gp: [N,k,chi] = [150,8,Mod(49,150)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(150, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 8, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("150.49");
S:= CuspForms(chi, 8);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,0,-128,0,-432,0,0,-1458,0,-120]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of i = − 1 i = \sqrt{-1} i = − 1 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 150 Z ) × \left(\mathbb{Z}/150\mathbb{Z}\right)^\times ( Z / 1 5 0 Z ) × .
n n n
101 101 1 0 1
127 127 1 2 7
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 7 2 + 53824 T_{7}^{2} + 53824 T 7 2 + 5 3 8 2 4
T7^2 + 53824
acting on S 8 n e w ( 150 , [ χ ] ) S_{8}^{\mathrm{new}}(150, [\chi]) S 8 n e w ( 1 5 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 + 64 T^{2} + 64 T 2 + 6 4
T^2 + 64
3 3 3
T 2 + 729 T^{2} + 729 T 2 + 7 2 9
T^2 + 729
5 5 5
T 2 T^{2} T 2
T^2
7 7 7
T 2 + 53824 T^{2} + 53824 T 2 + 5 3 8 2 4
T^2 + 53824
11 11 1 1
( T + 60 ) 2 (T + 60)^{2} ( T + 6 0 ) 2
(T + 60)^2
13 13 1 3
T 2 + 197514916 T^{2} + 197514916 T 2 + 1 9 7 5 1 4 9 1 6
T^2 + 197514916
17 17 1 7
T 2 + 194267844 T^{2} + 194267844 T 2 + 1 9 4 2 6 7 8 4 4
T^2 + 194267844
19 19 1 9
( T + 53564 ) 2 (T + 53564)^{2} ( T + 5 3 5 6 4 ) 2
(T + 53564)^2
23 23 2 3
T 2 + 729000000 T^{2} + 729000000 T 2 + 7 2 9 0 0 0 0 0 0
T^2 + 729000000
29 29 2 9
( T − 88554 ) 2 (T - 88554)^{2} ( T − 8 8 5 5 4 ) 2
(T - 88554)^2
31 31 3 1
( T + 120352 ) 2 (T + 120352)^{2} ( T + 1 2 0 3 5 2 ) 2
(T + 120352)^2
37 37 3 7
T 2 + 220567365316 T^{2} + 220567365316 T 2 + 2 2 0 5 6 7 3 6 5 3 1 6
T^2 + 220567365316
41 41 4 1
( T + 510246 ) 2 (T + 510246)^{2} ( T + 5 1 0 2 4 6 ) 2
(T + 510246)^2
43 43 4 3
T 2 + 21144649744 T^{2} + 21144649744 T 2 + 2 1 1 4 4 6 4 9 7 4 4
T^2 + 21144649744
47 47 4 7
T 2 + 92756793600 T^{2} + 92756793600 T 2 + 9 2 7 5 6 7 9 3 6 0 0
T^2 + 92756793600
53 53 5 3
T 2 + 8910982404 T^{2} + 8910982404 T 2 + 8 9 1 0 9 8 2 4 0 4
T^2 + 8910982404
59 59 5 9
( T − 1885740 ) 2 (T - 1885740)^{2} ( T − 1 8 8 5 7 4 0 ) 2
(T - 1885740)^2
61 61 6 1
( T + 271690 ) 2 (T + 271690)^{2} ( T + 2 7 1 6 9 0 ) 2
(T + 271690)^2
67 67 6 7
T 2 + 1154911310224 T^{2} + 1154911310224 T 2 + 1 1 5 4 9 1 1 3 1 0 2 2 4
T^2 + 1154911310224
71 71 7 1
( T + 2505480 ) 2 (T + 2505480)^{2} ( T + 2 5 0 5 4 8 0 ) 2
(T + 2505480)^2
73 73 7 3
T 2 + 8729460248356 T^{2} + 8729460248356 T 2 + 8 7 2 9 4 6 0 2 4 8 3 5 6
T^2 + 8729460248356
79 79 7 9
( T − 7354768 ) 2 (T - 7354768)^{2} ( T − 7 3 5 4 7 6 8 ) 2
(T - 7354768)^2
83 83 8 3
T 2 + 14797531723536 T^{2} + 14797531723536 T 2 + 1 4 7 9 7 5 3 1 7 2 3 5 3 6
T^2 + 14797531723536
89 89 8 9
( T + 5685162 ) 2 (T + 5685162)^{2} ( T + 5 6 8 5 1 6 2 ) 2
(T + 5685162)^2
97 97 9 7
T 2 + 63701883971716 T^{2} + 63701883971716 T 2 + 6 3 7 0 1 8 8 3 9 7 1 7 1 6
T^2 + 63701883971716
show more
show less