Properties

Label 150.8.c.b
Level 150150
Weight 88
Character orbit 150.c
Analytic conductor 46.85846.858
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [150,8,Mod(49,150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("150.49"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: N N == 150=2352 150 = 2 \cdot 3 \cdot 5^{2}
Weight: k k == 8 8
Character orbit: [χ][\chi] == 150.c (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-128,0,-432,0,0,-1458,0,-120] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 46.857753822646.8577538226
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+8iq2+27iq364q4216q6+232iq7512iq8729q960q111728iq12+14054iq131856q14+4096q1613938iq175832iq1853564q19++43740q99+O(q100) q + 8 i q^{2} + 27 i q^{3} - 64 q^{4} - 216 q^{6} + 232 i q^{7} - 512 i q^{8} - 729 q^{9} - 60 q^{11} - 1728 i q^{12} + 14054 i q^{13} - 1856 q^{14} + 4096 q^{16} - 13938 i q^{17} - 5832 i q^{18} - 53564 q^{19} + \cdots + 43740 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q128q4432q61458q9120q113712q14+8192q16107128q1912528q21+27648q24224864q26+177108q29240704q31+223008q34+93312q36++87480q99+O(q100) 2 q - 128 q^{4} - 432 q^{6} - 1458 q^{9} - 120 q^{11} - 3712 q^{14} + 8192 q^{16} - 107128 q^{19} - 12528 q^{21} + 27648 q^{24} - 224864 q^{26} + 177108 q^{29} - 240704 q^{31} + 223008 q^{34} + 93312 q^{36}+ \cdots + 87480 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/150Z)×\left(\mathbb{Z}/150\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
1.00000i
1.00000i
8.00000i 27.0000i −64.0000 0 −216.000 232.000i 512.000i −729.000 0
49.2 8.00000i 27.0000i −64.0000 0 −216.000 232.000i 512.000i −729.000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.8.c.b 2
3.b odd 2 1 450.8.c.j 2
5.b even 2 1 inner 150.8.c.b 2
5.c odd 4 1 30.8.a.c 1
5.c odd 4 1 150.8.a.k 1
15.d odd 2 1 450.8.c.j 2
15.e even 4 1 90.8.a.g 1
15.e even 4 1 450.8.a.g 1
20.e even 4 1 240.8.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.8.a.c 1 5.c odd 4 1
90.8.a.g 1 15.e even 4 1
150.8.a.k 1 5.c odd 4 1
150.8.c.b 2 1.a even 1 1 trivial
150.8.c.b 2 5.b even 2 1 inner
240.8.a.e 1 20.e even 4 1
450.8.a.g 1 15.e even 4 1
450.8.c.j 2 3.b odd 2 1
450.8.c.j 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T72+53824 T_{7}^{2} + 53824 acting on S8new(150,[χ])S_{8}^{\mathrm{new}}(150, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+64 T^{2} + 64 Copy content Toggle raw display
33 T2+729 T^{2} + 729 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+53824 T^{2} + 53824 Copy content Toggle raw display
1111 (T+60)2 (T + 60)^{2} Copy content Toggle raw display
1313 T2+197514916 T^{2} + 197514916 Copy content Toggle raw display
1717 T2+194267844 T^{2} + 194267844 Copy content Toggle raw display
1919 (T+53564)2 (T + 53564)^{2} Copy content Toggle raw display
2323 T2+729000000 T^{2} + 729000000 Copy content Toggle raw display
2929 (T88554)2 (T - 88554)^{2} Copy content Toggle raw display
3131 (T+120352)2 (T + 120352)^{2} Copy content Toggle raw display
3737 T2+220567365316 T^{2} + 220567365316 Copy content Toggle raw display
4141 (T+510246)2 (T + 510246)^{2} Copy content Toggle raw display
4343 T2+21144649744 T^{2} + 21144649744 Copy content Toggle raw display
4747 T2+92756793600 T^{2} + 92756793600 Copy content Toggle raw display
5353 T2+8910982404 T^{2} + 8910982404 Copy content Toggle raw display
5959 (T1885740)2 (T - 1885740)^{2} Copy content Toggle raw display
6161 (T+271690)2 (T + 271690)^{2} Copy content Toggle raw display
6767 T2+1154911310224 T^{2} + 1154911310224 Copy content Toggle raw display
7171 (T+2505480)2 (T + 2505480)^{2} Copy content Toggle raw display
7373 T2+8729460248356 T^{2} + 8729460248356 Copy content Toggle raw display
7979 (T7354768)2 (T - 7354768)^{2} Copy content Toggle raw display
8383 T2+14797531723536 T^{2} + 14797531723536 Copy content Toggle raw display
8989 (T+5685162)2 (T + 5685162)^{2} Copy content Toggle raw display
9797 T2+63701883971716 T^{2} + 63701883971716 Copy content Toggle raw display
show more
show less