Properties

Label 152.1
Level 152
Weight 1
Dimension 10
Nonzero newspaces 3
Newform subspaces 4
Sturm bound 1440
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 4 \)
Sturm bound: \(1440\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(152))\).

Total New Old
Modular forms 120 44 76
Cusp forms 12 10 2
Eisenstein series 108 34 74

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 10 0 0 0

Trace form

\( 10 q - q^{2} - 2 q^{3} + q^{4} - 4 q^{6} - 2 q^{7} - q^{8} - 3 q^{9} - 2 q^{11} - 2 q^{12} + q^{16} - 4 q^{17} + 6 q^{18} - q^{19} + 7 q^{22} - 2 q^{23} - 4 q^{24} + q^{25} - 2 q^{26} + 5 q^{27} - 2 q^{28}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(152))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
152.1.d \(\chi_{152}(39, \cdot)\) None 0 1
152.1.e \(\chi_{152}(113, \cdot)\) None 0 1
152.1.f \(\chi_{152}(115, \cdot)\) None 0 1
152.1.g \(\chi_{152}(37, \cdot)\) 152.1.g.a 1 1
152.1.g.b 1
152.1.k \(\chi_{152}(11, \cdot)\) 152.1.k.a 2 2
152.1.l \(\chi_{152}(69, \cdot)\) None 0 2
152.1.m \(\chi_{152}(7, \cdot)\) None 0 2
152.1.n \(\chi_{152}(65, \cdot)\) None 0 2
152.1.r \(\chi_{152}(33, \cdot)\) None 0 6
152.1.s \(\chi_{152}(13, \cdot)\) None 0 6
152.1.u \(\chi_{152}(35, \cdot)\) 152.1.u.a 6 6
152.1.x \(\chi_{152}(23, \cdot)\) None 0 6

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(152))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(152)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(76))\)\(^{\oplus 2}\)