Properties

Label 150.8.c.j
Level $150$
Weight $8$
Character orbit 150.c
Analytic conductor $46.858$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [150,8,Mod(49,150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("150.49"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 150.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-128,0,432,0,0,-1458,0,13104] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(46.8577538226\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 8 i q^{2} - 27 i q^{3} - 64 q^{4} + 216 q^{6} + 1084 i q^{7} - 512 i q^{8} - 729 q^{9} + 6552 q^{11} + 1728 i q^{12} + 2522 i q^{13} - 8672 q^{14} + 4096 q^{16} - 30486 i q^{17} - 5832 i q^{18} - 12020 q^{19} + \cdots - 4776408 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 128 q^{4} + 432 q^{6} - 1458 q^{9} + 13104 q^{11} - 17344 q^{14} + 8192 q^{16} - 24040 q^{19} + 58536 q^{21} - 27648 q^{24} - 40352 q^{26} - 169860 q^{29} - 188336 q^{31} + 487776 q^{34} + 93312 q^{36}+ \cdots - 9552816 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
1.00000i
1.00000i
8.00000i 27.0000i −64.0000 0 216.000 1084.00i 512.000i −729.000 0
49.2 8.00000i 27.0000i −64.0000 0 216.000 1084.00i 512.000i −729.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.8.c.j 2
3.b odd 2 1 450.8.c.b 2
5.b even 2 1 inner 150.8.c.j 2
5.c odd 4 1 30.8.a.a 1
5.c odd 4 1 150.8.a.q 1
15.d odd 2 1 450.8.c.b 2
15.e even 4 1 90.8.a.i 1
15.e even 4 1 450.8.a.k 1
20.e even 4 1 240.8.a.k 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.8.a.a 1 5.c odd 4 1
90.8.a.i 1 15.e even 4 1
150.8.a.q 1 5.c odd 4 1
150.8.c.j 2 1.a even 1 1 trivial
150.8.c.j 2 5.b even 2 1 inner
240.8.a.k 1 20.e even 4 1
450.8.a.k 1 15.e even 4 1
450.8.c.b 2 3.b odd 2 1
450.8.c.b 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} + 1175056 \) acting on \(S_{8}^{\mathrm{new}}(150, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 64 \) Copy content Toggle raw display
$3$ \( T^{2} + 729 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 1175056 \) Copy content Toggle raw display
$11$ \( (T - 6552)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 6360484 \) Copy content Toggle raw display
$17$ \( T^{2} + 929396196 \) Copy content Toggle raw display
$19$ \( (T + 12020)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 12446784 \) Copy content Toggle raw display
$29$ \( (T + 84930)^{2} \) Copy content Toggle raw display
$31$ \( (T + 94168)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 260073480676 \) Copy content Toggle raw display
$41$ \( (T - 841002)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 790413458704 \) Copy content Toggle raw display
$47$ \( T^{2} + 726353925696 \) Copy content Toggle raw display
$53$ \( T^{2} + 2542372848324 \) Copy content Toggle raw display
$59$ \( (T + 752040)^{2} \) Copy content Toggle raw display
$61$ \( (T - 1538702)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 897801730576 \) Copy content Toggle raw display
$71$ \( (T + 3824928)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 834807487684 \) Copy content Toggle raw display
$79$ \( (T + 1621880)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 2160935280144 \) Copy content Toggle raw display
$89$ \( (T + 2375010)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 199905269553796 \) Copy content Toggle raw display
show more
show less