161047\pi\)
\(618\) −174.060 247.425i −0.281650 0.400364i
\(619\) −331.287 + 191.269i −0.535197 + 0.308996i −0.743130 0.669147i \(-0.766660\pi\)
0.207933 + 0.978143i \(0.433326\pi\)
\(620\) 1140.75i 1.83992i
\(621\) −244.112 63.6895i −0.393095 0.102560i
\(622\) 311.551i 0.500886i
\(623\) −639.784 1108.14i −1.02694 1.77871i
\(624\) 257.138 180.892i 0.412080 0.289892i
\(625\) 138.470 239.837i 0.221552 0.383739i
\(626\) 90.7949 157.261i 0.145040 0.251216i
\(627\) −503.446 233.416i −0.802944 0.372275i
\(628\) −108.417 187.784i −0.172639 0.299019i
\(629\) −76.1193 553.370i −0.121016 0.879761i
\(630\) 544.330 98.4463i 0.864016 0.156264i
\(631\) 423.245 0.670753 0.335376 0.942084i \(-0.391137\pi\)
0.335376 + 0.942084i \(0.391137\pi\)
\(632\) 186.082 + 322.304i 0.294434 + 0.509974i
\(633\) 332.955 29.8665i 0.525996 0.0471825i
\(634\) −146.898 84.8115i −0.231700 0.133772i
\(635\) −60.1149 + 104.122i −0.0946691 + 0.163972i
\(636\) 232.244 20.8326i 0.365164 0.0327557i
\(637\) 511.111 + 885.269i 0.802371 + 1.38975i
\(638\) 125.554i 0.196793i
\(639\) 99.1870 276.282i 0.155222 0.432367i
\(640\) 954.688i 1.49170i
\(641\) 493.641 + 855.012i 0.770111 + 1.33387i 0.937502 + 0.347981i \(0.113133\pi\)
−0.167391 + 0.985891i \(0.553534\pi\)
\(642\) 7.38581 15.9301i 0.0115044 0.0248133i
\(643\) −238.189 137.519i −0.370435 0.213871i 0.303214 0.952923i \(-0.401940\pi\)
−0.673648 + 0.739052i \(0.735274\pi\)
\(644\) 370.056 + 213.652i 0.574622 + 0.331758i
\(645\) −288.199 + 202.743i −0.446820 + 0.314331i
\(646\) −92.1224 + 71.5405i −0.142604 + 0.110744i
\(647\) 110.251i 0.170403i −0.996364 0.0852016i \(-0.972847\pi\)
0.996364 0.0852016i \(-0.0271534\pi\)
\(648\) 245.445 297.782i 0.378774 0.459540i
\(649\) 98.0409i 0.151065i
\(650\) 173.544 100.196i 0.266991 0.154147i
\(651\) −1270.00 + 893.425i −1.95084 + 1.37239i
\(652\) −844.888 487.797i −1.29584 0.748154i
\(653\) 239.347 414.561i 0.366534 0.634856i −0.622487 0.782630i \(-0.713878\pi\)
0.989021 + 0.147774i \(0.0472109\pi\)
\(654\) −242.942 112.637i −0.371470 0.172228i
\(655\) −619.834 1073.58i −0.946311 1.63906i
\(656\) 193.243 0.294577
\(657\) 624.713 + 224.276i 0.950857 + 0.341363i
\(658\) 143.750i 0.218465i
\(659\) −326.952 + 188.766i −0.496133 + 0.286443i −0.727115 0.686515i \(-0.759139\pi\)
0.230982 + 0.972958i \(0.425806\pi\)
\(660\) −126.413 1409.27i −0.191535 2.13525i
\(661\) −342.084 + 592.506i −0.517524 + 0.896378i 0.482268 + 0.876023i \(0.339813\pi\)
−0.999793 + 0.0203550i \(0.993520\pi\)
\(662\) −122.257 70.5852i −0.184679 0.106624i
\(663\) 104.688 + 454.976i 0.157901 + 0.686238i
\(664\) −237.918 412.087i −0.358311 0.620612i
\(665\) 1075.35i 1.61707i
\(666\) −182.229 + 32.9575i −0.273616 + 0.0494857i
\(667\) −110.965 −0.166364
\(668\) −64.7121 112.085i −0.0968744 0.167791i
\(669\) −288.615 133.813i −0.431412 0.200019i
\(670\) −142.400 82.2149i −0.212538 0.122709i
\(671\) 1108.42 + 639.944i 1.65189 + 0.953717i
\(672\) −815.654 + 573.800i −1.21377 + 0.853869i
\(673\) −448.160 + 258.746i −0.665914 + 0.384466i −0.794527 0.607229i \(-0.792281\pi\)
0.128612 + 0.991695i \(0.458948\pi\)
\(674\) 208.348 0.309122
\(675\) −662.982 + 671.773i −0.982196 + 0.995220i
\(676\) −307.391 −0.454720
\(677\) 246.745 + 427.374i 0.364468 + 0.631276i 0.988691 0.149970i \(-0.0479177\pi\)
−0.624223 + 0.781246i \(0.714584\pi\)
\(678\) 6.77936 + 9.63683i 0.00999906 + 0.0142136i
\(679\) −48.2573 + 83.5841i −0.0710711 + 0.123099i
\(680\) −580.773 236.628i −0.854078 0.347982i
\(681\) −1012.09 469.243i −1.48618 0.689050i
\(682\) −215.856 373.874i −0.316505 0.548202i
\(683\) −157.726 −0.230931 −0.115465 0.993312i \(-0.536836\pi\)
−0.115465 + 0.993312i \(0.536836\pi\)
\(684\) −229.873 271.522i −0.336072 0.396962i
\(685\) 1010.61i 1.47534i
\(686\) −248.712 430.782i −0.362554 0.627962i
\(687\) 71.9345 + 801.934i 0.104708 + 1.16730i
\(688\) 86.8270 150.389i 0.126202 0.218588i
\(689\) 170.792 + 98.6067i 0.247884 + 0.143116i
\(690\) 135.379 12.1437i 0.196202 0.0175996i
\(691\) −721.851 + 416.761i −1.04465 + 0.603127i −0.921146 0.389217i \(-0.872745\pi\)
−0.123501 + 0.992344i \(0.539412\pi\)
\(692\) −637.579 −0.921358
\(693\) 1469.93 1244.46i 2.12111 1.79575i
\(694\) 37.7203i 0.0543520i
\(695\) −929.879 + 536.866i −1.33796 + 0.772469i
\(696\) 71.3949 153.989i 0.102579 0.221248i
\(697\) −108.276 + 265.750i −0.155346 + 0.381276i
\(698\) −151.742 87.6084i −0.217396 0.125514i
\(699\) 948.375 667.167i 1.35676 0.954459i
\(700\) 1384.44 799.308i 1.97777 1.14187i
\(701\) 703.002i 1.00286i −0.865199 0.501428i \(-0.832808\pi\)
0.865199 0.501428i \(-0.167192\pi\)
\(702\) 149.237 41.0434i 0.212589 0.0584664i
\(703\) 360.002i 0.512094i
\(704\) 247.915 + 429.401i 0.352152 + 0.609945i
\(705\) −242.052 344.076i −0.343337 0.488051i
\(706\) −51.5548 + 89.2956i −0.0730238 + 0.126481i
\(707\) −225.487 + 390.555i −0.318935 + 0.552411i
\(708\) 26.4381 57.0232i 0.0373419 0.0805412i
\(709\) 753.932 435.283i 1.06337 0.613939i 0.137010 0.990570i \(-0.456251\pi\)
0.926363 + 0.376631i \(0.122918\pi\)
\(710\) 158.154i 0.222753i
\(711\) −125.123 691.831i −0.175982 0.973039i
\(712\) 480.937 0.675473
\(713\) −330.430 + 190.774i −0.463437 + 0.267565i
\(714\) −90.7751 394.509i −0.127136 0.552533i
\(715\) 598.349 1036.37i 0.836852 1.44947i
\(716\) −9.80191 5.65914i −0.0136898 0.00790382i
\(717\) −1013.23 + 90.8884i −1.41316 + 0.126762i
\(718\) 58.8623 + 101.952i 0.0819809 + 0.141995i
\(719\) −404.861 −0.563089 −0.281545 0.959548i \(-0.590847\pi\)
−0.281545 + 0.959548i \(0.590847\pi\)
\(720\) 269.567 750.872i 0.374399 1.04288i
\(721\) 2041.10i 2.83093i
\(722\) −130.676 + 75.4460i −0.180992 + 0.104496i
\(723\) −383.967 + 828.162i −0.531075 + 1.14545i
\(724\) −343.252 198.177i −0.474105 0.273725i
\(725\) −207.569 + 359.520i −0.286302 + 0.495890i
\(726\) 177.304 + 252.037i 0.244220 + 0.347158i
\(727\) −116.655 202.052i −0.160461 0.277926i 0.774573 0.632484i \(-0.217965\pi\)
−0.935034 + 0.354558i \(0.884631\pi\)
\(728\) −552.805 −0.759347
\(729\) −626.477 + 372.784i −0.859364 + 0.511364i
\(730\) −357.609 −0.489876
\(731\) 158.166 + 203.670i 0.216370 + 0.278619i
\(732\) 472.114 + 671.108i 0.644965 + 0.916814i
\(733\) −41.4135 + 71.7302i −0.0564986 + 0.0978584i −0.892891 0.450272i \(-0.851327\pi\)
0.836393 + 0.548131i \(0.184660\pi\)
\(734\) −100.438 + 173.964i −0.136837 + 0.237009i
\(735\) 2353.34 + 1091.10i 3.20182 + 1.48448i
\(736\) −212.218 + 122.524i −0.288340 + 0.166473i
\(737\) −572.505 −0.776805
\(738\) 89.5401 + 32.1454i 0.121328 + 0.0435575i
\(739\) 256.558 0.347169 0.173585 0.984819i \(-0.444465\pi\)
0.173585 + 0.984819i \(0.444465\pi\)
\(740\) −794.942 + 458.960i −1.07425 + 0.620216i
\(741\) −26.8824 299.688i −0.0362785 0.404437i
\(742\) −148.093 85.5018i −0.199587 0.115231i
\(743\) −211.289 + 365.963i −0.284373 + 0.492548i −0.972457 0.233083i \(-0.925119\pi\)
0.688084 + 0.725631i \(0.258452\pi\)
\(744\) −52.1425 581.290i −0.0700840 0.781304i
\(745\) 351.057 202.683i 0.471217 0.272057i
\(746\) 292.689i 0.392345i
\(747\) 159.978 + 884.552i 0.214161 + 1.18414i
\(748\) −1025.82 + 141.108i −1.37142 + 0.188647i
\(749\) 102.600 59.2361i 0.136982 0.0790869i
\(750\) 60.9238 131.404i 0.0812317 0.175205i
\(751\) −555.896 320.946i −0.740207 0.427359i 0.0819375 0.996637i \(-0.473889\pi\)
−0.822145 + 0.569279i \(0.807223\pi\)
\(752\) 179.547 + 103.662i 0.238759 + 0.137848i
\(753\) 458.319 + 651.499i 0.608657 + 0.865204i
\(754\) 58.9573 34.0390i 0.0781926 0.0451445i
\(755\) 477.249 0.632118
\(756\) 1190.54 327.422i 1.57478 0.433098i
\(757\) 750.494 0.991406 0.495703 0.868492i \(-0.334910\pi\)
0.495703 + 0.868492i \(0.334910\pi\)
\(758\) −52.9602 91.7298i −0.0698684 0.121016i
\(759\) 387.068 272.296i 0.509971 0.358756i
\(760\) 350.030 + 202.090i 0.460566 + 0.265908i
\(761\) 768.666 + 443.789i 1.01007 + 0.583166i 0.911213 0.411935i \(-0.135147\pi\)
0.0988601 + 0.995101i \(0.468480\pi\)
\(762\) 12.2698 26.4642i 0.0161021 0.0347300i
\(763\) −903.376 1564.69i −1.18398 2.05071i
\(764\) 318.810i 0.417291i
\(765\) 881.567 + 791.435i 1.15238 + 1.03456i
\(766\) 46.8166 0.0611183
\(767\) 46.0377 26.5799i 0.0600231 0.0346544i
\(768\) 10.7926 + 120.317i 0.0140528 + 0.156663i
\(769\) −281.200 + 487.053i −0.365670 + 0.633358i −0.988883 0.148693i \(-0.952493\pi\)
0.623214 + 0.782052i \(0.285827\pi\)
\(770\) −518.828 + 898.636i −0.673802 + 1.16706i
\(771\) 1114.71 99.9913i 1.44580 0.129690i
\(772\) 974.997 562.915i 1.26295 0.729164i
\(773\) 1383.76i 1.79011i 0.445951 + 0.895057i \(0.352866\pi\)
−0.445951 + 0.895057i \(0.647134\pi\)
\(774\) 65.2486 55.2401i 0.0843005 0.0713696i
\(775\) 1427.43i 1.84185i
\(776\) −18.1379 31.4158i −0.0233736 0.0404843i
\(777\) −1133.55 525.556i −1.45888 0.676391i
\(778\) 135.127 234.047i 0.173685 0.300831i
\(779\) 92.4723 160.167i 0.118706 0.205605i
\(780\) 627.487 441.428i 0.804471 0.565933i
\(781\) 275.328 + 476.882i 0.352532 + 0.610604i
\(782\) −13.5553 98.5440i −0.0173342 0.126015i
\(783\) −225.232 + 228.218i −0.287652 + 0.291466i
\(784\) −1278.36 −1.63056
\(785\) −232.685 403.022i −0.296414 0.513404i
\(786\) 173.055 + 245.996i 0.220171 + 0.312972i
\(787\) 553.909 + 319.799i 0.703823 + 0.406353i 0.808770 0.588125i \(-0.200134\pi\)
−0.104947 + 0.994478i \(0.533467\pi\)
\(788\) 276.438 478.804i 0.350809 0.607619i
\(789\) −424.557 + 915.709i −0.538095 + 1.16059i
\(790\) 189.392 + 328.037i 0.239737 + 0.415236i
\(791\) 79.4977i 0.100503i
\(792\) 128.832 + 712.338i 0.162667 + 0.899417i
\(793\) 693.982i 0.875135i
\(794\) 94.4641 + 163.617i 0.118972 + 0.206066i
\(795\) 498.444 44.7111i 0.626973 0.0562403i
\(796\) 519.578 + 299.978i 0.652736 + 0.376857i
\(797\) −398.507 230.078i −0.500009 0.288680i 0.228708 0.973495i \(-0.426550\pi\)
−0.728717 + 0.684815i \(0.759883\pi\)
\(798\) 23.3097 + 259.859i 0.0292101 + 0.325638i
\(799\) −243.159 + 188.833i −0.304329 + 0.236336i
\(800\) 916.767i 1.14596i
\(801\) −855.101 306.986i −1.06754 0.383254i
\(802\) 191.820i 0.239178i
\(803\) −1078.30 + 622.555i −1.34284 + 0.775286i
\(804\) −332.984 154.384i −0.414160 0.192020i
\(805\) 794.216 + 458.541i 0.986604 + 0.569616i
\(806\) 117.042 202.722i 0.145213 0.251516i
\(807\) −191.939 + 135.026i −0.237842 + 0.167318i
\(808\) −84.7513 146.794i −0.104890 0.181675i
\(809\) −258.934 −0.320066 −0.160033 0.987112i \(-0.551160\pi\)
−0.160033 + 0.987112i \(0.551160\pi\)
\(810\) 249.811 303.079i 0.308409 0.374172i
\(811\) 506.320i 0.624315i −0.950030 0.312158i \(-0.898948\pi\)
0.950030 0.312158i \(-0.101052\pi\)
\(812\) 470.329 271.545i 0.579224 0.334415i
\(813\) 428.196 301.229i 0.526686 0.370515i
\(814\) 173.691 300.842i 0.213380 0.369585i
\(815\) −1813.30 1046.91i −2.22491 1.28455i
\(816\) −558.210 171.110i −0.684081 0.209693i
\(817\) −83.0986 143.931i −0.101712 0.176170i
\(818\) 499.538i 0.610682i
\(819\) 982.882 + 352.860i 1.20010 + 0.430843i
\(820\) 471.565 0.575079
\(821\) 493.929 + 855.510i 0.601619 + 1.04203i 0.992576 + 0.121625i \(0.0388106\pi\)
−0.390958 + 0.920409i \(0.627856\pi\)
\(822\) 21.9062 + 244.213i 0.0266499 + 0.297096i
\(823\) 209.432 + 120.916i 0.254474 + 0.146921i 0.621811 0.783167i \(-0.286397\pi\)
−0.367337 + 0.930088i \(0.619730\pi\)
\(824\) 664.385 + 383.583i 0.806292 + 0.465513i
\(825\) −158.182 1763.43i −0.191736 2.13749i
\(826\) −39.9193 + 23.0474i −0.0483284 + 0.0279024i
\(827\) 640.794 0.774841 0.387421 0.921903i \(-0.373366\pi\)
0.387421 + 0.921903i \(0.373366\pi\)
\(828\) 298.557 53.9964i 0.360576 0.0652131i
\(829\) −1193.22 −1.43934 −0.719671 0.694315i \(-0.755708\pi\)
−0.719671 + 0.694315i \(0.755708\pi\)
\(830\) −242.150 419.417i −0.291748 0.505322i
\(831\) 488.144 1052.86i 0.587417 1.26698i
\(832\) −134.425 + 232.830i −0.161568 + 0.279844i
\(833\) 716.280 1758.02i 0.859880 2.11046i
\(834\) 213.069 149.890i 0.255478 0.179725i
\(835\) −138.885 240.557i −0.166330 0.288092i
\(836\) 667.361 0.798279
\(837\) −278.334 + 1066.81i −0.332537 + 1.27457i
\(838\) 412.975i 0.492810i
\(839\) 692.652 + 1199.71i 0.825569 + 1.42993i 0.901484 + 0.432813i \(0.142479\pi\)
−0.0759153 + 0.997114i \(0.524188\pi\)
\(840\) −1147.33 + 807.127i −1.36587 + 0.960865i
\(841\) 349.984 606.189i 0.416152 0.720796i
\(842\) −74.7192 43.1392i −0.0887402 0.0512342i
\(843\) −52.5352 + 113.311i −0.0623193 + 0.134414i
\(844\) −348.164 + 201.013i −0.412517 + 0.238167i
\(845\) −659.723 −0.780738
\(846\) 65.9504 + 77.8994i 0.0779555 + 0.0920797i
\(847\) 2079.14i 2.45471i
\(848\) −213.587 + 123.315i −0.251872 + 0.145418i
\(849\) 1516.62 136.043i 1.78636 0.160239i
\(850\) −344.633 140.416i −0.405451 0.165196i
\(851\) −265.885 153.509i −0.312438 0.180386i
\(852\) 31.5401 + 351.613i 0.0370190 + 0.412691i
\(853\) −65.7506 + 37.9611i −0.0770816 + 0.0445031i −0.538045 0.842916i \(-0.680837\pi\)
0.460964 + 0.887419i \(0.347504\pi\)
\(854\) 601.751i 0.704626i
\(855\) −493.355 582.742i −0.577023 0.681570i
\(856\) 44.5288i 0.0520196i
\(857\) 147.012 + 254.633i 0.171543 + 0.297121i 0.938959 0.344028i \(-0.111791\pi\)
−0.767417 + 0.641149i \(0.778458\pi\)
\(858\) −122.127 + 263.410i −0.142339 + 0.307004i
\(859\) 33.7179 58.4010i 0.0392525 0.0679872i −0.845732 0.533608i \(-0.820836\pi\)
0.884984 + 0.465621i \(0.154169\pi\)
\(860\) 211.882 366.990i 0.246374 0.426733i
\(861\) 369.324 + 524.993i 0.428948 + 0.609748i
\(862\) 166.076 95.8840i 0.192663 0.111234i
\(863\) 885.719i 1.02633i 0.858291 + 0.513163i \(0.171526\pi\)
−0.858291 + 0.513163i \(0.828474\pi\)
\(864\) −178.759 + 685.157i −0.206897 + 0.793006i
\(865\) −1368.38 −1.58194
\(866\) 298.460 172.316i 0.344642 0.198979i
\(867\) 548.084 671.783i 0.632161 0.774837i
\(868\) 933.696 1617.21i 1.07569 1.86314i
\(869\) 1142.15 + 659.418i 1.31432 + 0.758824i
\(870\) 72.6649 156.728i 0.0835228 0.180147i
\(871\) −155.212 268.835i −0.178200 0.308651i
\(872\) 679.084 0.778766
\(873\) 12.1961 + 67.4347i 0.0139703 + 0.0772447i
\(874\) 64.1091i 0.0733513i
\(875\) 846.322 488.624i 0.967225 0.558427i
\(876\) −795.047 + 71.3167i −0.907587 + 0.0814118i
\(877\) −453.960 262.094i −0.517628 0.298853i 0.218335 0.975874i \(-0.429937\pi\)
−0.735964 + 0.677021i \(0.763271\pi\)
\(878\) −214.695 + 371.863i −0.244527 + 0.423534i
\(879\) 585.424 52.5133i 0.666011 0.0597421i
\(880\) 748.278 + 1296.06i 0.850316 + 1.47279i
\(881\) 417.401 0.473781 0.236891 0.971536i \(-0.423872\pi\)
0.236891 + 0.971536i \(0.423872\pi\)
\(882\) −592.336 212.652i −0.671583 0.241102i
\(883\) −916.666 −1.03813 −0.519063 0.854736i \(-0.673719\pi\)
−0.519063 + 0.854736i \(0.673719\pi\)
\(884\) −344.372 443.446i −0.389561 0.501636i
\(885\) 56.7415 122.383i 0.0641147 0.138286i
\(886\) −143.918 + 249.273i −0.162436 + 0.281347i
\(887\) 489.915 848.557i 0.552328 0.956660i −0.445778 0.895143i \(-0.647073\pi\)
0.998106 0.0615166i \(-0.0195937\pi\)
\(888\) 384.098 270.207i 0.432542 0.304287i
\(889\) 170.446 98.4070i 0.191728 0.110694i
\(890\) 489.492 0.549991
\(891\) 225.630 1348.77i 0.253232 1.51377i
\(892\) 382.584 0.428906
\(893\) 171.837 99.2102i 0.192427 0.111098i
\(894\) −80.4396 + 56.5880i −0.0899771 + 0.0632975i
\(895\) −21.0369 12.1457i −0.0235049 0.0135706i
\(896\) 781.403 1353.43i 0.872102 1.51052i
\(897\) 232.802 + 107.936i 0.259534 + 0.120330i
\(898\) 204.124 117.851i 0.227310 0.131237i
\(899\) 484.935i 0.539416i
\(900\) 383.530 1068.31i 0.426145 1.18701i
\(901\) −49.9084 362.823i −0.0553922 0.402689i
\(902\) −154.552 + 89.2307i −0.171344 + 0.0989254i
\(903\) 574.513 51.5346i 0.636227 0.0570704i
\(904\) −25.8768 14.9400i −0.0286248 0.0165265i
\(905\) −736.689 425.327i −0.814021 0.469975i
\(906\) −115.327 + 10.3450i −0.127293 + 0.0114183i
\(907\) 203.562 117.527i 0.224435 0.129577i −0.383567 0.923513i \(-0.625305\pi\)
0.608002 + 0.793935i \(0.291971\pi\)
\(908\) 1341.61 1.47755
\(909\) 56.9874 + 315.095i 0.0626924 + 0.346639i
\(910\) −562.638 −0.618284
\(911\) −744.537 1289.58i −0.817275 1.41556i −0.907683 0.419657i \(-0.862150\pi\)
0.0904082 0.995905i \(-0.471183\pi\)
\(912\) 341.379 + 158.276i 0.374319 + 0.173548i
\(913\) −1460.31 843.110i −1.59946 0.923450i
\(914\) 237.412 + 137.070i 0.259750 + 0.149967i
\(915\) 1013.25 + 1440.33i 1.10738 + 1.57414i
\(916\) −484.146 838.565i −0.528543 0.915464i
\(917\) 2029.31i 2.21299i
\(918\) −230.187 172.142i −0.250748 0.187518i
\(919\) 1002.45 1.09081 0.545404 0.838174i \(-0.316376\pi\)
0.545404 + 0.838174i \(0.316376\pi\)
\(920\) −298.513 + 172.347i −0.324471 + 0.187333i
\(921\) −936.514 + 658.823i −1.01685 + 0.715335i
\(922\) 125.818 217.924i 0.136462 0.236360i
\(923\) −149.288 + 258.575i −0.161743 + 0.280146i
\(924\) −974.261 + 2101.34i −1.05439 + 2.27418i
\(925\) −994.718 + 574.301i −1.07537 + 0.620866i
\(926\) 235.494i 0.254313i
\(927\) −936.426 1106.09i −1.01017 1.19319i
\(928\) 311.449i 0.335613i
\(929\) −567.885 983.606i −0.611286 1.05878i −0.991024 0.133685i \(-0.957319\pi\)
0.379737 0.925094i \(-0.376014\pi\)
\(930\) −53.0700 591.630i −0.0570645 0.636161i
\(931\) −611.733 + 1059.55i −0.657071 + 1.13808i
\(932\) −697.239 + 1207.65i −0.748111 + 1.29577i
\(933\) 133.347 + 1486.57i 0.142923 + 1.59332i
\(934\) −283.809 491.571i −0.303864 0.526308i
\(935\) −2201.62 + 302.846i −2.35467 + 0.323900i
\(936\) −299.570 + 253.619i −0.320053 + 0.270960i
\(937\) −1088.25 −1.16142 −0.580709 0.814111i \(-0.697225\pi\)
−0.580709 + 0.814111i \(0.697225\pi\)
\(938\) 134.584 + 233.107i 0.143480 + 0.248515i
\(939\) 365.918 789.234i 0.389690 0.840505i
\(940\) 438.144 + 252.963i 0.466111 + 0.269109i
\(941\) −269.063 + 466.031i −0.285933 + 0.495251i −0.972835 0.231499i \(-0.925637\pi\)
0.686902 + 0.726750i \(0.258970\pi\)
\(942\) 64.9645 + 92.3467i 0.0689644 + 0.0980326i
\(943\) 78.8623 + 136.594i 0.0836292 + 0.144850i
\(944\) 66.4801i 0.0704238i
\(945\) 2555.13 702.715i 2.70384 0.743614i
\(946\) 160.371i 0.169526i
\(947\) 334.288 + 579.004i 0.352997 + 0.611409i 0.986773 0.162108i \(-0.0518292\pi\)
−0.633776 + 0.773517i \(0.718496\pi\)
\(948\) 486.481 + 691.531i 0.513166 + 0.729463i
\(949\) −584.675 337.562i −0.616096 0.355703i
\(950\) 207.710 + 119.921i 0.218642 + 0.126233i
\(951\) −737.223 341.804i −0.775208 0.359416i
\(952\) 629.665 + 810.817i 0.661413 + 0.851699i
\(953\) 355.805i 0.373353i 0.982421 + 0.186676i \(0.0597716\pi\)
−0.982421 + 0.186676i \(0.940228\pi\)
\(954\) −119.480 + 21.6089i −0.125241 + 0.0226508i
\(955\) 684.232i 0.716473i
\(956\) 1059.52 611.712i 1.10828 0.639866i
\(957\) −53.7383 599.081i −0.0561529 0.625999i
\(958\) 246.070 + 142.068i 0.256858 + 0.148297i
\(959\) −827.171 + 1432.70i −0.862535 + 1.49395i
\(960\) 60.9519 + 679.499i 0.0634916 + 0.707811i
\(961\) 353.215 + 611.786i 0.367549 + 0.636614i
\(962\) 188.358 0.195798
\(963\) 28.4231 79.1718i 0.0295152 0.0822138i
\(964\) 1097.80i 1.13880i
\(965\) 2092.54 1208.13i 2.16844 1.25195i
\(966\) −201.862 93.5910i −0.208967 0.0968851i
\(967\) −318.302 + 551.315i −0.329164 + 0.570129i −0.982346 0.187072i \(-0.940100\pi\)
0.653182 + 0.757201i \(0.273434\pi\)
\(968\) −676.768 390.732i −0.699140 0.403649i
\(969\) −408.942 + 380.785i −0.422025 + 0.392967i
\(970\) −18.4606 31.9747i −0.0190315 0.0329636i
\(971\) 1713.07i 1.76423i −0.471032 0.882116i \(-0.656119\pi\)
0.471032 0.882116i \(-0.343881\pi\)
\(972\) 494.945 723.633i 0.509203 0.744479i
\(973\) 1757.68 1.80645
\(974\) −138.698 240.232i −0.142400 0.246644i
\(975\) 785.181 552.362i 0.805313 0.566525i
\(976\) −751.600 433.937i −0.770082 0.444607i
\(977\) −167.944 96.9625i −0.171898 0.0992451i 0.411583 0.911372i \(-0.364976\pi\)
−0.583480 + 0.812127i \(0.698309\pi\)
\(978\) 460.879 + 213.681i 0.471246 + 0.218487i
\(979\) 1475.96 852.147i 1.50762 0.870426i
\(980\) −3119.55 −3.18322
\(981\) −1207.41 433.466i −1.23079 0.441861i
\(982\) 134.939 0.137413
\(983\) 284.702 + 493.119i 0.289626 + 0.501647i 0.973720 0.227747i \(-0.0731358\pi\)
−0.684095 + 0.729393i \(0.739802\pi\)
\(984\) −240.294 + 21.5547i −0.244201 + 0.0219052i
\(985\) 593.291 1027.61i 0.602326 1.04326i
\(986\) −117.081 47.7029i −0.118743 0.0483802i
\(987\) 61.5264 + 685.903i 0.0623368 + 0.694937i
\(988\) 180.928 + 313.377i 0.183126 + 0.317183i
\(989\) 141.736 0.143313
\(990\) 131.124 + 725.009i 0.132448 + 0.732333i
\(991\) 1077.67i 1.08746i 0.839261 + 0.543729i \(0.182988\pi\)
−0.839261 + 0.543729i \(0.817012\pi\)
\(992\) 535.452 + 927.429i 0.539770 + 0.934908i
\(993\) −613.561 284.470i −0.617886 0.286475i
\(994\) 129.448 224.210i 0.130229 0.225564i
\(995\) 1115.12 + 643.815i 1.12072 + 0.647050i
\(996\) −621.998 884.168i −0.624496 0.887719i
\(997\) 456.054 263.303i 0.457426 0.264095i −0.253535 0.967326i \(-0.581593\pi\)
0.710962 + 0.703231i \(0.248260\pi\)
\(998\) 316.931 0.317566
\(999\) −855.397 + 235.252i −0.856254 + 0.235488i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.3.i.a.50.20 yes 68
3.2 odd 2 459.3.i.a.152.16 68
9.2 odd 6 inner 153.3.i.a.101.19 yes 68
9.7 even 3 459.3.i.a.305.15 68
17.16 even 2 inner 153.3.i.a.50.19 68
51.50 odd 2 459.3.i.a.152.15 68
153.16 even 6 459.3.i.a.305.16 68
153.101 odd 6 inner 153.3.i.a.101.20 yes 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.3.i.a.50.19 68 17.16 even 2 inner
153.3.i.a.50.20 yes 68 1.1 even 1 trivial
153.3.i.a.101.19 yes 68 9.2 odd 6 inner
153.3.i.a.101.20 yes 68 153.101 odd 6 inner
459.3.i.a.152.15 68 51.50 odd 2
459.3.i.a.152.16 68 3.2 odd 2
459.3.i.a.305.15 68 9.7 even 3
459.3.i.a.305.16 68 153.16 even 6