Properties

Label 1519.4.a.h.1.15
Level $1519$
Weight $4$
Character 1519.1
Self dual yes
Analytic conductor $89.624$
Analytic rank $1$
Dimension $23$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1519,4,Mod(1,1519)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1519, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1519.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1519 = 7^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1519.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [23,5,-6,91,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.6239012987\)
Analytic rank: \(1\)
Dimension: \(23\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.15
Character \(\chi\) \(=\) 1519.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.28627 q^{2} +10.2631 q^{3} -6.34552 q^{4} -1.02970 q^{5} +13.2010 q^{6} -18.4521 q^{8} +78.3306 q^{9} -1.32447 q^{10} -54.1330 q^{11} -65.1246 q^{12} +43.3374 q^{13} -10.5679 q^{15} +27.0298 q^{16} -111.884 q^{17} +100.754 q^{18} +8.45276 q^{19} +6.53399 q^{20} -69.6294 q^{22} -172.189 q^{23} -189.376 q^{24} -123.940 q^{25} +55.7434 q^{26} +526.810 q^{27} -45.3527 q^{29} -13.5931 q^{30} -31.0000 q^{31} +182.385 q^{32} -555.571 q^{33} -143.913 q^{34} -497.049 q^{36} -72.9027 q^{37} +10.8725 q^{38} +444.775 q^{39} +19.0002 q^{40} -121.635 q^{41} -391.185 q^{43} +343.502 q^{44} -80.6571 q^{45} -221.480 q^{46} +329.593 q^{47} +277.409 q^{48} -159.419 q^{50} -1148.27 q^{51} -274.999 q^{52} -706.357 q^{53} +677.617 q^{54} +55.7408 q^{55} +86.7513 q^{57} -58.3357 q^{58} +629.715 q^{59} +67.0588 q^{60} +479.489 q^{61} -39.8742 q^{62} +18.3564 q^{64} -44.6246 q^{65} -714.611 q^{66} -650.441 q^{67} +709.963 q^{68} -1767.18 q^{69} -885.987 q^{71} -1445.37 q^{72} +804.668 q^{73} -93.7722 q^{74} -1272.00 q^{75} -53.6372 q^{76} +572.099 q^{78} +554.343 q^{79} -27.8326 q^{80} +3291.76 q^{81} -156.455 q^{82} +83.8433 q^{83} +115.207 q^{85} -503.168 q^{86} -465.458 q^{87} +998.870 q^{88} -204.101 q^{89} -103.746 q^{90} +1092.63 q^{92} -318.155 q^{93} +423.945 q^{94} -8.70382 q^{95} +1871.83 q^{96} +360.853 q^{97} -4240.27 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 23 q + 5 q^{2} - 6 q^{3} + 91 q^{4} - 40 q^{5} - 36 q^{6} + 39 q^{8} + 211 q^{9} - 40 q^{10} + 44 q^{11} - 414 q^{12} + 20 q^{13} + 523 q^{16} - 306 q^{17} + 51 q^{18} - 296 q^{19} - 400 q^{20} - 326 q^{22}+ \cdots - 3456 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.28627 0.454763 0.227382 0.973806i \(-0.426984\pi\)
0.227382 + 0.973806i \(0.426984\pi\)
\(3\) 10.2631 1.97513 0.987565 0.157214i \(-0.0502513\pi\)
0.987565 + 0.157214i \(0.0502513\pi\)
\(4\) −6.34552 −0.793190
\(5\) −1.02970 −0.0920992 −0.0460496 0.998939i \(-0.514663\pi\)
−0.0460496 + 0.998939i \(0.514663\pi\)
\(6\) 13.2010 0.898216
\(7\) 0 0
\(8\) −18.4521 −0.815477
\(9\) 78.3306 2.90113
\(10\) −1.32447 −0.0418834
\(11\) −54.1330 −1.48379 −0.741896 0.670515i \(-0.766073\pi\)
−0.741896 + 0.670515i \(0.766073\pi\)
\(12\) −65.1246 −1.56665
\(13\) 43.3374 0.924588 0.462294 0.886727i \(-0.347026\pi\)
0.462294 + 0.886727i \(0.347026\pi\)
\(14\) 0 0
\(15\) −10.5679 −0.181908
\(16\) 27.0298 0.422341
\(17\) −111.884 −1.59623 −0.798114 0.602507i \(-0.794169\pi\)
−0.798114 + 0.602507i \(0.794169\pi\)
\(18\) 100.754 1.31933
\(19\) 8.45276 0.102063 0.0510315 0.998697i \(-0.483749\pi\)
0.0510315 + 0.998697i \(0.483749\pi\)
\(20\) 6.53399 0.0730522
\(21\) 0 0
\(22\) −69.6294 −0.674774
\(23\) −172.189 −1.56104 −0.780518 0.625134i \(-0.785045\pi\)
−0.780518 + 0.625134i \(0.785045\pi\)
\(24\) −189.376 −1.61067
\(25\) −123.940 −0.991518
\(26\) 55.7434 0.420469
\(27\) 526.810 3.75499
\(28\) 0 0
\(29\) −45.3527 −0.290407 −0.145203 0.989402i \(-0.546384\pi\)
−0.145203 + 0.989402i \(0.546384\pi\)
\(30\) −13.5931 −0.0827250
\(31\) −31.0000 −0.179605
\(32\) 182.385 1.00754
\(33\) −555.571 −2.93068
\(34\) −143.913 −0.725906
\(35\) 0 0
\(36\) −497.049 −2.30115
\(37\) −72.9027 −0.323923 −0.161961 0.986797i \(-0.551782\pi\)
−0.161961 + 0.986797i \(0.551782\pi\)
\(38\) 10.8725 0.0464145
\(39\) 444.775 1.82618
\(40\) 19.0002 0.0751048
\(41\) −121.635 −0.463322 −0.231661 0.972797i \(-0.574416\pi\)
−0.231661 + 0.972797i \(0.574416\pi\)
\(42\) 0 0
\(43\) −391.185 −1.38733 −0.693665 0.720298i \(-0.744005\pi\)
−0.693665 + 0.720298i \(0.744005\pi\)
\(44\) 343.502 1.17693
\(45\) −80.6571 −0.267192
\(46\) −221.480 −0.709902
\(47\) 329.593 1.02290 0.511448 0.859314i \(-0.329109\pi\)
0.511448 + 0.859314i \(0.329109\pi\)
\(48\) 277.409 0.834178
\(49\) 0 0
\(50\) −159.419 −0.450906
\(51\) −1148.27 −3.15276
\(52\) −274.999 −0.733374
\(53\) −706.357 −1.83067 −0.915335 0.402693i \(-0.868074\pi\)
−0.915335 + 0.402693i \(0.868074\pi\)
\(54\) 677.617 1.70763
\(55\) 55.7408 0.136656
\(56\) 0 0
\(57\) 86.7513 0.201588
\(58\) −58.3357 −0.132066
\(59\) 629.715 1.38952 0.694762 0.719240i \(-0.255510\pi\)
0.694762 + 0.719240i \(0.255510\pi\)
\(60\) 67.0588 0.144288
\(61\) 479.489 1.00643 0.503216 0.864161i \(-0.332150\pi\)
0.503216 + 0.864161i \(0.332150\pi\)
\(62\) −39.8742 −0.0816779
\(63\) 0 0
\(64\) 18.3564 0.0358523
\(65\) −44.6246 −0.0851538
\(66\) −714.611 −1.33277
\(67\) −650.441 −1.18603 −0.593015 0.805191i \(-0.702063\pi\)
−0.593015 + 0.805191i \(0.702063\pi\)
\(68\) 709.963 1.26611
\(69\) −1767.18 −3.08325
\(70\) 0 0
\(71\) −885.987 −1.48095 −0.740474 0.672085i \(-0.765399\pi\)
−0.740474 + 0.672085i \(0.765399\pi\)
\(72\) −1445.37 −2.36581
\(73\) 804.668 1.29013 0.645064 0.764129i \(-0.276831\pi\)
0.645064 + 0.764129i \(0.276831\pi\)
\(74\) −93.7722 −0.147308
\(75\) −1272.00 −1.95838
\(76\) −53.6372 −0.0809554
\(77\) 0 0
\(78\) 572.099 0.830480
\(79\) 554.343 0.789475 0.394737 0.918794i \(-0.370836\pi\)
0.394737 + 0.918794i \(0.370836\pi\)
\(80\) −27.8326 −0.0388973
\(81\) 3291.76 4.51545
\(82\) −156.455 −0.210702
\(83\) 83.8433 0.110880 0.0554398 0.998462i \(-0.482344\pi\)
0.0554398 + 0.998462i \(0.482344\pi\)
\(84\) 0 0
\(85\) 115.207 0.147011
\(86\) −503.168 −0.630907
\(87\) −465.458 −0.573591
\(88\) 998.870 1.21000
\(89\) −204.101 −0.243086 −0.121543 0.992586i \(-0.538784\pi\)
−0.121543 + 0.992586i \(0.538784\pi\)
\(90\) −103.746 −0.121509
\(91\) 0 0
\(92\) 1092.63 1.23820
\(93\) −318.155 −0.354744
\(94\) 423.945 0.465176
\(95\) −8.70382 −0.00939992
\(96\) 1871.83 1.99003
\(97\) 360.853 0.377723 0.188861 0.982004i \(-0.439520\pi\)
0.188861 + 0.982004i \(0.439520\pi\)
\(98\) 0 0
\(99\) −4240.27 −4.30468
\(100\) 786.462 0.786462
\(101\) −1271.87 −1.25302 −0.626511 0.779412i \(-0.715518\pi\)
−0.626511 + 0.779412i \(0.715518\pi\)
\(102\) −1476.98 −1.43376
\(103\) −1340.73 −1.28258 −0.641292 0.767297i \(-0.721601\pi\)
−0.641292 + 0.767297i \(0.721601\pi\)
\(104\) −799.669 −0.753980
\(105\) 0 0
\(106\) −908.562 −0.832522
\(107\) −499.473 −0.451270 −0.225635 0.974212i \(-0.572446\pi\)
−0.225635 + 0.974212i \(0.572446\pi\)
\(108\) −3342.88 −2.97842
\(109\) 833.263 0.732221 0.366111 0.930571i \(-0.380689\pi\)
0.366111 + 0.930571i \(0.380689\pi\)
\(110\) 71.6974 0.0621462
\(111\) −748.206 −0.639789
\(112\) 0 0
\(113\) −244.165 −0.203267 −0.101633 0.994822i \(-0.532407\pi\)
−0.101633 + 0.994822i \(0.532407\pi\)
\(114\) 111.585 0.0916746
\(115\) 177.303 0.143770
\(116\) 287.787 0.230348
\(117\) 3394.65 2.68235
\(118\) 809.980 0.631904
\(119\) 0 0
\(120\) 195.000 0.148342
\(121\) 1599.38 1.20164
\(122\) 616.750 0.457688
\(123\) −1248.35 −0.915121
\(124\) 196.711 0.142461
\(125\) 256.333 0.183417
\(126\) 0 0
\(127\) −21.4025 −0.0149540 −0.00747702 0.999972i \(-0.502380\pi\)
−0.00747702 + 0.999972i \(0.502380\pi\)
\(128\) −1435.47 −0.991238
\(129\) −4014.76 −2.74016
\(130\) −57.3991 −0.0387248
\(131\) −1397.55 −0.932093 −0.466047 0.884760i \(-0.654322\pi\)
−0.466047 + 0.884760i \(0.654322\pi\)
\(132\) 3525.39 2.32459
\(133\) 0 0
\(134\) −836.640 −0.539363
\(135\) −542.457 −0.345831
\(136\) 2064.50 1.30169
\(137\) −1047.90 −0.653490 −0.326745 0.945113i \(-0.605952\pi\)
−0.326745 + 0.945113i \(0.605952\pi\)
\(138\) −2273.07 −1.40215
\(139\) 1893.75 1.15558 0.577790 0.816185i \(-0.303915\pi\)
0.577790 + 0.816185i \(0.303915\pi\)
\(140\) 0 0
\(141\) 3382.64 2.02035
\(142\) −1139.61 −0.673481
\(143\) −2345.99 −1.37190
\(144\) 2117.26 1.22527
\(145\) 46.6998 0.0267462
\(146\) 1035.02 0.586703
\(147\) 0 0
\(148\) 462.606 0.256932
\(149\) 287.025 0.157812 0.0789060 0.996882i \(-0.474857\pi\)
0.0789060 + 0.996882i \(0.474857\pi\)
\(150\) −1636.13 −0.890597
\(151\) 289.173 0.155845 0.0779224 0.996959i \(-0.475171\pi\)
0.0779224 + 0.996959i \(0.475171\pi\)
\(152\) −155.972 −0.0832300
\(153\) −8763.95 −4.63087
\(154\) 0 0
\(155\) 31.9207 0.0165415
\(156\) −2822.33 −1.44851
\(157\) −418.205 −0.212589 −0.106294 0.994335i \(-0.533899\pi\)
−0.106294 + 0.994335i \(0.533899\pi\)
\(158\) 713.033 0.359024
\(159\) −7249.39 −3.61581
\(160\) −187.802 −0.0927939
\(161\) 0 0
\(162\) 4234.08 2.05346
\(163\) 376.341 0.180842 0.0904211 0.995904i \(-0.471179\pi\)
0.0904211 + 0.995904i \(0.471179\pi\)
\(164\) 771.838 0.367503
\(165\) 572.072 0.269914
\(166\) 107.845 0.0504239
\(167\) −1927.01 −0.892912 −0.446456 0.894806i \(-0.647314\pi\)
−0.446456 + 0.894806i \(0.647314\pi\)
\(168\) 0 0
\(169\) −318.866 −0.145137
\(170\) 148.187 0.0668554
\(171\) 662.110 0.296098
\(172\) 2482.28 1.10042
\(173\) −3036.77 −1.33458 −0.667288 0.744800i \(-0.732545\pi\)
−0.667288 + 0.744800i \(0.732545\pi\)
\(174\) −598.703 −0.260848
\(175\) 0 0
\(176\) −1463.21 −0.626666
\(177\) 6462.81 2.74449
\(178\) −262.528 −0.110547
\(179\) −1448.42 −0.604804 −0.302402 0.953180i \(-0.597789\pi\)
−0.302402 + 0.953180i \(0.597789\pi\)
\(180\) 511.812 0.211934
\(181\) 1024.12 0.420564 0.210282 0.977641i \(-0.432562\pi\)
0.210282 + 0.977641i \(0.432562\pi\)
\(182\) 0 0
\(183\) 4921.03 1.98783
\(184\) 3177.25 1.27299
\(185\) 75.0680 0.0298330
\(186\) −409.232 −0.161324
\(187\) 6056.62 2.36847
\(188\) −2091.44 −0.811352
\(189\) 0 0
\(190\) −11.1954 −0.00427474
\(191\) −1879.59 −0.712056 −0.356028 0.934475i \(-0.615869\pi\)
−0.356028 + 0.934475i \(0.615869\pi\)
\(192\) 188.393 0.0708129
\(193\) −3890.26 −1.45092 −0.725459 0.688266i \(-0.758372\pi\)
−0.725459 + 0.688266i \(0.758372\pi\)
\(194\) 464.153 0.171775
\(195\) −457.985 −0.168190
\(196\) 0 0
\(197\) −2370.53 −0.857328 −0.428664 0.903464i \(-0.641016\pi\)
−0.428664 + 0.903464i \(0.641016\pi\)
\(198\) −5454.11 −1.95761
\(199\) −1234.10 −0.439612 −0.219806 0.975544i \(-0.570542\pi\)
−0.219806 + 0.975544i \(0.570542\pi\)
\(200\) 2286.95 0.808560
\(201\) −6675.52 −2.34256
\(202\) −1635.96 −0.569829
\(203\) 0 0
\(204\) 7286.40 2.50073
\(205\) 125.248 0.0426716
\(206\) −1724.53 −0.583272
\(207\) −13487.6 −4.52877
\(208\) 1171.40 0.390491
\(209\) −457.573 −0.151440
\(210\) 0 0
\(211\) 266.109 0.0868232 0.0434116 0.999057i \(-0.486177\pi\)
0.0434116 + 0.999057i \(0.486177\pi\)
\(212\) 4482.20 1.45207
\(213\) −9092.95 −2.92506
\(214\) −642.455 −0.205221
\(215\) 402.804 0.127772
\(216\) −9720.77 −3.06211
\(217\) 0 0
\(218\) 1071.80 0.332987
\(219\) 8258.37 2.54817
\(220\) −353.704 −0.108394
\(221\) −4848.77 −1.47585
\(222\) −962.391 −0.290953
\(223\) −3204.05 −0.962148 −0.481074 0.876680i \(-0.659753\pi\)
−0.481074 + 0.876680i \(0.659753\pi\)
\(224\) 0 0
\(225\) −9708.28 −2.87653
\(226\) −314.061 −0.0924382
\(227\) 5854.81 1.71188 0.855942 0.517072i \(-0.172978\pi\)
0.855942 + 0.517072i \(0.172978\pi\)
\(228\) −550.482 −0.159897
\(229\) 6063.97 1.74986 0.874931 0.484247i \(-0.160906\pi\)
0.874931 + 0.484247i \(0.160906\pi\)
\(230\) 228.058 0.0653814
\(231\) 0 0
\(232\) 836.855 0.236820
\(233\) 3647.51 1.02556 0.512782 0.858519i \(-0.328615\pi\)
0.512782 + 0.858519i \(0.328615\pi\)
\(234\) 4366.42 1.21984
\(235\) −339.383 −0.0942080
\(236\) −3995.87 −1.10216
\(237\) 5689.27 1.55931
\(238\) 0 0
\(239\) 2873.95 0.777827 0.388913 0.921274i \(-0.372851\pi\)
0.388913 + 0.921274i \(0.372851\pi\)
\(240\) −285.648 −0.0768272
\(241\) 569.470 0.152211 0.0761054 0.997100i \(-0.475751\pi\)
0.0761054 + 0.997100i \(0.475751\pi\)
\(242\) 2057.23 0.546462
\(243\) 19559.7 5.16361
\(244\) −3042.61 −0.798291
\(245\) 0 0
\(246\) −1605.71 −0.416164
\(247\) 366.321 0.0943662
\(248\) 572.016 0.146464
\(249\) 860.490 0.219001
\(250\) 329.713 0.0834115
\(251\) 4763.52 1.19789 0.598946 0.800789i \(-0.295586\pi\)
0.598946 + 0.800789i \(0.295586\pi\)
\(252\) 0 0
\(253\) 9321.09 2.31625
\(254\) −27.5293 −0.00680055
\(255\) 1182.38 0.290366
\(256\) −1993.24 −0.486631
\(257\) 5739.65 1.39311 0.696555 0.717503i \(-0.254715\pi\)
0.696555 + 0.717503i \(0.254715\pi\)
\(258\) −5164.05 −1.24612
\(259\) 0 0
\(260\) 283.166 0.0675432
\(261\) −3552.51 −0.842509
\(262\) −1797.62 −0.423882
\(263\) 6408.29 1.50248 0.751239 0.660030i \(-0.229456\pi\)
0.751239 + 0.660030i \(0.229456\pi\)
\(264\) 10251.5 2.38990
\(265\) 727.336 0.168603
\(266\) 0 0
\(267\) −2094.70 −0.480126
\(268\) 4127.39 0.940748
\(269\) −5582.27 −1.26527 −0.632634 0.774451i \(-0.718026\pi\)
−0.632634 + 0.774451i \(0.718026\pi\)
\(270\) −697.743 −0.157271
\(271\) 6099.57 1.36724 0.683621 0.729837i \(-0.260404\pi\)
0.683621 + 0.729837i \(0.260404\pi\)
\(272\) −3024.21 −0.674152
\(273\) 0 0
\(274\) −1347.88 −0.297183
\(275\) 6709.23 1.47121
\(276\) 11213.7 2.44560
\(277\) 5005.22 1.08568 0.542842 0.839835i \(-0.317348\pi\)
0.542842 + 0.839835i \(0.317348\pi\)
\(278\) 2435.86 0.525516
\(279\) −2428.25 −0.521059
\(280\) 0 0
\(281\) −2764.32 −0.586852 −0.293426 0.955982i \(-0.594795\pi\)
−0.293426 + 0.955982i \(0.594795\pi\)
\(282\) 4350.97 0.918783
\(283\) −1342.81 −0.282057 −0.141028 0.990006i \(-0.545041\pi\)
−0.141028 + 0.990006i \(0.545041\pi\)
\(284\) 5622.05 1.17467
\(285\) −89.3279 −0.0185661
\(286\) −3017.56 −0.623888
\(287\) 0 0
\(288\) 14286.3 2.92302
\(289\) 7605.04 1.54794
\(290\) 60.0683 0.0121632
\(291\) 3703.47 0.746051
\(292\) −5106.04 −1.02332
\(293\) 345.135 0.0688158 0.0344079 0.999408i \(-0.489045\pi\)
0.0344079 + 0.999408i \(0.489045\pi\)
\(294\) 0 0
\(295\) −648.418 −0.127974
\(296\) 1345.21 0.264151
\(297\) −28517.8 −5.57162
\(298\) 369.190 0.0717671
\(299\) −7462.22 −1.44331
\(300\) 8071.52 1.55336
\(301\) 0 0
\(302\) 371.953 0.0708725
\(303\) −13053.2 −2.47488
\(304\) 228.477 0.0431054
\(305\) −493.730 −0.0926915
\(306\) −11272.8 −2.10595
\(307\) −1474.88 −0.274189 −0.137095 0.990558i \(-0.543776\pi\)
−0.137095 + 0.990558i \(0.543776\pi\)
\(308\) 0 0
\(309\) −13760.0 −2.53327
\(310\) 41.0585 0.00752247
\(311\) 7374.52 1.34460 0.672300 0.740279i \(-0.265307\pi\)
0.672300 + 0.740279i \(0.265307\pi\)
\(312\) −8207.06 −1.48921
\(313\) 177.313 0.0320201 0.0160101 0.999872i \(-0.494904\pi\)
0.0160101 + 0.999872i \(0.494904\pi\)
\(314\) −537.923 −0.0966775
\(315\) 0 0
\(316\) −3517.60 −0.626204
\(317\) 4631.31 0.820569 0.410284 0.911958i \(-0.365429\pi\)
0.410284 + 0.911958i \(0.365429\pi\)
\(318\) −9324.63 −1.64434
\(319\) 2455.08 0.430903
\(320\) −18.9016 −0.00330197
\(321\) −5126.13 −0.891316
\(322\) 0 0
\(323\) −945.729 −0.162916
\(324\) −20887.9 −3.58161
\(325\) −5371.23 −0.916745
\(326\) 484.074 0.0822404
\(327\) 8551.84 1.44623
\(328\) 2244.43 0.377829
\(329\) 0 0
\(330\) 735.836 0.122747
\(331\) 3936.31 0.653653 0.326827 0.945084i \(-0.394021\pi\)
0.326827 + 0.945084i \(0.394021\pi\)
\(332\) −532.030 −0.0879486
\(333\) −5710.52 −0.939743
\(334\) −2478.64 −0.406064
\(335\) 669.760 0.109232
\(336\) 0 0
\(337\) 5.47071 0.000884299 0 0.000442150 1.00000i \(-0.499859\pi\)
0.000442150 1.00000i \(0.499859\pi\)
\(338\) −410.147 −0.0660031
\(339\) −2505.89 −0.401478
\(340\) −731.049 −0.116608
\(341\) 1678.12 0.266497
\(342\) 851.649 0.134655
\(343\) 0 0
\(344\) 7218.21 1.13134
\(345\) 1819.67 0.283965
\(346\) −3906.10 −0.606916
\(347\) −6665.73 −1.03123 −0.515613 0.856822i \(-0.672436\pi\)
−0.515613 + 0.856822i \(0.672436\pi\)
\(348\) 2953.58 0.454967
\(349\) −1931.57 −0.296259 −0.148129 0.988968i \(-0.547325\pi\)
−0.148129 + 0.988968i \(0.547325\pi\)
\(350\) 0 0
\(351\) 22830.6 3.47182
\(352\) −9873.03 −1.49498
\(353\) 7767.89 1.17123 0.585614 0.810590i \(-0.300854\pi\)
0.585614 + 0.810590i \(0.300854\pi\)
\(354\) 8312.88 1.24809
\(355\) 912.302 0.136394
\(356\) 1295.13 0.192814
\(357\) 0 0
\(358\) −1863.05 −0.275043
\(359\) 5564.98 0.818129 0.409065 0.912505i \(-0.365855\pi\)
0.409065 + 0.912505i \(0.365855\pi\)
\(360\) 1488.30 0.217889
\(361\) −6787.55 −0.989583
\(362\) 1317.29 0.191257
\(363\) 16414.6 2.37339
\(364\) 0 0
\(365\) −828.567 −0.118820
\(366\) 6329.75 0.903993
\(367\) −3611.04 −0.513609 −0.256805 0.966463i \(-0.582670\pi\)
−0.256805 + 0.966463i \(0.582670\pi\)
\(368\) −4654.23 −0.659290
\(369\) −9527.76 −1.34416
\(370\) 96.5574 0.0135670
\(371\) 0 0
\(372\) 2018.86 0.281379
\(373\) 514.912 0.0714775 0.0357388 0.999361i \(-0.488622\pi\)
0.0357388 + 0.999361i \(0.488622\pi\)
\(374\) 7790.42 1.07709
\(375\) 2630.77 0.362273
\(376\) −6081.71 −0.834149
\(377\) −1965.47 −0.268506
\(378\) 0 0
\(379\) −6352.13 −0.860916 −0.430458 0.902611i \(-0.641648\pi\)
−0.430458 + 0.902611i \(0.641648\pi\)
\(380\) 55.2303 0.00745593
\(381\) −219.655 −0.0295362
\(382\) −2417.66 −0.323817
\(383\) −7547.21 −1.00690 −0.503452 0.864023i \(-0.667937\pi\)
−0.503452 + 0.864023i \(0.667937\pi\)
\(384\) −14732.3 −1.95782
\(385\) 0 0
\(386\) −5003.90 −0.659824
\(387\) −30641.8 −4.02483
\(388\) −2289.80 −0.299606
\(389\) −2193.93 −0.285956 −0.142978 0.989726i \(-0.545668\pi\)
−0.142978 + 0.989726i \(0.545668\pi\)
\(390\) −589.091 −0.0764866
\(391\) 19265.2 2.49177
\(392\) 0 0
\(393\) −14343.1 −1.84100
\(394\) −3049.13 −0.389881
\(395\) −570.808 −0.0727100
\(396\) 26906.7 3.41443
\(397\) 3816.01 0.482418 0.241209 0.970473i \(-0.422456\pi\)
0.241209 + 0.970473i \(0.422456\pi\)
\(398\) −1587.37 −0.199919
\(399\) 0 0
\(400\) −3350.07 −0.418759
\(401\) −4494.18 −0.559672 −0.279836 0.960048i \(-0.590280\pi\)
−0.279836 + 0.960048i \(0.590280\pi\)
\(402\) −8586.49 −1.06531
\(403\) −1343.46 −0.166061
\(404\) 8070.65 0.993886
\(405\) −3389.53 −0.415869
\(406\) 0 0
\(407\) 3946.44 0.480634
\(408\) 21188.1 2.57100
\(409\) −7270.60 −0.878993 −0.439496 0.898244i \(-0.644843\pi\)
−0.439496 + 0.898244i \(0.644843\pi\)
\(410\) 161.102 0.0194055
\(411\) −10754.7 −1.29073
\(412\) 8507.63 1.01733
\(413\) 0 0
\(414\) −17348.7 −2.05952
\(415\) −86.3335 −0.0102119
\(416\) 7904.08 0.931562
\(417\) 19435.7 2.28242
\(418\) −588.561 −0.0688695
\(419\) −7712.89 −0.899283 −0.449641 0.893209i \(-0.648448\pi\)
−0.449641 + 0.893209i \(0.648448\pi\)
\(420\) 0 0
\(421\) 7128.52 0.825232 0.412616 0.910905i \(-0.364615\pi\)
0.412616 + 0.910905i \(0.364615\pi\)
\(422\) 342.286 0.0394840
\(423\) 25817.3 2.96756
\(424\) 13033.8 1.49287
\(425\) 13866.9 1.58269
\(426\) −11695.9 −1.33021
\(427\) 0 0
\(428\) 3169.42 0.357943
\(429\) −24077.0 −2.70967
\(430\) 518.113 0.0581061
\(431\) 3661.65 0.409224 0.204612 0.978843i \(-0.434407\pi\)
0.204612 + 0.978843i \(0.434407\pi\)
\(432\) 14239.6 1.58589
\(433\) 8571.29 0.951293 0.475646 0.879637i \(-0.342214\pi\)
0.475646 + 0.879637i \(0.342214\pi\)
\(434\) 0 0
\(435\) 479.283 0.0528273
\(436\) −5287.49 −0.580791
\(437\) −1455.47 −0.159324
\(438\) 10622.4 1.15881
\(439\) −16167.4 −1.75770 −0.878849 0.477100i \(-0.841688\pi\)
−0.878849 + 0.477100i \(0.841688\pi\)
\(440\) −1028.54 −0.111440
\(441\) 0 0
\(442\) −6236.80 −0.671164
\(443\) 9825.17 1.05374 0.526871 0.849945i \(-0.323365\pi\)
0.526871 + 0.849945i \(0.323365\pi\)
\(444\) 4747.76 0.507474
\(445\) 210.163 0.0223880
\(446\) −4121.26 −0.437550
\(447\) 2945.76 0.311699
\(448\) 0 0
\(449\) −18256.8 −1.91892 −0.959458 0.281850i \(-0.909052\pi\)
−0.959458 + 0.281850i \(0.909052\pi\)
\(450\) −12487.4 −1.30814
\(451\) 6584.47 0.687474
\(452\) 1549.36 0.161229
\(453\) 2967.80 0.307814
\(454\) 7530.84 0.778502
\(455\) 0 0
\(456\) −1600.75 −0.164390
\(457\) −7388.48 −0.756277 −0.378139 0.925749i \(-0.623436\pi\)
−0.378139 + 0.925749i \(0.623436\pi\)
\(458\) 7799.87 0.795773
\(459\) −58941.6 −5.99381
\(460\) −1125.08 −0.114037
\(461\) −17402.8 −1.75820 −0.879100 0.476637i \(-0.841856\pi\)
−0.879100 + 0.476637i \(0.841856\pi\)
\(462\) 0 0
\(463\) 4741.12 0.475893 0.237946 0.971278i \(-0.423526\pi\)
0.237946 + 0.971278i \(0.423526\pi\)
\(464\) −1225.88 −0.122651
\(465\) 327.605 0.0326716
\(466\) 4691.66 0.466389
\(467\) 14000.0 1.38725 0.693624 0.720338i \(-0.256013\pi\)
0.693624 + 0.720338i \(0.256013\pi\)
\(468\) −21540.8 −2.12762
\(469\) 0 0
\(470\) −436.536 −0.0428424
\(471\) −4292.07 −0.419890
\(472\) −11619.6 −1.13312
\(473\) 21176.0 2.05851
\(474\) 7317.90 0.709119
\(475\) −1047.63 −0.101197
\(476\) 0 0
\(477\) −55329.4 −5.31102
\(478\) 3696.67 0.353727
\(479\) 9622.70 0.917896 0.458948 0.888463i \(-0.348226\pi\)
0.458948 + 0.888463i \(0.348226\pi\)
\(480\) −1927.42 −0.183280
\(481\) −3159.42 −0.299495
\(482\) 732.490 0.0692199
\(483\) 0 0
\(484\) −10148.9 −0.953129
\(485\) −371.571 −0.0347880
\(486\) 25159.0 2.34822
\(487\) −9512.27 −0.885097 −0.442548 0.896745i \(-0.645926\pi\)
−0.442548 + 0.896745i \(0.645926\pi\)
\(488\) −8847.60 −0.820722
\(489\) 3862.41 0.357187
\(490\) 0 0
\(491\) 5570.18 0.511973 0.255986 0.966680i \(-0.417600\pi\)
0.255986 + 0.966680i \(0.417600\pi\)
\(492\) 7921.43 0.725865
\(493\) 5074.25 0.463555
\(494\) 471.186 0.0429143
\(495\) 4366.21 0.396458
\(496\) −837.925 −0.0758547
\(497\) 0 0
\(498\) 1106.82 0.0995938
\(499\) −740.318 −0.0664152 −0.0332076 0.999448i \(-0.510572\pi\)
−0.0332076 + 0.999448i \(0.510572\pi\)
\(500\) −1626.57 −0.145485
\(501\) −19777.0 −1.76362
\(502\) 6127.15 0.544757
\(503\) −4786.98 −0.424335 −0.212168 0.977233i \(-0.568052\pi\)
−0.212168 + 0.977233i \(0.568052\pi\)
\(504\) 0 0
\(505\) 1309.64 0.115402
\(506\) 11989.4 1.05335
\(507\) −3272.55 −0.286665
\(508\) 135.810 0.0118614
\(509\) −891.162 −0.0776032 −0.0388016 0.999247i \(-0.512354\pi\)
−0.0388016 + 0.999247i \(0.512354\pi\)
\(510\) 1520.85 0.132048
\(511\) 0 0
\(512\) 8919.89 0.769936
\(513\) 4453.00 0.383245
\(514\) 7382.71 0.633536
\(515\) 1380.55 0.118125
\(516\) 25475.8 2.17347
\(517\) −17841.9 −1.51777
\(518\) 0 0
\(519\) −31166.6 −2.63596
\(520\) 823.419 0.0694410
\(521\) −17140.9 −1.44138 −0.720688 0.693259i \(-0.756174\pi\)
−0.720688 + 0.693259i \(0.756174\pi\)
\(522\) −4569.47 −0.383142
\(523\) −73.8293 −0.00617271 −0.00308636 0.999995i \(-0.500982\pi\)
−0.00308636 + 0.999995i \(0.500982\pi\)
\(524\) 8868.16 0.739327
\(525\) 0 0
\(526\) 8242.75 0.683272
\(527\) 3468.41 0.286691
\(528\) −15017.0 −1.23775
\(529\) 17481.9 1.43683
\(530\) 935.547 0.0766746
\(531\) 49326.0 4.03119
\(532\) 0 0
\(533\) −5271.35 −0.428382
\(534\) −2694.34 −0.218344
\(535\) 514.308 0.0415616
\(536\) 12002.0 0.967181
\(537\) −14865.2 −1.19457
\(538\) −7180.28 −0.575398
\(539\) 0 0
\(540\) 3442.17 0.274310
\(541\) −1609.86 −0.127936 −0.0639680 0.997952i \(-0.520376\pi\)
−0.0639680 + 0.997952i \(0.520376\pi\)
\(542\) 7845.66 0.621771
\(543\) 10510.6 0.830669
\(544\) −20405.9 −1.60827
\(545\) −858.012 −0.0674370
\(546\) 0 0
\(547\) 1373.01 0.107323 0.0536616 0.998559i \(-0.482911\pi\)
0.0536616 + 0.998559i \(0.482911\pi\)
\(548\) 6649.47 0.518342
\(549\) 37558.7 2.91979
\(550\) 8629.85 0.669051
\(551\) −383.356 −0.0296398
\(552\) 32608.3 2.51432
\(553\) 0 0
\(554\) 6438.04 0.493730
\(555\) 770.428 0.0589241
\(556\) −12016.8 −0.916595
\(557\) −7155.45 −0.544320 −0.272160 0.962252i \(-0.587738\pi\)
−0.272160 + 0.962252i \(0.587738\pi\)
\(558\) −3123.37 −0.236959
\(559\) −16953.0 −1.28271
\(560\) 0 0
\(561\) 62159.5 4.67803
\(562\) −3555.64 −0.266879
\(563\) 6327.94 0.473696 0.236848 0.971547i \(-0.423886\pi\)
0.236848 + 0.971547i \(0.423886\pi\)
\(564\) −21464.6 −1.60252
\(565\) 251.417 0.0187207
\(566\) −1727.22 −0.128269
\(567\) 0 0
\(568\) 16348.4 1.20768
\(569\) −10823.8 −0.797466 −0.398733 0.917067i \(-0.630550\pi\)
−0.398733 + 0.917067i \(0.630550\pi\)
\(570\) −114.899 −0.00844316
\(571\) 4257.42 0.312027 0.156014 0.987755i \(-0.450136\pi\)
0.156014 + 0.987755i \(0.450136\pi\)
\(572\) 14886.5 1.08817
\(573\) −19290.4 −1.40640
\(574\) 0 0
\(575\) 21341.0 1.54779
\(576\) 1437.87 0.104012
\(577\) −9652.95 −0.696460 −0.348230 0.937409i \(-0.613217\pi\)
−0.348230 + 0.937409i \(0.613217\pi\)
\(578\) 9782.09 0.703947
\(579\) −39926.0 −2.86575
\(580\) −296.334 −0.0212149
\(581\) 0 0
\(582\) 4763.64 0.339277
\(583\) 38237.2 2.71633
\(584\) −14847.9 −1.05207
\(585\) −3495.47 −0.247043
\(586\) 443.936 0.0312949
\(587\) 1159.02 0.0814954 0.0407477 0.999169i \(-0.487026\pi\)
0.0407477 + 0.999169i \(0.487026\pi\)
\(588\) 0 0
\(589\) −262.036 −0.0183310
\(590\) −834.037 −0.0581979
\(591\) −24329.0 −1.69333
\(592\) −1970.55 −0.136806
\(593\) 12071.9 0.835973 0.417986 0.908453i \(-0.362736\pi\)
0.417986 + 0.908453i \(0.362736\pi\)
\(594\) −36681.5 −2.53377
\(595\) 0 0
\(596\) −1821.32 −0.125175
\(597\) −12665.6 −0.868290
\(598\) −9598.39 −0.656367
\(599\) 10108.0 0.689486 0.344743 0.938697i \(-0.387966\pi\)
0.344743 + 0.938697i \(0.387966\pi\)
\(600\) 23471.2 1.59701
\(601\) 25132.8 1.70581 0.852903 0.522069i \(-0.174840\pi\)
0.852903 + 0.522069i \(0.174840\pi\)
\(602\) 0 0
\(603\) −50949.5 −3.44083
\(604\) −1834.95 −0.123615
\(605\) −1646.89 −0.110670
\(606\) −16789.9 −1.12549
\(607\) 17536.9 1.17265 0.586326 0.810075i \(-0.300574\pi\)
0.586326 + 0.810075i \(0.300574\pi\)
\(608\) 1541.65 0.102833
\(609\) 0 0
\(610\) −635.068 −0.0421527
\(611\) 14283.7 0.945758
\(612\) 55611.8 3.67316
\(613\) 24094.7 1.58756 0.793780 0.608205i \(-0.208110\pi\)
0.793780 + 0.608205i \(0.208110\pi\)
\(614\) −1897.09 −0.124691
\(615\) 1285.43 0.0842820
\(616\) 0 0
\(617\) 14811.1 0.966408 0.483204 0.875508i \(-0.339473\pi\)
0.483204 + 0.875508i \(0.339473\pi\)
\(618\) −17699.0 −1.15204
\(619\) 5388.94 0.349919 0.174959 0.984576i \(-0.444021\pi\)
0.174959 + 0.984576i \(0.444021\pi\)
\(620\) −202.554 −0.0131206
\(621\) −90710.7 −5.86167
\(622\) 9485.59 0.611475
\(623\) 0 0
\(624\) 12022.2 0.771271
\(625\) 15228.5 0.974625
\(626\) 228.071 0.0145616
\(627\) −4696.11 −0.299114
\(628\) 2653.73 0.168623
\(629\) 8156.65 0.517054
\(630\) 0 0
\(631\) −14417.6 −0.909599 −0.454799 0.890594i \(-0.650289\pi\)
−0.454799 + 0.890594i \(0.650289\pi\)
\(632\) −10228.8 −0.643799
\(633\) 2731.09 0.171487
\(634\) 5957.09 0.373165
\(635\) 22.0382 0.00137726
\(636\) 46001.2 2.86803
\(637\) 0 0
\(638\) 3157.88 0.195959
\(639\) −69399.9 −4.29643
\(640\) 1478.10 0.0912923
\(641\) −14713.8 −0.906646 −0.453323 0.891346i \(-0.649762\pi\)
−0.453323 + 0.891346i \(0.649762\pi\)
\(642\) −6593.56 −0.405338
\(643\) −18089.3 −1.10944 −0.554721 0.832037i \(-0.687175\pi\)
−0.554721 + 0.832037i \(0.687175\pi\)
\(644\) 0 0
\(645\) 4134.01 0.252366
\(646\) −1216.46 −0.0740881
\(647\) 13410.8 0.814891 0.407446 0.913229i \(-0.366420\pi\)
0.407446 + 0.913229i \(0.366420\pi\)
\(648\) −60740.1 −3.68225
\(649\) −34088.4 −2.06176
\(650\) −6908.82 −0.416902
\(651\) 0 0
\(652\) −2388.08 −0.143442
\(653\) −644.781 −0.0386405 −0.0193203 0.999813i \(-0.506150\pi\)
−0.0193203 + 0.999813i \(0.506150\pi\)
\(654\) 10999.9 0.657693
\(655\) 1439.06 0.0858451
\(656\) −3287.78 −0.195680
\(657\) 63030.2 3.74283
\(658\) 0 0
\(659\) −15096.9 −0.892401 −0.446200 0.894933i \(-0.647223\pi\)
−0.446200 + 0.894933i \(0.647223\pi\)
\(660\) −3630.09 −0.214093
\(661\) −5811.60 −0.341974 −0.170987 0.985273i \(-0.554696\pi\)
−0.170987 + 0.985273i \(0.554696\pi\)
\(662\) 5063.14 0.297258
\(663\) −49763.2 −2.91500
\(664\) −1547.09 −0.0904197
\(665\) 0 0
\(666\) −7345.24 −0.427361
\(667\) 7809.23 0.453335
\(668\) 12227.9 0.708249
\(669\) −32883.4 −1.90037
\(670\) 861.489 0.0496749
\(671\) −25956.2 −1.49333
\(672\) 0 0
\(673\) 21598.4 1.23708 0.618542 0.785751i \(-0.287723\pi\)
0.618542 + 0.785751i \(0.287723\pi\)
\(674\) 7.03679 0.000402147 0
\(675\) −65292.7 −3.72314
\(676\) 2023.37 0.115121
\(677\) −7224.50 −0.410133 −0.205067 0.978748i \(-0.565741\pi\)
−0.205067 + 0.978748i \(0.565741\pi\)
\(678\) −3223.23 −0.182577
\(679\) 0 0
\(680\) −2125.82 −0.119884
\(681\) 60088.4 3.38119
\(682\) 2158.51 0.121193
\(683\) −7695.88 −0.431149 −0.215574 0.976487i \(-0.569162\pi\)
−0.215574 + 0.976487i \(0.569162\pi\)
\(684\) −4201.43 −0.234862
\(685\) 1079.02 0.0601859
\(686\) 0 0
\(687\) 62235.0 3.45620
\(688\) −10573.7 −0.585927
\(689\) −30611.7 −1.69262
\(690\) 2340.58 0.129137
\(691\) −20573.2 −1.13262 −0.566309 0.824193i \(-0.691629\pi\)
−0.566309 + 0.824193i \(0.691629\pi\)
\(692\) 19269.9 1.05857
\(693\) 0 0
\(694\) −8573.90 −0.468964
\(695\) −1950.00 −0.106428
\(696\) 8588.71 0.467750
\(697\) 13609.0 0.739568
\(698\) −2484.51 −0.134728
\(699\) 37434.7 2.02562
\(700\) 0 0
\(701\) −15490.7 −0.834631 −0.417315 0.908762i \(-0.637029\pi\)
−0.417315 + 0.908762i \(0.637029\pi\)
\(702\) 29366.2 1.57885
\(703\) −616.229 −0.0330605
\(704\) −993.685 −0.0531973
\(705\) −3483.11 −0.186073
\(706\) 9991.57 0.532631
\(707\) 0 0
\(708\) −41009.9 −2.17690
\(709\) 33182.7 1.75769 0.878846 0.477105i \(-0.158314\pi\)
0.878846 + 0.477105i \(0.158314\pi\)
\(710\) 1173.46 0.0620271
\(711\) 43422.1 2.29037
\(712\) 3766.10 0.198231
\(713\) 5337.85 0.280370
\(714\) 0 0
\(715\) 2415.66 0.126351
\(716\) 9190.97 0.479725
\(717\) 29495.6 1.53631
\(718\) 7158.04 0.372055
\(719\) 13090.2 0.678972 0.339486 0.940611i \(-0.389747\pi\)
0.339486 + 0.940611i \(0.389747\pi\)
\(720\) −2180.15 −0.112846
\(721\) 0 0
\(722\) −8730.59 −0.450026
\(723\) 5844.52 0.300636
\(724\) −6498.57 −0.333588
\(725\) 5621.01 0.287943
\(726\) 21113.5 1.07933
\(727\) 19101.2 0.974449 0.487225 0.873277i \(-0.338009\pi\)
0.487225 + 0.873277i \(0.338009\pi\)
\(728\) 0 0
\(729\) 111865. 5.68334
\(730\) −1065.76 −0.0540349
\(731\) 43767.4 2.21449
\(732\) −31226.5 −1.57673
\(733\) 21913.8 1.10423 0.552117 0.833767i \(-0.313820\pi\)
0.552117 + 0.833767i \(0.313820\pi\)
\(734\) −4644.75 −0.233571
\(735\) 0 0
\(736\) −31404.6 −1.57281
\(737\) 35210.3 1.75982
\(738\) −12255.2 −0.611275
\(739\) −20105.9 −1.00082 −0.500412 0.865788i \(-0.666818\pi\)
−0.500412 + 0.865788i \(0.666818\pi\)
\(740\) −476.346 −0.0236633
\(741\) 3759.58 0.186385
\(742\) 0 0
\(743\) 3302.81 0.163080 0.0815400 0.996670i \(-0.474016\pi\)
0.0815400 + 0.996670i \(0.474016\pi\)
\(744\) 5870.65 0.289285
\(745\) −295.550 −0.0145344
\(746\) 662.313 0.0325054
\(747\) 6567.50 0.321676
\(748\) −38432.4 −1.87865
\(749\) 0 0
\(750\) 3383.87 0.164748
\(751\) 14554.4 0.707188 0.353594 0.935399i \(-0.384959\pi\)
0.353594 + 0.935399i \(0.384959\pi\)
\(752\) 8908.86 0.432011
\(753\) 48888.4 2.36599
\(754\) −2528.12 −0.122107
\(755\) −297.762 −0.0143532
\(756\) 0 0
\(757\) −2978.50 −0.143006 −0.0715030 0.997440i \(-0.522780\pi\)
−0.0715030 + 0.997440i \(0.522780\pi\)
\(758\) −8170.52 −0.391513
\(759\) 95663.0 4.57490
\(760\) 160.604 0.00766542
\(761\) −9887.45 −0.470985 −0.235493 0.971876i \(-0.575670\pi\)
−0.235493 + 0.971876i \(0.575670\pi\)
\(762\) −282.535 −0.0134320
\(763\) 0 0
\(764\) 11927.0 0.564796
\(765\) 9024.25 0.426500
\(766\) −9707.71 −0.457903
\(767\) 27290.2 1.28474
\(768\) −20456.8 −0.961159
\(769\) −37520.2 −1.75944 −0.879722 0.475489i \(-0.842271\pi\)
−0.879722 + 0.475489i \(0.842271\pi\)
\(770\) 0 0
\(771\) 58906.4 2.75157
\(772\) 24685.7 1.15085
\(773\) 28965.3 1.34775 0.673874 0.738847i \(-0.264629\pi\)
0.673874 + 0.738847i \(0.264629\pi\)
\(774\) −39413.5 −1.83035
\(775\) 3842.13 0.178082
\(776\) −6658.52 −0.308024
\(777\) 0 0
\(778\) −2821.98 −0.130042
\(779\) −1028.15 −0.0472880
\(780\) 2906.16 0.133407
\(781\) 47961.2 2.19742
\(782\) 24780.1 1.13316
\(783\) −23892.3 −1.09047
\(784\) 0 0
\(785\) 430.626 0.0195793
\(786\) −18449.1 −0.837222
\(787\) −41230.6 −1.86749 −0.933744 0.357943i \(-0.883478\pi\)
−0.933744 + 0.357943i \(0.883478\pi\)
\(788\) 15042.3 0.680024
\(789\) 65768.7 2.96759
\(790\) −734.210 −0.0330659
\(791\) 0 0
\(792\) 78242.1 3.51037
\(793\) 20779.8 0.930534
\(794\) 4908.40 0.219386
\(795\) 7464.70 0.333013
\(796\) 7830.98 0.348696
\(797\) 6124.65 0.272203 0.136102 0.990695i \(-0.456543\pi\)
0.136102 + 0.990695i \(0.456543\pi\)
\(798\) 0 0
\(799\) −36876.3 −1.63278
\(800\) −22604.7 −0.998996
\(801\) −15987.4 −0.705226
\(802\) −5780.70 −0.254518
\(803\) −43559.1 −1.91428
\(804\) 42359.7 1.85810
\(805\) 0 0
\(806\) −1728.05 −0.0755184
\(807\) −57291.3 −2.49907
\(808\) 23468.6 1.02181
\(809\) −28936.0 −1.25752 −0.628760 0.777599i \(-0.716437\pi\)
−0.628760 + 0.777599i \(0.716437\pi\)
\(810\) −4359.83 −0.189122
\(811\) 24351.4 1.05437 0.527184 0.849751i \(-0.323248\pi\)
0.527184 + 0.849751i \(0.323248\pi\)
\(812\) 0 0
\(813\) 62600.3 2.70048
\(814\) 5076.17 0.218575
\(815\) −387.518 −0.0166554
\(816\) −31037.7 −1.33154
\(817\) −3306.60 −0.141595
\(818\) −9351.92 −0.399734
\(819\) 0 0
\(820\) −794.763 −0.0338467
\(821\) −29891.6 −1.27068 −0.635338 0.772234i \(-0.719139\pi\)
−0.635338 + 0.772234i \(0.719139\pi\)
\(822\) −13833.4 −0.586975
\(823\) −2102.48 −0.0890495 −0.0445248 0.999008i \(-0.514177\pi\)
−0.0445248 + 0.999008i \(0.514177\pi\)
\(824\) 24739.3 1.04592
\(825\) 68857.3 2.90582
\(826\) 0 0
\(827\) −38717.1 −1.62796 −0.813981 0.580892i \(-0.802704\pi\)
−0.813981 + 0.580892i \(0.802704\pi\)
\(828\) 85586.2 3.59218
\(829\) −7832.41 −0.328143 −0.164072 0.986448i \(-0.552463\pi\)
−0.164072 + 0.986448i \(0.552463\pi\)
\(830\) −111.048 −0.00464401
\(831\) 51369.0 2.14437
\(832\) 795.518 0.0331486
\(833\) 0 0
\(834\) 24999.4 1.03796
\(835\) 1984.24 0.0822365
\(836\) 2903.54 0.120121
\(837\) −16331.1 −0.674416
\(838\) −9920.82 −0.408961
\(839\) 106.194 0.00436977 0.00218488 0.999998i \(-0.499305\pi\)
0.00218488 + 0.999998i \(0.499305\pi\)
\(840\) 0 0
\(841\) −22332.1 −0.915664
\(842\) 9169.16 0.375285
\(843\) −28370.4 −1.15911
\(844\) −1688.60 −0.0688673
\(845\) 328.337 0.0133670
\(846\) 33207.8 1.34954
\(847\) 0 0
\(848\) −19092.7 −0.773167
\(849\) −13781.4 −0.557098
\(850\) 17836.5 0.719748
\(851\) 12553.0 0.505655
\(852\) 57699.5 2.32013
\(853\) 20215.0 0.811430 0.405715 0.914000i \(-0.367022\pi\)
0.405715 + 0.914000i \(0.367022\pi\)
\(854\) 0 0
\(855\) −681.775 −0.0272704
\(856\) 9216.35 0.368000
\(857\) 39365.0 1.56906 0.784529 0.620093i \(-0.212905\pi\)
0.784529 + 0.620093i \(0.212905\pi\)
\(858\) −30969.4 −1.23226
\(859\) −7930.06 −0.314983 −0.157491 0.987520i \(-0.550341\pi\)
−0.157491 + 0.987520i \(0.550341\pi\)
\(860\) −2556.00 −0.101348
\(861\) 0 0
\(862\) 4709.86 0.186100
\(863\) 30214.9 1.19180 0.595902 0.803057i \(-0.296795\pi\)
0.595902 + 0.803057i \(0.296795\pi\)
\(864\) 96082.1 3.78331
\(865\) 3126.97 0.122913
\(866\) 11024.9 0.432613
\(867\) 78051.1 3.05738
\(868\) 0 0
\(869\) −30008.3 −1.17142
\(870\) 616.485 0.0240239
\(871\) −28188.4 −1.09659
\(872\) −15375.5 −0.597110
\(873\) 28265.9 1.09583
\(874\) −1872.12 −0.0724547
\(875\) 0 0
\(876\) −52403.6 −2.02118
\(877\) −5708.88 −0.219812 −0.109906 0.993942i \(-0.535055\pi\)
−0.109906 + 0.993942i \(0.535055\pi\)
\(878\) −20795.6 −0.799337
\(879\) 3542.15 0.135920
\(880\) 1506.66 0.0577155
\(881\) −13656.9 −0.522260 −0.261130 0.965304i \(-0.584095\pi\)
−0.261130 + 0.965304i \(0.584095\pi\)
\(882\) 0 0
\(883\) 31457.6 1.19891 0.599453 0.800410i \(-0.295385\pi\)
0.599453 + 0.800410i \(0.295385\pi\)
\(884\) 30768.0 1.17063
\(885\) −6654.76 −0.252765
\(886\) 12637.8 0.479203
\(887\) −21708.7 −0.821765 −0.410882 0.911688i \(-0.634779\pi\)
−0.410882 + 0.911688i \(0.634779\pi\)
\(888\) 13806.0 0.521733
\(889\) 0 0
\(890\) 270.325 0.0101813
\(891\) −178193. −6.69999
\(892\) 20331.4 0.763166
\(893\) 2785.97 0.104400
\(894\) 3789.02 0.141749
\(895\) 1491.44 0.0557020
\(896\) 0 0
\(897\) −76585.3 −2.85073
\(898\) −23483.1 −0.872653
\(899\) 1405.94 0.0521586
\(900\) 61604.1 2.28163
\(901\) 79030.0 2.92217
\(902\) 8469.38 0.312638
\(903\) 0 0
\(904\) 4505.37 0.165759
\(905\) −1054.54 −0.0387337
\(906\) 3817.38 0.139982
\(907\) −16914.6 −0.619227 −0.309614 0.950862i \(-0.600200\pi\)
−0.309614 + 0.950862i \(0.600200\pi\)
\(908\) −37151.8 −1.35785
\(909\) −99626.0 −3.63519
\(910\) 0 0
\(911\) 27177.4 0.988395 0.494198 0.869350i \(-0.335462\pi\)
0.494198 + 0.869350i \(0.335462\pi\)
\(912\) 2344.87 0.0851387
\(913\) −4538.69 −0.164522
\(914\) −9503.55 −0.343927
\(915\) −5067.19 −0.183078
\(916\) −38479.1 −1.38797
\(917\) 0 0
\(918\) −75814.6 −2.72577
\(919\) −6795.11 −0.243906 −0.121953 0.992536i \(-0.538916\pi\)
−0.121953 + 0.992536i \(0.538916\pi\)
\(920\) −3271.62 −0.117241
\(921\) −15136.8 −0.541559
\(922\) −22384.6 −0.799565
\(923\) −38396.4 −1.36927
\(924\) 0 0
\(925\) 9035.54 0.321175
\(926\) 6098.33 0.216419
\(927\) −105020. −3.72095
\(928\) −8271.65 −0.292597
\(929\) −38256.1 −1.35107 −0.675535 0.737328i \(-0.736087\pi\)
−0.675535 + 0.737328i \(0.736087\pi\)
\(930\) 421.386 0.0148579
\(931\) 0 0
\(932\) −23145.4 −0.813467
\(933\) 75685.2 2.65576
\(934\) 18007.8 0.630869
\(935\) −6236.51 −0.218134
\(936\) −62638.6 −2.18740
\(937\) −38604.1 −1.34593 −0.672967 0.739672i \(-0.734981\pi\)
−0.672967 + 0.739672i \(0.734981\pi\)
\(938\) 0 0
\(939\) 1819.77 0.0632439
\(940\) 2153.56 0.0747249
\(941\) −45329.0 −1.57033 −0.785166 0.619285i \(-0.787423\pi\)
−0.785166 + 0.619285i \(0.787423\pi\)
\(942\) −5520.74 −0.190951
\(943\) 20944.2 0.723263
\(944\) 17021.1 0.586853
\(945\) 0 0
\(946\) 27238.0 0.936135
\(947\) 34584.3 1.18673 0.593367 0.804932i \(-0.297798\pi\)
0.593367 + 0.804932i \(0.297798\pi\)
\(948\) −36101.4 −1.23683
\(949\) 34872.3 1.19284
\(950\) −1347.53 −0.0460208
\(951\) 47531.5 1.62073
\(952\) 0 0
\(953\) −32454.6 −1.10316 −0.551578 0.834123i \(-0.685974\pi\)
−0.551578 + 0.834123i \(0.685974\pi\)
\(954\) −71168.2 −2.41526
\(955\) 1935.42 0.0655798
\(956\) −18236.7 −0.616965
\(957\) 25196.7 0.851089
\(958\) 12377.3 0.417426
\(959\) 0 0
\(960\) −193.988 −0.00652181
\(961\) 961.000 0.0322581
\(962\) −4063.85 −0.136199
\(963\) −39124.0 −1.30920
\(964\) −3613.59 −0.120732
\(965\) 4005.80 0.133628
\(966\) 0 0
\(967\) −7167.37 −0.238353 −0.119176 0.992873i \(-0.538025\pi\)
−0.119176 + 0.992873i \(0.538025\pi\)
\(968\) −29512.0 −0.979910
\(969\) −9706.08 −0.321780
\(970\) −477.939 −0.0158203
\(971\) −42836.2 −1.41574 −0.707868 0.706345i \(-0.750343\pi\)
−0.707868 + 0.706345i \(0.750343\pi\)
\(972\) −124117. −4.09572
\(973\) 0 0
\(974\) −12235.3 −0.402510
\(975\) −55125.3 −1.81069
\(976\) 12960.5 0.425057
\(977\) 31612.8 1.03519 0.517596 0.855625i \(-0.326827\pi\)
0.517596 + 0.855625i \(0.326827\pi\)
\(978\) 4968.09 0.162435
\(979\) 11048.6 0.360689
\(980\) 0 0
\(981\) 65270.0 2.12427
\(982\) 7164.72 0.232826
\(983\) 5057.04 0.164084 0.0820421 0.996629i \(-0.473856\pi\)
0.0820421 + 0.996629i \(0.473856\pi\)
\(984\) 23034.7 0.746261
\(985\) 2440.94 0.0789592
\(986\) 6526.83 0.210808
\(987\) 0 0
\(988\) −2324.50 −0.0748503
\(989\) 67357.7 2.16567
\(990\) 5616.11 0.180295
\(991\) −33211.6 −1.06458 −0.532292 0.846561i \(-0.678669\pi\)
−0.532292 + 0.846561i \(0.678669\pi\)
\(992\) −5653.92 −0.180960
\(993\) 40398.7 1.29105
\(994\) 0 0
\(995\) 1270.75 0.0404879
\(996\) −5460.26 −0.173710
\(997\) −10915.8 −0.346746 −0.173373 0.984856i \(-0.555467\pi\)
−0.173373 + 0.984856i \(0.555467\pi\)
\(998\) −952.245 −0.0302032
\(999\) −38405.9 −1.21633
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1519.4.a.h.1.15 23
7.6 odd 2 1519.4.a.i.1.15 yes 23
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1519.4.a.h.1.15 23 1.1 even 1 trivial
1519.4.a.i.1.15 yes 23 7.6 odd 2