Properties

Label 1520.1.bu
Level $1520$
Weight $1$
Character orbit 1520.bu
Rep. character $\chi_{1520}(159,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $4$
Newform subspaces $2$
Sturm bound $240$
Trace bound $19$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1520 = 2^{4} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1520.bu (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 380 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(240\)
Trace bound: \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1520, [\chi])\).

Total New Old
Modular forms 28 4 24
Cusp forms 4 4 0
Eisenstein series 24 0 24

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q + 2 q^{5} + 2 q^{9} - 2 q^{25} + 2 q^{29} + 4 q^{41} + 4 q^{45} - 4 q^{49} - 2 q^{61} - 2 q^{81} + 2 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(1520, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1520.1.bu.a 1520.bu 380.p $2$ $0.759$ \(\Q(\sqrt{-3}) \) $D_{6}$ None \(\Q(\sqrt{5}) \) 1520.1.bu.a \(0\) \(0\) \(1\) \(0\) \(q+\zeta_{6}q^{5}-\zeta_{6}^{2}q^{9}+(\zeta_{6}+\zeta_{6}^{2})q^{11}+\cdots\)
1520.1.bu.b 1520.bu 380.p $2$ $0.759$ \(\Q(\sqrt{-3}) \) $D_{6}$ None \(\Q(\sqrt{5}) \) 1520.1.bu.a \(0\) \(0\) \(1\) \(0\) \(q+\zeta_{6}q^{5}-\zeta_{6}^{2}q^{9}+(-\zeta_{6}-\zeta_{6}^{2})q^{11}+\cdots\)