Properties

Label 150.14.c.m.49.4
Level $150$
Weight $14$
Character 150.49
Analytic conductor $160.846$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [150,14,Mod(49,150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("150.49"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 150.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-16384,0,186624,0,0,-2125764,0,11958408] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(160.846393428\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 10129455x^{2} + 25651469713984 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.4
Root \(2250.50 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 150.49
Dual form 150.14.c.m.49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+64.0000i q^{2} -729.000i q^{3} -4096.00 q^{4} +46656.0 q^{6} +277006. i q^{7} -262144. i q^{8} -531441. q^{9} +18948.6 q^{11} +2.98598e6i q^{12} +6.01018e6i q^{13} -1.77284e7 q^{14} +1.67772e7 q^{16} +9.37569e7i q^{17} -3.40122e7i q^{18} +5.41067e7 q^{19} +2.01938e8 q^{21} +1.21271e6i q^{22} +2.03954e8i q^{23} -1.91103e8 q^{24} -3.84651e8 q^{26} +3.87420e8i q^{27} -1.13462e9i q^{28} -3.05609e9 q^{29} +4.34655e9 q^{31} +1.07374e9i q^{32} -1.38135e7i q^{33} -6.00044e9 q^{34} +2.17678e9 q^{36} +9.81444e9i q^{37} +3.46283e9i q^{38} +4.38142e9 q^{39} -7.81935e9 q^{41} +1.29240e10i q^{42} -2.58184e10i q^{43} -7.76135e7 q^{44} -1.30531e10 q^{46} -4.89513e9i q^{47} -1.22306e10i q^{48} +2.01565e10 q^{49} +6.83488e10 q^{51} -2.46177e10i q^{52} +4.29788e10i q^{53} -2.47949e10 q^{54} +7.26156e10 q^{56} -3.94437e10i q^{57} -1.95590e11i q^{58} +2.79921e11 q^{59} +2.71521e11 q^{61} +2.78179e11i q^{62} -1.47213e11i q^{63} -6.87195e10 q^{64} +8.84066e8 q^{66} -2.60849e11i q^{67} -3.84028e11i q^{68} +1.48683e11 q^{69} +1.75686e12 q^{71} +1.39314e11i q^{72} +1.00814e12i q^{73} -6.28124e11 q^{74} -2.21621e11 q^{76} +5.24888e9i q^{77} +2.80411e11i q^{78} -3.96314e12 q^{79} +2.82430e11 q^{81} -5.00438e11i q^{82} +6.14648e11i q^{83} -8.27137e11 q^{84} +1.65238e12 q^{86} +2.22789e12i q^{87} -4.96726e9i q^{88} -4.36298e12 q^{89} -1.66486e12 q^{91} -8.35396e11i q^{92} -3.16863e12i q^{93} +3.13288e11 q^{94} +7.82758e11 q^{96} -4.72628e12i q^{97} +1.29001e12i q^{98} -1.00701e10 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16384 q^{4} + 186624 q^{6} - 2125764 q^{9} + 11958408 q^{11} - 1778432 q^{14} + 67108864 q^{16} - 471684740 q^{19} + 20257452 q^{21} - 764411904 q^{24} + 3162588416 q^{26} + 3965146440 q^{29} - 7190293012 q^{31}+ \cdots - 6355188305928 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 64.0000i 0.707107i
\(3\) − 729.000i − 0.577350i
\(4\) −4096.00 −0.500000
\(5\) 0 0
\(6\) 46656.0 0.408248
\(7\) 277006.i 0.889923i 0.895550 + 0.444962i \(0.146783\pi\)
−0.895550 + 0.444962i \(0.853217\pi\)
\(8\) − 262144.i − 0.353553i
\(9\) −531441. −0.333333
\(10\) 0 0
\(11\) 18948.6 0.00322496 0.00161248 0.999999i \(-0.499487\pi\)
0.00161248 + 0.999999i \(0.499487\pi\)
\(12\) 2.98598e6i 0.288675i
\(13\) 6.01018e6i 0.345347i 0.984979 + 0.172673i \(0.0552405\pi\)
−0.984979 + 0.172673i \(0.944759\pi\)
\(14\) −1.77284e7 −0.629271
\(15\) 0 0
\(16\) 1.67772e7 0.250000
\(17\) 9.37569e7i 0.942074i 0.882113 + 0.471037i \(0.156120\pi\)
−0.882113 + 0.471037i \(0.843880\pi\)
\(18\) − 3.40122e7i − 0.235702i
\(19\) 5.41067e7 0.263847 0.131924 0.991260i \(-0.457885\pi\)
0.131924 + 0.991260i \(0.457885\pi\)
\(20\) 0 0
\(21\) 2.01938e8 0.513797
\(22\) 1.21271e6i 0.00228039i
\(23\) 2.03954e8i 0.287278i 0.989630 + 0.143639i \(0.0458803\pi\)
−0.989630 + 0.143639i \(0.954120\pi\)
\(24\) −1.91103e8 −0.204124
\(25\) 0 0
\(26\) −3.84651e8 −0.244197
\(27\) 3.87420e8i 0.192450i
\(28\) − 1.13462e9i − 0.444962i
\(29\) −3.05609e9 −0.954069 −0.477034 0.878885i \(-0.658288\pi\)
−0.477034 + 0.878885i \(0.658288\pi\)
\(30\) 0 0
\(31\) 4.34655e9 0.879617 0.439808 0.898092i \(-0.355046\pi\)
0.439808 + 0.898092i \(0.355046\pi\)
\(32\) 1.07374e9i 0.176777i
\(33\) − 1.38135e7i − 0.00186193i
\(34\) −6.00044e9 −0.666147
\(35\) 0 0
\(36\) 2.17678e9 0.166667
\(37\) 9.81444e9i 0.628860i 0.949281 + 0.314430i \(0.101813\pi\)
−0.949281 + 0.314430i \(0.898187\pi\)
\(38\) 3.46283e9i 0.186568i
\(39\) 4.38142e9 0.199386
\(40\) 0 0
\(41\) −7.81935e9 −0.257084 −0.128542 0.991704i \(-0.541030\pi\)
−0.128542 + 0.991704i \(0.541030\pi\)
\(42\) 1.29240e10i 0.363310i
\(43\) − 2.58184e10i − 0.622852i −0.950270 0.311426i \(-0.899193\pi\)
0.950270 0.311426i \(-0.100807\pi\)
\(44\) −7.76135e7 −0.00161248
\(45\) 0 0
\(46\) −1.30531e10 −0.203136
\(47\) − 4.89513e9i − 0.0662412i −0.999451 0.0331206i \(-0.989455\pi\)
0.999451 0.0331206i \(-0.0105445\pi\)
\(48\) − 1.22306e10i − 0.144338i
\(49\) 2.01565e10 0.208037
\(50\) 0 0
\(51\) 6.83488e10 0.543907
\(52\) − 2.46177e10i − 0.172673i
\(53\) 4.29788e10i 0.266355i 0.991092 + 0.133178i \(0.0425181\pi\)
−0.991092 + 0.133178i \(0.957482\pi\)
\(54\) −2.47949e10 −0.136083
\(55\) 0 0
\(56\) 7.26156e10 0.314635
\(57\) − 3.94437e10i − 0.152332i
\(58\) − 1.95590e11i − 0.674628i
\(59\) 2.79921e11 0.863966 0.431983 0.901882i \(-0.357814\pi\)
0.431983 + 0.901882i \(0.357814\pi\)
\(60\) 0 0
\(61\) 2.71521e11 0.674777 0.337388 0.941366i \(-0.390456\pi\)
0.337388 + 0.941366i \(0.390456\pi\)
\(62\) 2.78179e11i 0.621983i
\(63\) − 1.47213e11i − 0.296641i
\(64\) −6.87195e10 −0.125000
\(65\) 0 0
\(66\) 8.84066e8 0.00131659
\(67\) − 2.60849e11i − 0.352292i −0.984364 0.176146i \(-0.943637\pi\)
0.984364 0.176146i \(-0.0563631\pi\)
\(68\) − 3.84028e11i − 0.471037i
\(69\) 1.48683e11 0.165860
\(70\) 0 0
\(71\) 1.75686e12 1.62764 0.813818 0.581120i \(-0.197385\pi\)
0.813818 + 0.581120i \(0.197385\pi\)
\(72\) 1.39314e11i 0.117851i
\(73\) 1.00814e12i 0.779687i 0.920881 + 0.389844i \(0.127471\pi\)
−0.920881 + 0.389844i \(0.872529\pi\)
\(74\) −6.28124e11 −0.444671
\(75\) 0 0
\(76\) −2.21621e11 −0.131924
\(77\) 5.24888e9i 0.00286997i
\(78\) 2.80411e11i 0.140987i
\(79\) −3.96314e12 −1.83427 −0.917136 0.398574i \(-0.869505\pi\)
−0.917136 + 0.398574i \(0.869505\pi\)
\(80\) 0 0
\(81\) 2.82430e11 0.111111
\(82\) − 5.00438e11i − 0.181786i
\(83\) 6.14648e11i 0.206357i 0.994663 + 0.103178i \(0.0329013\pi\)
−0.994663 + 0.103178i \(0.967099\pi\)
\(84\) −8.27137e11 −0.256899
\(85\) 0 0
\(86\) 1.65238e12 0.440423
\(87\) 2.22789e12i 0.550832i
\(88\) − 4.96726e9i − 0.00114020i
\(89\) −4.36298e12 −0.930569 −0.465284 0.885161i \(-0.654048\pi\)
−0.465284 + 0.885161i \(0.654048\pi\)
\(90\) 0 0
\(91\) −1.66486e12 −0.307332
\(92\) − 8.35396e11i − 0.143639i
\(93\) − 3.16863e12i − 0.507847i
\(94\) 3.13288e11 0.0468396
\(95\) 0 0
\(96\) 7.82758e11 0.102062
\(97\) − 4.72628e12i − 0.576107i −0.957614 0.288054i \(-0.906992\pi\)
0.957614 0.288054i \(-0.0930082\pi\)
\(98\) 1.29001e12i 0.147104i
\(99\) −1.00701e10 −0.00107499
\(100\) 0 0
\(101\) −3.99477e12 −0.374457 −0.187229 0.982316i \(-0.559951\pi\)
−0.187229 + 0.982316i \(0.559951\pi\)
\(102\) 4.37432e12i 0.384600i
\(103\) 3.72247e12i 0.307177i 0.988135 + 0.153589i \(0.0490831\pi\)
−0.988135 + 0.153589i \(0.950917\pi\)
\(104\) 1.57553e12 0.122099
\(105\) 0 0
\(106\) −2.75065e12 −0.188342
\(107\) 7.95158e12i 0.512223i 0.966647 + 0.256111i \(0.0824414\pi\)
−0.966647 + 0.256111i \(0.917559\pi\)
\(108\) − 1.58687e12i − 0.0962250i
\(109\) −1.82409e13 −1.04177 −0.520887 0.853625i \(-0.674399\pi\)
−0.520887 + 0.853625i \(0.674399\pi\)
\(110\) 0 0
\(111\) 7.15473e12 0.363073
\(112\) 4.64740e12i 0.222481i
\(113\) 6.77016e12i 0.305907i 0.988233 + 0.152953i \(0.0488784\pi\)
−0.988233 + 0.152953i \(0.951122\pi\)
\(114\) 2.52440e12 0.107715
\(115\) 0 0
\(116\) 1.25178e13 0.477034
\(117\) − 3.19406e12i − 0.115116i
\(118\) 1.79149e13i 0.610916i
\(119\) −2.59713e13 −0.838374
\(120\) 0 0
\(121\) −3.45224e13 −0.999990
\(122\) 1.73774e13i 0.477139i
\(123\) 5.70031e12i 0.148428i
\(124\) −1.78035e13 −0.439808
\(125\) 0 0
\(126\) 9.42160e12 0.209757
\(127\) 2.77305e13i 0.586454i 0.956043 + 0.293227i \(0.0947292\pi\)
−0.956043 + 0.293227i \(0.905271\pi\)
\(128\) − 4.39805e12i − 0.0883883i
\(129\) −1.88216e13 −0.359604
\(130\) 0 0
\(131\) −6.44782e12 −0.111468 −0.0557339 0.998446i \(-0.517750\pi\)
−0.0557339 + 0.998446i \(0.517750\pi\)
\(132\) 5.65802e10i 0 0.000930966i
\(133\) 1.49879e13i 0.234804i
\(134\) 1.66943e13 0.249108
\(135\) 0 0
\(136\) 2.45778e13 0.333073
\(137\) 8.56757e13i 1.10707i 0.832827 + 0.553534i \(0.186721\pi\)
−0.832827 + 0.553534i \(0.813279\pi\)
\(138\) 9.51569e12i 0.117281i
\(139\) 3.77579e10 0.000444029 0 0.000222014 1.00000i \(-0.499929\pi\)
0.000222014 1.00000i \(0.499929\pi\)
\(140\) 0 0
\(141\) −3.56855e12 −0.0382444
\(142\) 1.12439e14i 1.15091i
\(143\) 1.13884e11i 0.00111373i
\(144\) −8.91610e12 −0.0833333
\(145\) 0 0
\(146\) −6.45207e13 −0.551322
\(147\) − 1.46941e13i − 0.120110i
\(148\) − 4.01999e13i − 0.314430i
\(149\) −1.52859e14 −1.14441 −0.572204 0.820111i \(-0.693912\pi\)
−0.572204 + 0.820111i \(0.693912\pi\)
\(150\) 0 0
\(151\) −1.12168e14 −0.770052 −0.385026 0.922906i \(-0.625808\pi\)
−0.385026 + 0.922906i \(0.625808\pi\)
\(152\) − 1.41837e13i − 0.0932840i
\(153\) − 4.98262e13i − 0.314025i
\(154\) −3.35929e11 −0.00202937
\(155\) 0 0
\(156\) −1.79463e13 −0.0996931
\(157\) 1.16442e14i 0.620528i 0.950650 + 0.310264i \(0.100417\pi\)
−0.950650 + 0.310264i \(0.899583\pi\)
\(158\) − 2.53641e14i − 1.29703i
\(159\) 3.13316e13 0.153780
\(160\) 0 0
\(161\) −5.64966e13 −0.255655
\(162\) 1.80755e13i 0.0785674i
\(163\) − 1.74797e14i − 0.729988i −0.931010 0.364994i \(-0.881071\pi\)
0.931010 0.364994i \(-0.118929\pi\)
\(164\) 3.20281e13 0.128542
\(165\) 0 0
\(166\) −3.93375e13 −0.145916
\(167\) − 4.74353e14i − 1.69217i −0.533046 0.846086i \(-0.678953\pi\)
0.533046 0.846086i \(-0.321047\pi\)
\(168\) − 5.29367e13i − 0.181655i
\(169\) 2.66753e14 0.880736
\(170\) 0 0
\(171\) −2.87545e13 −0.0879490
\(172\) 1.05752e14i 0.311426i
\(173\) − 3.98898e14i − 1.13126i −0.824659 0.565630i \(-0.808633\pi\)
0.824659 0.565630i \(-0.191367\pi\)
\(174\) −1.42585e14 −0.389497
\(175\) 0 0
\(176\) 3.17905e11 0.000806241 0
\(177\) − 2.04062e14i − 0.498811i
\(178\) − 2.79231e14i − 0.658011i
\(179\) −5.98063e14 −1.35895 −0.679473 0.733700i \(-0.737792\pi\)
−0.679473 + 0.733700i \(0.737792\pi\)
\(180\) 0 0
\(181\) −2.92373e14 −0.618054 −0.309027 0.951053i \(-0.600003\pi\)
−0.309027 + 0.951053i \(0.600003\pi\)
\(182\) − 1.06551e14i − 0.217317i
\(183\) − 1.97939e14i − 0.389582i
\(184\) 5.34654e13 0.101568
\(185\) 0 0
\(186\) 2.02793e14 0.359102
\(187\) 1.77656e12i 0.00303815i
\(188\) 2.00505e13i 0.0331206i
\(189\) −1.07318e14 −0.171266
\(190\) 0 0
\(191\) −5.95959e14 −0.888178 −0.444089 0.895983i \(-0.646473\pi\)
−0.444089 + 0.895983i \(0.646473\pi\)
\(192\) 5.00965e13i 0.0721688i
\(193\) − 8.68685e14i − 1.20987i −0.796274 0.604937i \(-0.793198\pi\)
0.796274 0.604937i \(-0.206802\pi\)
\(194\) 3.02482e14 0.407370
\(195\) 0 0
\(196\) −8.25609e13 −0.104018
\(197\) 3.44315e14i 0.419687i 0.977735 + 0.209843i \(0.0672954\pi\)
−0.977735 + 0.209843i \(0.932705\pi\)
\(198\) − 6.44484e11i 0 0.000760131i
\(199\) −7.86343e14 −0.897567 −0.448784 0.893640i \(-0.648143\pi\)
−0.448784 + 0.893640i \(0.648143\pi\)
\(200\) 0 0
\(201\) −1.90159e14 −0.203396
\(202\) − 2.55665e14i − 0.264781i
\(203\) − 8.46557e14i − 0.849048i
\(204\) −2.79956e14 −0.271953
\(205\) 0 0
\(206\) −2.38238e14 −0.217207
\(207\) − 1.08390e14i − 0.0957592i
\(208\) 1.00834e14i 0.0863367i
\(209\) 1.02525e12 0.000850897 0
\(210\) 0 0
\(211\) −1.52192e15 −1.18729 −0.593645 0.804727i \(-0.702312\pi\)
−0.593645 + 0.804727i \(0.702312\pi\)
\(212\) − 1.76041e14i − 0.133178i
\(213\) − 1.28075e15i − 0.939716i
\(214\) −5.08901e14 −0.362196
\(215\) 0 0
\(216\) 1.01560e14 0.0680414
\(217\) 1.20402e15i 0.782791i
\(218\) − 1.16742e15i − 0.736646i
\(219\) 7.34931e14 0.450153
\(220\) 0 0
\(221\) −5.63495e14 −0.325342
\(222\) 4.57902e14i 0.256731i
\(223\) − 3.14165e15i − 1.71071i −0.518044 0.855354i \(-0.673340\pi\)
0.518044 0.855354i \(-0.326660\pi\)
\(224\) −2.97433e14 −0.157318
\(225\) 0 0
\(226\) −4.33290e14 −0.216309
\(227\) 1.18781e15i 0.576206i 0.957599 + 0.288103i \(0.0930245\pi\)
−0.957599 + 0.288103i \(0.906975\pi\)
\(228\) 1.61562e14i 0.0761661i
\(229\) 3.53988e14 0.162203 0.0811014 0.996706i \(-0.474156\pi\)
0.0811014 + 0.996706i \(0.474156\pi\)
\(230\) 0 0
\(231\) 3.82644e12 0.00165698
\(232\) 8.01137e14i 0.337314i
\(233\) − 1.94804e15i − 0.797600i −0.917038 0.398800i \(-0.869427\pi\)
0.917038 0.398800i \(-0.130573\pi\)
\(234\) 2.04420e14 0.0813990
\(235\) 0 0
\(236\) −1.14655e15 −0.431983
\(237\) 2.88913e15i 1.05902i
\(238\) − 1.66216e15i − 0.592820i
\(239\) −2.68201e15 −0.930839 −0.465419 0.885090i \(-0.654097\pi\)
−0.465419 + 0.885090i \(0.654097\pi\)
\(240\) 0 0
\(241\) −3.64825e15 −1.19943 −0.599713 0.800215i \(-0.704719\pi\)
−0.599713 + 0.800215i \(0.704719\pi\)
\(242\) − 2.20943e15i − 0.707099i
\(243\) − 2.05891e14i − 0.0641500i
\(244\) −1.11215e15 −0.337388
\(245\) 0 0
\(246\) −3.64820e14 −0.104954
\(247\) 3.25191e14i 0.0911188i
\(248\) − 1.13942e15i − 0.310991i
\(249\) 4.48078e14 0.119140
\(250\) 0 0
\(251\) −5.03958e15 −1.27208 −0.636041 0.771655i \(-0.719429\pi\)
−0.636041 + 0.771655i \(0.719429\pi\)
\(252\) 6.02983e14i 0.148321i
\(253\) 3.86465e12i 0 0.000926459i
\(254\) −1.77475e15 −0.414686
\(255\) 0 0
\(256\) 2.81475e14 0.0625000
\(257\) 3.98091e15i 0.861821i 0.902395 + 0.430911i \(0.141808\pi\)
−0.902395 + 0.430911i \(0.858192\pi\)
\(258\) − 1.20458e15i − 0.254278i
\(259\) −2.71866e15 −0.559637
\(260\) 0 0
\(261\) 1.62413e15 0.318023
\(262\) − 4.12661e14i − 0.0788197i
\(263\) 1.19256e15i 0.222213i 0.993809 + 0.111106i \(0.0354394\pi\)
−0.993809 + 0.111106i \(0.964561\pi\)
\(264\) −3.62113e12 −0.000658293 0
\(265\) 0 0
\(266\) −9.59225e14 −0.166031
\(267\) 3.18061e15i 0.537264i
\(268\) 1.06844e15i 0.176146i
\(269\) −7.56846e15 −1.21792 −0.608958 0.793202i \(-0.708412\pi\)
−0.608958 + 0.793202i \(0.708412\pi\)
\(270\) 0 0
\(271\) 5.62339e15 0.862378 0.431189 0.902262i \(-0.358094\pi\)
0.431189 + 0.902262i \(0.358094\pi\)
\(272\) 1.57298e15i 0.235519i
\(273\) 1.21368e15i 0.177438i
\(274\) −5.48325e15 −0.782815
\(275\) 0 0
\(276\) −6.09004e14 −0.0829299
\(277\) 8.86600e15i 1.17926i 0.807674 + 0.589629i \(0.200726\pi\)
−0.807674 + 0.589629i \(0.799274\pi\)
\(278\) 2.41650e12i 0 0.000313976i
\(279\) −2.30993e15 −0.293206
\(280\) 0 0
\(281\) −3.47521e15 −0.421104 −0.210552 0.977583i \(-0.567526\pi\)
−0.210552 + 0.977583i \(0.567526\pi\)
\(282\) − 2.28387e14i − 0.0270429i
\(283\) 4.91812e14i 0.0569098i 0.999595 + 0.0284549i \(0.00905869\pi\)
−0.999595 + 0.0284549i \(0.990941\pi\)
\(284\) −7.19609e15 −0.813818
\(285\) 0 0
\(286\) −7.28861e12 −0.000787527 0
\(287\) − 2.16601e15i − 0.228785i
\(288\) − 5.70630e14i − 0.0589256i
\(289\) 1.11423e15 0.112496
\(290\) 0 0
\(291\) −3.44546e15 −0.332616
\(292\) − 4.12932e15i − 0.389844i
\(293\) 5.30726e15i 0.490039i 0.969518 + 0.245019i \(0.0787943\pi\)
−0.969518 + 0.245019i \(0.921206\pi\)
\(294\) 9.40420e14 0.0849306
\(295\) 0 0
\(296\) 2.57280e15 0.222336
\(297\) 7.34108e12i 0 0.000620644i
\(298\) − 9.78299e15i − 0.809219i
\(299\) −1.22580e15 −0.0992104
\(300\) 0 0
\(301\) 7.15187e15 0.554290
\(302\) − 7.17877e15i − 0.544509i
\(303\) 2.91218e15i 0.216193i
\(304\) 9.07759e14 0.0659618
\(305\) 0 0
\(306\) 3.18888e15 0.222049
\(307\) − 1.38973e15i − 0.0947397i −0.998877 0.0473698i \(-0.984916\pi\)
0.998877 0.0473698i \(-0.0150839\pi\)
\(308\) − 2.14994e13i − 0.00143498i
\(309\) 2.71368e15 0.177349
\(310\) 0 0
\(311\) −2.27450e16 −1.42542 −0.712710 0.701459i \(-0.752532\pi\)
−0.712710 + 0.701459i \(0.752532\pi\)
\(312\) − 1.14856e15i − 0.0704936i
\(313\) − 2.24753e16i − 1.35104i −0.737342 0.675520i \(-0.763919\pi\)
0.737342 0.675520i \(-0.236081\pi\)
\(314\) −7.45228e15 −0.438780
\(315\) 0 0
\(316\) 1.62330e16 0.917136
\(317\) − 2.41947e16i − 1.33917i −0.742737 0.669583i \(-0.766473\pi\)
0.742737 0.669583i \(-0.233527\pi\)
\(318\) 2.00522e15i 0.108739i
\(319\) −5.79087e13 −0.00307684
\(320\) 0 0
\(321\) 5.79670e15 0.295732
\(322\) − 3.61578e15i − 0.180775i
\(323\) 5.07287e15i 0.248563i
\(324\) −1.15683e15 −0.0555556
\(325\) 0 0
\(326\) 1.11870e16 0.516179
\(327\) 1.32976e16i 0.601469i
\(328\) 2.04980e15i 0.0908930i
\(329\) 1.35598e15 0.0589496
\(330\) 0 0
\(331\) 8.02999e15 0.335609 0.167804 0.985820i \(-0.446332\pi\)
0.167804 + 0.985820i \(0.446332\pi\)
\(332\) − 2.51760e15i − 0.103178i
\(333\) − 5.21579e15i − 0.209620i
\(334\) 3.03586e16 1.19655
\(335\) 0 0
\(336\) 3.38795e15 0.128449
\(337\) 3.38160e16i 1.25756i 0.777585 + 0.628778i \(0.216445\pi\)
−0.777585 + 0.628778i \(0.783555\pi\)
\(338\) 1.70722e16i 0.622774i
\(339\) 4.93544e15 0.176615
\(340\) 0 0
\(341\) 8.23610e13 0.00283673
\(342\) − 1.84029e15i − 0.0621893i
\(343\) 3.24223e16i 1.07506i
\(344\) −6.76814e15 −0.220211
\(345\) 0 0
\(346\) 2.55295e16 0.799921
\(347\) − 3.33636e16i − 1.02596i −0.858400 0.512981i \(-0.828541\pi\)
0.858400 0.512981i \(-0.171459\pi\)
\(348\) − 9.12545e15i − 0.275416i
\(349\) 4.09490e16 1.21305 0.606524 0.795065i \(-0.292564\pi\)
0.606524 + 0.795065i \(0.292564\pi\)
\(350\) 0 0
\(351\) −2.32847e15 −0.0664620
\(352\) 2.03459e13i 0 0.000570098i
\(353\) 3.12548e16i 0.859766i 0.902884 + 0.429883i \(0.141445\pi\)
−0.902884 + 0.429883i \(0.858555\pi\)
\(354\) 1.30600e16 0.352713
\(355\) 0 0
\(356\) 1.78708e16 0.465284
\(357\) 1.89330e16i 0.484035i
\(358\) − 3.82760e16i − 0.960920i
\(359\) 3.19306e16 0.787216 0.393608 0.919278i \(-0.371227\pi\)
0.393608 + 0.919278i \(0.371227\pi\)
\(360\) 0 0
\(361\) −3.91255e16 −0.930385
\(362\) − 1.87119e16i − 0.437030i
\(363\) 2.51668e16i 0.577344i
\(364\) 6.81926e15 0.153666
\(365\) 0 0
\(366\) 1.26681e16 0.275476
\(367\) − 1.99266e16i − 0.425701i −0.977085 0.212850i \(-0.931725\pi\)
0.977085 0.212850i \(-0.0682747\pi\)
\(368\) 3.42178e15i 0.0718194i
\(369\) 4.15552e15 0.0856948
\(370\) 0 0
\(371\) −1.19054e16 −0.237036
\(372\) 1.29787e16i 0.253923i
\(373\) 8.04217e16i 1.54620i 0.634283 + 0.773101i \(0.281295\pi\)
−0.634283 + 0.773101i \(0.718705\pi\)
\(374\) −1.13700e14 −0.00214830
\(375\) 0 0
\(376\) −1.28323e15 −0.0234198
\(377\) − 1.83677e16i − 0.329485i
\(378\) − 6.86835e15i − 0.121103i
\(379\) 1.03786e17 1.79880 0.899401 0.437124i \(-0.144003\pi\)
0.899401 + 0.437124i \(0.144003\pi\)
\(380\) 0 0
\(381\) 2.02156e16 0.338589
\(382\) − 3.81414e16i − 0.628036i
\(383\) 1.04417e17i 1.69036i 0.534479 + 0.845182i \(0.320508\pi\)
−0.534479 + 0.845182i \(0.679492\pi\)
\(384\) −3.20618e15 −0.0510310
\(385\) 0 0
\(386\) 5.55959e16 0.855510
\(387\) 1.37210e16i 0.207617i
\(388\) 1.93589e16i 0.288054i
\(389\) 3.90559e16 0.571497 0.285749 0.958305i \(-0.407758\pi\)
0.285749 + 0.958305i \(0.407758\pi\)
\(390\) 0 0
\(391\) −1.91221e16 −0.270637
\(392\) − 5.28390e15i − 0.0735521i
\(393\) 4.70046e15i 0.0643560i
\(394\) −2.20362e16 −0.296763
\(395\) 0 0
\(396\) 4.12470e13 0.000537494 0
\(397\) − 1.04950e17i − 1.34537i −0.739928 0.672686i \(-0.765141\pi\)
0.739928 0.672686i \(-0.234859\pi\)
\(398\) − 5.03259e16i − 0.634676i
\(399\) 1.09262e16 0.135564
\(400\) 0 0
\(401\) −7.38952e16 −0.887519 −0.443760 0.896146i \(-0.646356\pi\)
−0.443760 + 0.896146i \(0.646356\pi\)
\(402\) − 1.21702e16i − 0.143823i
\(403\) 2.61235e16i 0.303773i
\(404\) 1.63626e16 0.187229
\(405\) 0 0
\(406\) 5.41797e16 0.600368
\(407\) 1.85970e14i 0.00202805i
\(408\) − 1.79172e16i − 0.192300i
\(409\) 6.25131e16 0.660343 0.330171 0.943921i \(-0.392893\pi\)
0.330171 + 0.943921i \(0.392893\pi\)
\(410\) 0 0
\(411\) 6.24576e16 0.639166
\(412\) − 1.52472e16i − 0.153589i
\(413\) 7.75398e16i 0.768864i
\(414\) 6.93694e15 0.0677120
\(415\) 0 0
\(416\) −6.45338e15 −0.0610493
\(417\) − 2.75255e13i 0 0.000256360i
\(418\) 6.56157e13i 0 0.000601675i
\(419\) 1.52359e16 0.137556 0.0687778 0.997632i \(-0.478090\pi\)
0.0687778 + 0.997632i \(0.478090\pi\)
\(420\) 0 0
\(421\) −1.23261e17 −1.07892 −0.539461 0.842010i \(-0.681372\pi\)
−0.539461 + 0.842010i \(0.681372\pi\)
\(422\) − 9.74032e16i − 0.839541i
\(423\) 2.60147e15i 0.0220804i
\(424\) 1.12666e16 0.0941708
\(425\) 0 0
\(426\) 8.19679e16 0.664479
\(427\) 7.52131e16i 0.600499i
\(428\) − 3.25697e16i − 0.256111i
\(429\) 8.30218e13 0.000643013 0
\(430\) 0 0
\(431\) 5.11634e15 0.0384465 0.0192233 0.999815i \(-0.493881\pi\)
0.0192233 + 0.999815i \(0.493881\pi\)
\(432\) 6.49984e15i 0.0481125i
\(433\) 9.71820e16i 0.708622i 0.935128 + 0.354311i \(0.115285\pi\)
−0.935128 + 0.354311i \(0.884715\pi\)
\(434\) −7.70574e16 −0.553517
\(435\) 0 0
\(436\) 7.47147e16 0.520887
\(437\) 1.10353e16i 0.0757973i
\(438\) 4.70356e16i 0.318306i
\(439\) 1.31064e17 0.873903 0.436951 0.899485i \(-0.356058\pi\)
0.436951 + 0.899485i \(0.356058\pi\)
\(440\) 0 0
\(441\) −1.07120e16 −0.0693455
\(442\) − 3.60637e16i − 0.230052i
\(443\) 1.74771e17i 1.09861i 0.835621 + 0.549306i \(0.185108\pi\)
−0.835621 + 0.549306i \(0.814892\pi\)
\(444\) −2.93058e16 −0.181536
\(445\) 0 0
\(446\) 2.01065e17 1.20965
\(447\) 1.11434e17i 0.660724i
\(448\) − 1.90357e16i − 0.111240i
\(449\) −2.94238e17 −1.69472 −0.847358 0.531021i \(-0.821808\pi\)
−0.847358 + 0.531021i \(0.821808\pi\)
\(450\) 0 0
\(451\) −1.48166e14 −0.000829087 0
\(452\) − 2.77306e16i − 0.152953i
\(453\) 8.17707e16i 0.444590i
\(454\) −7.60196e16 −0.407439
\(455\) 0 0
\(456\) −1.03399e16 −0.0538576
\(457\) 8.34052e16i 0.428290i 0.976802 + 0.214145i \(0.0686964\pi\)
−0.976802 + 0.214145i \(0.931304\pi\)
\(458\) 2.26552e16i 0.114695i
\(459\) −3.63233e16 −0.181302
\(460\) 0 0
\(461\) 1.16806e17 0.566773 0.283387 0.959006i \(-0.408542\pi\)
0.283387 + 0.959006i \(0.408542\pi\)
\(462\) 2.44892e14i 0.00117166i
\(463\) − 4.15144e16i − 0.195849i −0.995194 0.0979247i \(-0.968780\pi\)
0.995194 0.0979247i \(-0.0312204\pi\)
\(464\) −5.12727e16 −0.238517
\(465\) 0 0
\(466\) 1.24675e17 0.563988
\(467\) 2.61415e17i 1.16619i 0.812403 + 0.583096i \(0.198159\pi\)
−0.812403 + 0.583096i \(0.801841\pi\)
\(468\) 1.30828e16i 0.0575578i
\(469\) 7.22568e16 0.313513
\(470\) 0 0
\(471\) 8.48861e16 0.358262
\(472\) − 7.33795e16i − 0.305458i
\(473\) − 4.89223e14i − 0.00200867i
\(474\) −1.84904e17 −0.748839
\(475\) 0 0
\(476\) 1.06378e17 0.419187
\(477\) − 2.28407e16i − 0.0887851i
\(478\) − 1.71649e17i − 0.658203i
\(479\) 1.56831e15 0.00593270 0.00296635 0.999996i \(-0.499056\pi\)
0.00296635 + 0.999996i \(0.499056\pi\)
\(480\) 0 0
\(481\) −5.89865e16 −0.217175
\(482\) − 2.33488e17i − 0.848122i
\(483\) 4.11860e16i 0.147602i
\(484\) 1.41404e17 0.499995
\(485\) 0 0
\(486\) 1.31770e16 0.0453609
\(487\) 1.68831e17i 0.573474i 0.958009 + 0.286737i \(0.0925706\pi\)
−0.958009 + 0.286737i \(0.907429\pi\)
\(488\) − 7.11777e16i − 0.238570i
\(489\) −1.27427e17 −0.421459
\(490\) 0 0
\(491\) −2.10028e16 −0.0676469 −0.0338234 0.999428i \(-0.510768\pi\)
−0.0338234 + 0.999428i \(0.510768\pi\)
\(492\) − 2.33485e16i − 0.0742139i
\(493\) − 2.86530e17i − 0.898803i
\(494\) −2.08122e16 −0.0644307
\(495\) 0 0
\(496\) 7.29230e16 0.219904
\(497\) 4.86661e17i 1.44847i
\(498\) 2.86770e16i 0.0842448i
\(499\) 2.04183e17 0.592060 0.296030 0.955179i \(-0.404337\pi\)
0.296030 + 0.955179i \(0.404337\pi\)
\(500\) 0 0
\(501\) −3.45803e17 −0.976976
\(502\) − 3.22533e17i − 0.899498i
\(503\) − 1.02017e17i − 0.280854i −0.990091 0.140427i \(-0.955153\pi\)
0.990091 0.140427i \(-0.0448475\pi\)
\(504\) −3.85909e16 −0.104878
\(505\) 0 0
\(506\) −2.47337e14 −0.000655106 0
\(507\) − 1.94463e17i − 0.508493i
\(508\) − 1.13584e17i − 0.293227i
\(509\) −1.49904e17 −0.382074 −0.191037 0.981583i \(-0.561185\pi\)
−0.191037 + 0.981583i \(0.561185\pi\)
\(510\) 0 0
\(511\) −2.79260e17 −0.693862
\(512\) 1.80144e16i 0.0441942i
\(513\) 2.09620e16i 0.0507774i
\(514\) −2.54778e17 −0.609400
\(515\) 0 0
\(516\) 7.70934e16 0.179802
\(517\) − 9.27559e13i 0 0.000213625i
\(518\) − 1.73994e17i − 0.395723i
\(519\) −2.90797e17 −0.653133
\(520\) 0 0
\(521\) −5.29322e17 −1.15951 −0.579755 0.814791i \(-0.696852\pi\)
−0.579755 + 0.814791i \(0.696852\pi\)
\(522\) 1.03945e17i 0.224876i
\(523\) − 2.76315e17i − 0.590396i −0.955436 0.295198i \(-0.904614\pi\)
0.955436 0.295198i \(-0.0953856\pi\)
\(524\) 2.64103e16 0.0557339
\(525\) 0 0
\(526\) −7.63240e16 −0.157128
\(527\) 4.07519e17i 0.828664i
\(528\) − 2.31753e14i 0 0.000465483i
\(529\) 4.62439e17 0.917472
\(530\) 0 0
\(531\) −1.48761e17 −0.287989
\(532\) − 6.13904e16i − 0.117402i
\(533\) − 4.69957e16i − 0.0887833i
\(534\) −2.03559e17 −0.379903
\(535\) 0 0
\(536\) −6.83800e16 −0.124554
\(537\) 4.35988e17i 0.784588i
\(538\) − 4.84381e17i − 0.861197i
\(539\) 3.81937e14 0.000670910 0
\(540\) 0 0
\(541\) −9.07438e17 −1.55609 −0.778045 0.628209i \(-0.783788\pi\)
−0.778045 + 0.628209i \(0.783788\pi\)
\(542\) 3.59897e17i 0.609793i
\(543\) 2.13140e17i 0.356834i
\(544\) −1.00671e17 −0.166537
\(545\) 0 0
\(546\) −7.76756e16 −0.125468
\(547\) − 6.24262e17i − 0.996436i −0.867052 0.498218i \(-0.833988\pi\)
0.867052 0.498218i \(-0.166012\pi\)
\(548\) − 3.50928e17i − 0.553534i
\(549\) −1.44298e17 −0.224926
\(550\) 0 0
\(551\) −1.65355e17 −0.251728
\(552\) − 3.89763e16i − 0.0586403i
\(553\) − 1.09782e18i − 1.63236i
\(554\) −5.67424e17 −0.833862
\(555\) 0 0
\(556\) −1.54656e14 −0.000222014 0
\(557\) 5.70849e17i 0.809958i 0.914326 + 0.404979i \(0.132721\pi\)
−0.914326 + 0.404979i \(0.867279\pi\)
\(558\) − 1.47836e17i − 0.207328i
\(559\) 1.55173e17 0.215100
\(560\) 0 0
\(561\) 1.29511e15 0.00175408
\(562\) − 2.22413e17i − 0.297766i
\(563\) 5.41359e17i 0.716442i 0.933637 + 0.358221i \(0.116617\pi\)
−0.933637 + 0.358221i \(0.883383\pi\)
\(564\) 1.46168e16 0.0191222
\(565\) 0 0
\(566\) −3.14759e16 −0.0402413
\(567\) 7.82348e16i 0.0988804i
\(568\) − 4.60549e17i − 0.575456i
\(569\) −1.74017e17 −0.214962 −0.107481 0.994207i \(-0.534279\pi\)
−0.107481 + 0.994207i \(0.534279\pi\)
\(570\) 0 0
\(571\) −1.05427e18 −1.27297 −0.636485 0.771289i \(-0.719612\pi\)
−0.636485 + 0.771289i \(0.719612\pi\)
\(572\) − 4.66471e14i 0 0.000556865i
\(573\) 4.34454e17i 0.512790i
\(574\) 1.38625e17 0.161776
\(575\) 0 0
\(576\) 3.65203e16 0.0416667
\(577\) − 1.01793e18i − 1.14835i −0.818732 0.574176i \(-0.805323\pi\)
0.818732 0.574176i \(-0.194677\pi\)
\(578\) 7.13107e16i 0.0795470i
\(579\) −6.33272e17 −0.698521
\(580\) 0 0
\(581\) −1.70261e17 −0.183642
\(582\) − 2.20509e17i − 0.235195i
\(583\) 8.14389e14i 0 0.000858986i
\(584\) 2.64277e17 0.275661
\(585\) 0 0
\(586\) −3.39664e17 −0.346510
\(587\) 6.05137e17i 0.610529i 0.952268 + 0.305265i \(0.0987449\pi\)
−0.952268 + 0.305265i \(0.901255\pi\)
\(588\) 6.01869e16i 0.0600550i
\(589\) 2.35177e17 0.232084
\(590\) 0 0
\(591\) 2.51006e17 0.242306
\(592\) 1.64659e17i 0.157215i
\(593\) − 1.97380e18i − 1.86401i −0.362445 0.932005i \(-0.618058\pi\)
0.362445 0.932005i \(-0.381942\pi\)
\(594\) −4.69829e14 −0.000438862 0
\(595\) 0 0
\(596\) 6.26112e17 0.572204
\(597\) 5.73244e17i 0.518211i
\(598\) − 7.84513e16i − 0.0701524i
\(599\) 3.53981e17 0.313116 0.156558 0.987669i \(-0.449960\pi\)
0.156558 + 0.987669i \(0.449960\pi\)
\(600\) 0 0
\(601\) −5.26298e17 −0.455562 −0.227781 0.973712i \(-0.573147\pi\)
−0.227781 + 0.973712i \(0.573147\pi\)
\(602\) 4.57720e17i 0.391942i
\(603\) 1.38626e17i 0.117431i
\(604\) 4.59441e17 0.385026
\(605\) 0 0
\(606\) −1.86380e17 −0.152872
\(607\) − 2.29959e18i − 1.86605i −0.359809 0.933026i \(-0.617158\pi\)
0.359809 0.933026i \(-0.382842\pi\)
\(608\) 5.80966e16i 0.0466420i
\(609\) −6.17140e17 −0.490198
\(610\) 0 0
\(611\) 2.94206e16 0.0228762
\(612\) 2.04088e17i 0.157012i
\(613\) − 2.10907e18i − 1.60545i −0.596348 0.802726i \(-0.703382\pi\)
0.596348 0.802726i \(-0.296618\pi\)
\(614\) 8.89429e16 0.0669911
\(615\) 0 0
\(616\) 1.37596e15 0.00101469
\(617\) 1.28616e18i 0.938517i 0.883061 + 0.469259i \(0.155479\pi\)
−0.883061 + 0.469259i \(0.844521\pi\)
\(618\) 1.73675e17i 0.125405i
\(619\) 1.69276e18 1.20950 0.604750 0.796415i \(-0.293273\pi\)
0.604750 + 0.796415i \(0.293273\pi\)
\(620\) 0 0
\(621\) −7.90160e16 −0.0552866
\(622\) − 1.45568e18i − 1.00792i
\(623\) − 1.20857e18i − 0.828135i
\(624\) 7.35080e16 0.0498465
\(625\) 0 0
\(626\) 1.43842e18 0.955329
\(627\) − 7.47404e14i 0 0.000491266i
\(628\) − 4.76946e17i − 0.310264i
\(629\) −9.20171e17 −0.592433
\(630\) 0 0
\(631\) −3.34107e17 −0.210715 −0.105357 0.994434i \(-0.533599\pi\)
−0.105357 + 0.994434i \(0.533599\pi\)
\(632\) 1.03891e18i 0.648513i
\(633\) 1.10948e18i 0.685483i
\(634\) 1.54846e18 0.946933
\(635\) 0 0
\(636\) −1.28334e17 −0.0768902
\(637\) 1.21144e17i 0.0718448i
\(638\) − 3.70616e15i − 0.00217565i
\(639\) −9.33666e17 −0.542545
\(640\) 0 0
\(641\) 2.16392e18 1.23215 0.616075 0.787688i \(-0.288722\pi\)
0.616075 + 0.787688i \(0.288722\pi\)
\(642\) 3.70989e17i 0.209114i
\(643\) − 3.69069e16i − 0.0205938i −0.999947 0.0102969i \(-0.996722\pi\)
0.999947 0.0102969i \(-0.00327766\pi\)
\(644\) 2.31410e17 0.127827
\(645\) 0 0
\(646\) −3.24664e17 −0.175761
\(647\) 1.03998e18i 0.557372i 0.960382 + 0.278686i \(0.0898989\pi\)
−0.960382 + 0.278686i \(0.910101\pi\)
\(648\) − 7.40372e16i − 0.0392837i
\(649\) 5.30410e15 0.00278626
\(650\) 0 0
\(651\) 8.77732e17 0.451945
\(652\) 7.15970e17i 0.364994i
\(653\) 8.43682e17i 0.425837i 0.977070 + 0.212918i \(0.0682968\pi\)
−0.977070 + 0.212918i \(0.931703\pi\)
\(654\) −8.51047e17 −0.425303
\(655\) 0 0
\(656\) −1.31187e17 −0.0642711
\(657\) − 5.35765e17i − 0.259896i
\(658\) 8.67829e16i 0.0416837i
\(659\) −1.97563e18 −0.939614 −0.469807 0.882769i \(-0.655677\pi\)
−0.469807 + 0.882769i \(0.655677\pi\)
\(660\) 0 0
\(661\) −2.83369e17 −0.132143 −0.0660713 0.997815i \(-0.521046\pi\)
−0.0660713 + 0.997815i \(0.521046\pi\)
\(662\) 5.13920e17i 0.237311i
\(663\) 4.10788e17i 0.187837i
\(664\) 1.61126e17 0.0729582
\(665\) 0 0
\(666\) 3.33811e17 0.148224
\(667\) − 6.23303e17i − 0.274083i
\(668\) 1.94295e18i 0.846086i
\(669\) −2.29026e18 −0.987678
\(670\) 0 0
\(671\) 5.14495e15 0.00217613
\(672\) 2.16829e17i 0.0908274i
\(673\) 1.27613e18i 0.529415i 0.964329 + 0.264708i \(0.0852754\pi\)
−0.964329 + 0.264708i \(0.914725\pi\)
\(674\) −2.16422e18 −0.889227
\(675\) 0 0
\(676\) −1.09262e18 −0.440368
\(677\) − 2.37398e18i − 0.947658i −0.880617 0.473829i \(-0.842872\pi\)
0.880617 0.473829i \(-0.157128\pi\)
\(678\) 3.15868e17i 0.124886i
\(679\) 1.30921e18 0.512691
\(680\) 0 0
\(681\) 8.65911e17 0.332673
\(682\) 5.27110e15i 0.00200587i
\(683\) 4.49062e18i 1.69267i 0.532652 + 0.846335i \(0.321196\pi\)
−0.532652 + 0.846335i \(0.678804\pi\)
\(684\) 1.17778e17 0.0439745
\(685\) 0 0
\(686\) −2.07503e18 −0.760182
\(687\) − 2.58057e17i − 0.0936478i
\(688\) − 4.33161e17i − 0.155713i
\(689\) −2.58310e17 −0.0919850
\(690\) 0 0
\(691\) 3.71159e18 1.29704 0.648519 0.761198i \(-0.275389\pi\)
0.648519 + 0.761198i \(0.275389\pi\)
\(692\) 1.63389e18i 0.565630i
\(693\) − 2.78947e15i 0 0.000956656i
\(694\) 2.13527e18 0.725465
\(695\) 0 0
\(696\) 5.84029e17 0.194748
\(697\) − 7.33118e17i − 0.242193i
\(698\) 2.62073e18i 0.857754i
\(699\) −1.42012e18 −0.460495
\(700\) 0 0
\(701\) 2.99557e18 0.953483 0.476741 0.879044i \(-0.341818\pi\)
0.476741 + 0.879044i \(0.341818\pi\)
\(702\) − 1.49022e17i − 0.0469958i
\(703\) 5.31026e17i 0.165923i
\(704\) −1.30214e15 −0.000403120 0
\(705\) 0 0
\(706\) −2.00030e18 −0.607947
\(707\) − 1.10658e18i − 0.333238i
\(708\) 8.35838e17i 0.249406i
\(709\) 5.18607e18 1.53334 0.766668 0.642043i \(-0.221913\pi\)
0.766668 + 0.642043i \(0.221913\pi\)
\(710\) 0 0
\(711\) 2.10618e18 0.611424
\(712\) 1.14373e18i 0.329006i
\(713\) 8.86497e17i 0.252694i
\(714\) −1.21171e18 −0.342265
\(715\) 0 0
\(716\) 2.44967e18 0.679473
\(717\) 1.95519e18i 0.537420i
\(718\) 2.04356e18i 0.556645i
\(719\) −1.81508e18 −0.489957 −0.244979 0.969529i \(-0.578781\pi\)
−0.244979 + 0.969529i \(0.578781\pi\)
\(720\) 0 0
\(721\) −1.03115e18 −0.273364
\(722\) − 2.50403e18i − 0.657881i
\(723\) 2.65957e18i 0.692489i
\(724\) 1.19756e18 0.309027
\(725\) 0 0
\(726\) −1.61067e18 −0.408244
\(727\) − 2.62578e18i − 0.659606i −0.944050 0.329803i \(-0.893018\pi\)
0.944050 0.329803i \(-0.106982\pi\)
\(728\) 4.36432e17i 0.108658i
\(729\) −1.50095e17 −0.0370370
\(730\) 0 0
\(731\) 2.42065e18 0.586773
\(732\) 8.10758e17i 0.194791i
\(733\) − 8.57217e16i − 0.0204134i −0.999948 0.0102067i \(-0.996751\pi\)
0.999948 0.0102067i \(-0.00324895\pi\)
\(734\) 1.27530e18 0.301016
\(735\) 0 0
\(736\) −2.18994e17 −0.0507840
\(737\) − 4.94272e15i − 0.00113613i
\(738\) 2.65954e17i 0.0605954i
\(739\) 7.04373e18 1.59079 0.795396 0.606089i \(-0.207263\pi\)
0.795396 + 0.606089i \(0.207263\pi\)
\(740\) 0 0
\(741\) 2.37064e17 0.0526074
\(742\) − 7.61946e17i − 0.167610i
\(743\) 7.27567e18i 1.58652i 0.608882 + 0.793261i \(0.291618\pi\)
−0.608882 + 0.793261i \(0.708382\pi\)
\(744\) −8.30638e17 −0.179551
\(745\) 0 0
\(746\) −5.14699e18 −1.09333
\(747\) − 3.26649e17i − 0.0687856i
\(748\) − 7.27679e15i − 0.00151908i
\(749\) −2.20264e18 −0.455839
\(750\) 0 0
\(751\) 2.46146e17 0.0500649 0.0250325 0.999687i \(-0.492031\pi\)
0.0250325 + 0.999687i \(0.492031\pi\)
\(752\) − 8.21267e16i − 0.0165603i
\(753\) 3.67385e18i 0.734437i
\(754\) 1.17553e18 0.232981
\(755\) 0 0
\(756\) 4.39574e17 0.0856329
\(757\) − 3.88745e18i − 0.750829i −0.926857 0.375415i \(-0.877500\pi\)
0.926857 0.375415i \(-0.122500\pi\)
\(758\) 6.64230e18i 1.27195i
\(759\) 2.81733e15 0.000534892 0
\(760\) 0 0
\(761\) 8.38833e18 1.56558 0.782790 0.622285i \(-0.213796\pi\)
0.782790 + 0.622285i \(0.213796\pi\)
\(762\) 1.29380e18i 0.239419i
\(763\) − 5.05284e18i − 0.927100i
\(764\) 2.44105e18 0.444089
\(765\) 0 0
\(766\) −6.68270e18 −1.19527
\(767\) 1.68237e18i 0.298368i
\(768\) − 2.05195e17i − 0.0360844i
\(769\) 1.00207e19 1.74735 0.873673 0.486513i \(-0.161732\pi\)
0.873673 + 0.486513i \(0.161732\pi\)
\(770\) 0 0
\(771\) 2.90208e18 0.497573
\(772\) 3.55813e18i 0.604937i
\(773\) − 6.82020e18i − 1.14982i −0.818216 0.574911i \(-0.805037\pi\)
0.818216 0.574911i \(-0.194963\pi\)
\(774\) −8.78142e17 −0.146808
\(775\) 0 0
\(776\) −1.23897e18 −0.203685
\(777\) 1.98190e18i 0.323107i
\(778\) 2.49958e18i 0.404110i
\(779\) −4.23079e17 −0.0678310
\(780\) 0 0
\(781\) 3.32900e16 0.00524906
\(782\) − 1.22381e18i − 0.191369i
\(783\) − 1.18399e18i − 0.183611i
\(784\) 3.38169e17 0.0520092
\(785\) 0 0
\(786\) −3.00830e17 −0.0455065
\(787\) − 6.89127e18i − 1.03386i −0.856026 0.516932i \(-0.827074\pi\)
0.856026 0.516932i \(-0.172926\pi\)
\(788\) − 1.41031e18i − 0.209843i
\(789\) 8.69378e17 0.128294
\(790\) 0 0
\(791\) −1.87538e18 −0.272233
\(792\) 2.63981e15i 0 0.000380065i
\(793\) 1.63189e18i 0.233032i
\(794\) 6.71677e18 0.951321
\(795\) 0 0
\(796\) 3.22086e18 0.448784
\(797\) − 3.64788e18i − 0.504152i −0.967707 0.252076i \(-0.918887\pi\)
0.967707 0.252076i \(-0.0811133\pi\)
\(798\) 6.99275e17i 0.0958582i
\(799\) 4.58952e17 0.0624041
\(800\) 0 0
\(801\) 2.31867e18 0.310190
\(802\) − 4.72929e18i − 0.627571i
\(803\) 1.91028e16i 0.00251446i
\(804\) 7.78891e17 0.101698
\(805\) 0 0
\(806\) −1.67191e18 −0.214800
\(807\) 5.51741e18i 0.703165i
\(808\) 1.04720e18i 0.132391i
\(809\) −1.34730e19 −1.68966 −0.844828 0.535037i \(-0.820298\pi\)
−0.844828 + 0.535037i \(0.820298\pi\)
\(810\) 0 0
\(811\) 1.21919e19 1.50465 0.752326 0.658791i \(-0.228932\pi\)
0.752326 + 0.658791i \(0.228932\pi\)
\(812\) 3.46750e18i 0.424524i
\(813\) − 4.09945e18i − 0.497894i
\(814\) −1.19021e16 −0.00143405
\(815\) 0 0
\(816\) 1.14670e18 0.135977
\(817\) − 1.39695e18i − 0.164338i
\(818\) 4.00084e18i 0.466933i
\(819\) 8.84774e17 0.102444
\(820\) 0 0
\(821\) −1.93186e18 −0.220164 −0.110082 0.993923i \(-0.535111\pi\)
−0.110082 + 0.993923i \(0.535111\pi\)
\(822\) 3.99729e18i 0.451958i
\(823\) − 1.38748e19i − 1.55642i −0.628002 0.778212i \(-0.716127\pi\)
0.628002 0.778212i \(-0.283873\pi\)
\(824\) 9.75823e17 0.108604
\(825\) 0 0
\(826\) −4.96255e18 −0.543669
\(827\) 1.16839e18i 0.127000i 0.997982 + 0.0635000i \(0.0202263\pi\)
−0.997982 + 0.0635000i \(0.979774\pi\)
\(828\) 4.43964e17i 0.0478796i
\(829\) 2.37776e18 0.254427 0.127214 0.991875i \(-0.459397\pi\)
0.127214 + 0.991875i \(0.459397\pi\)
\(830\) 0 0
\(831\) 6.46331e18 0.680845
\(832\) − 4.13016e17i − 0.0431684i
\(833\) 1.88981e18i 0.195986i
\(834\) 1.76163e15 0.000181274 0
\(835\) 0 0
\(836\) −4.19940e15 −0.000425448 0
\(837\) 1.68394e18i 0.169282i
\(838\) 9.75100e17i 0.0972665i
\(839\) −2.46136e18 −0.243625 −0.121812 0.992553i \(-0.538871\pi\)
−0.121812 + 0.992553i \(0.538871\pi\)
\(840\) 0 0
\(841\) −9.20921e17 −0.0897528
\(842\) − 7.88867e18i − 0.762914i
\(843\) 2.53343e18i 0.243125i
\(844\) 6.23380e18 0.593645
\(845\) 0 0
\(846\) −1.66494e17 −0.0156132
\(847\) − 9.56291e18i − 0.889914i
\(848\) 7.21065e17i 0.0665888i
\(849\) 3.58531e17 0.0328569
\(850\) 0 0
\(851\) −2.00170e18 −0.180657
\(852\) 5.24595e18i 0.469858i
\(853\) − 1.09322e19i − 0.971711i −0.874039 0.485856i \(-0.838508\pi\)
0.874039 0.485856i \(-0.161492\pi\)
\(854\) −4.81364e18 −0.424617
\(855\) 0 0
\(856\) 2.08446e18 0.181098
\(857\) − 1.59094e19i − 1.37177i −0.727712 0.685883i \(-0.759416\pi\)
0.727712 0.685883i \(-0.240584\pi\)
\(858\) 5.31339e15i 0 0.000454679i
\(859\) 9.02568e18 0.766521 0.383261 0.923640i \(-0.374801\pi\)
0.383261 + 0.923640i \(0.374801\pi\)
\(860\) 0 0
\(861\) −1.57902e18 −0.132089
\(862\) 3.27446e17i 0.0271858i
\(863\) − 1.73210e19i − 1.42726i −0.700523 0.713630i \(-0.747050\pi\)
0.700523 0.713630i \(-0.252950\pi\)
\(864\) −4.15990e17 −0.0340207
\(865\) 0 0
\(866\) −6.21965e18 −0.501071
\(867\) − 8.12273e17i − 0.0649498i
\(868\) − 4.93167e18i − 0.391396i
\(869\) −7.50960e16 −0.00591546
\(870\) 0 0
\(871\) 1.56775e18 0.121663
\(872\) 4.78174e18i 0.368323i
\(873\) 2.51174e18i 0.192036i
\(874\) −7.06258e17 −0.0535968
\(875\) 0 0
\(876\) −3.01028e18 −0.225076
\(877\) − 1.06065e19i − 0.787182i −0.919286 0.393591i \(-0.871233\pi\)
0.919286 0.393591i \(-0.128767\pi\)
\(878\) 8.38808e18i 0.617942i
\(879\) 3.86899e18 0.282924
\(880\) 0 0
\(881\) −1.56065e19 −1.12451 −0.562254 0.826965i \(-0.690066\pi\)
−0.562254 + 0.826965i \(0.690066\pi\)
\(882\) − 6.85566e17i − 0.0490347i
\(883\) 2.60968e17i 0.0185286i 0.999957 + 0.00926431i \(0.00294896\pi\)
−0.999957 + 0.00926431i \(0.997051\pi\)
\(884\) 2.30808e18 0.162671
\(885\) 0 0
\(886\) −1.11853e19 −0.776836
\(887\) 1.04619e19i 0.721288i 0.932704 + 0.360644i \(0.117443\pi\)
−0.932704 + 0.360644i \(0.882557\pi\)
\(888\) − 1.87557e18i − 0.128366i
\(889\) −7.68153e18 −0.521899
\(890\) 0 0
\(891\) 5.35164e15 0.000358329 0
\(892\) 1.28682e19i 0.855354i
\(893\) − 2.64859e17i − 0.0174775i
\(894\) −7.13180e18 −0.467203
\(895\) 0 0
\(896\) 1.21829e18 0.0786588
\(897\) 8.93609e17i 0.0572792i
\(898\) − 1.88312e19i − 1.19835i
\(899\) −1.32835e19 −0.839215
\(900\) 0 0
\(901\) −4.02956e18 −0.250926
\(902\) − 9.48261e15i 0 0.000586253i
\(903\) − 5.21371e18i − 0.320020i
\(904\) 1.77476e18 0.108154
\(905\) 0 0
\(906\) −5.23332e18 −0.314372
\(907\) 1.25229e19i 0.746894i 0.927651 + 0.373447i \(0.121824\pi\)
−0.927651 + 0.373447i \(0.878176\pi\)
\(908\) − 4.86525e18i − 0.288103i
\(909\) 2.12298e18 0.124819
\(910\) 0 0
\(911\) −8.44025e18 −0.489200 −0.244600 0.969624i \(-0.578657\pi\)
−0.244600 + 0.969624i \(0.578657\pi\)
\(912\) − 6.61756e17i − 0.0380830i
\(913\) 1.16467e16i 0 0.000665493i
\(914\) −5.33793e18 −0.302847
\(915\) 0 0
\(916\) −1.44994e18 −0.0811014
\(917\) − 1.78609e18i − 0.0991978i
\(918\) − 2.32469e18i − 0.128200i
\(919\) −2.80678e19 −1.53694 −0.768472 0.639884i \(-0.778982\pi\)
−0.768472 + 0.639884i \(0.778982\pi\)
\(920\) 0 0
\(921\) −1.01312e18 −0.0546980
\(922\) 7.47559e18i 0.400769i
\(923\) 1.05590e19i 0.562099i
\(924\) −1.56731e16 −0.000828489 0
\(925\) 0 0
\(926\) 2.65692e18 0.138486
\(927\) − 1.97827e18i − 0.102392i
\(928\) − 3.28146e18i − 0.168657i
\(929\) −1.44237e19 −0.736164 −0.368082 0.929793i \(-0.619986\pi\)
−0.368082 + 0.929793i \(0.619986\pi\)
\(930\) 0 0
\(931\) 1.09060e18 0.0548899
\(932\) 7.97919e18i 0.398800i
\(933\) 1.65811e19i 0.822967i
\(934\) −1.67305e19 −0.824622
\(935\) 0 0
\(936\) −8.37302e17 −0.0406995
\(937\) 1.50662e19i 0.727272i 0.931541 + 0.363636i \(0.118465\pi\)
−0.931541 + 0.363636i \(0.881535\pi\)
\(938\) 4.62444e18i 0.221687i
\(939\) −1.63845e19 −0.780023
\(940\) 0 0
\(941\) −2.74730e18 −0.128995 −0.0644977 0.997918i \(-0.520545\pi\)
−0.0644977 + 0.997918i \(0.520545\pi\)
\(942\) 5.43271e18i 0.253329i
\(943\) − 1.59479e18i − 0.0738546i
\(944\) 4.69629e18 0.215992
\(945\) 0 0
\(946\) 3.13103e16 0.00142035
\(947\) 7.30852e18i 0.329272i 0.986354 + 0.164636i \(0.0526449\pi\)
−0.986354 + 0.164636i \(0.947355\pi\)
\(948\) − 1.18339e19i − 0.529509i
\(949\) −6.05908e18 −0.269263
\(950\) 0 0
\(951\) −1.76379e19 −0.773168
\(952\) 6.80821e18i 0.296410i
\(953\) − 3.28674e19i − 1.42122i −0.703586 0.710610i \(-0.748419\pi\)
0.703586 0.710610i \(-0.251581\pi\)
\(954\) 1.46181e18 0.0627806
\(955\) 0 0
\(956\) 1.09855e19 0.465419
\(957\) 4.22154e16i 0.00177641i
\(958\) 1.00372e17i 0.00419505i
\(959\) −2.37327e19 −0.985205
\(960\) 0 0
\(961\) −5.52507e18 −0.226274
\(962\) − 3.77514e18i − 0.153566i
\(963\) − 4.22579e18i − 0.170741i
\(964\) 1.49432e19 0.599713
\(965\) 0 0
\(966\) −2.63591e18 −0.104371
\(967\) 4.81990e19i 1.89568i 0.318739 + 0.947842i \(0.396741\pi\)
−0.318739 + 0.947842i \(0.603259\pi\)
\(968\) 9.04983e18i 0.353550i
\(969\) 3.69812e18 0.143508
\(970\) 0 0
\(971\) −3.34021e19 −1.27893 −0.639467 0.768819i \(-0.720845\pi\)
−0.639467 + 0.768819i \(0.720845\pi\)
\(972\) 8.43330e17i 0.0320750i
\(973\) 1.04592e16i 0 0.000395152i
\(974\) −1.08052e19 −0.405507
\(975\) 0 0
\(976\) 4.55537e18 0.168694
\(977\) 9.58022e18i 0.352420i 0.984353 + 0.176210i \(0.0563838\pi\)
−0.984353 + 0.176210i \(0.943616\pi\)
\(978\) − 8.15535e18i − 0.298016i
\(979\) −8.26724e16 −0.00300105
\(980\) 0 0
\(981\) 9.69396e18 0.347258
\(982\) − 1.34418e18i − 0.0478336i
\(983\) − 2.89457e19i − 1.02326i −0.859206 0.511629i \(-0.829042\pi\)
0.859206 0.511629i \(-0.170958\pi\)
\(984\) 1.49430e18 0.0524771
\(985\) 0 0
\(986\) 1.83379e19 0.635550
\(987\) − 9.88511e17i − 0.0340346i
\(988\) − 1.33198e18i − 0.0455594i
\(989\) 5.26578e18 0.178931
\(990\) 0 0
\(991\) −1.69539e19 −0.568580 −0.284290 0.958738i \(-0.591758\pi\)
−0.284290 + 0.958738i \(0.591758\pi\)
\(992\) 4.66707e18i 0.155496i
\(993\) − 5.85387e18i − 0.193764i
\(994\) −3.11463e19 −1.02422
\(995\) 0 0
\(996\) −1.83533e18 −0.0595701
\(997\) 1.70090e19i 0.548480i 0.961661 + 0.274240i \(0.0884263\pi\)
−0.961661 + 0.274240i \(0.911574\pi\)
\(998\) 1.30677e19i 0.418650i
\(999\) −3.80231e18 −0.121024
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.14.c.m.49.4 4
5.2 odd 4 150.14.a.j.1.1 2
5.3 odd 4 150.14.a.p.1.2 yes 2
5.4 even 2 inner 150.14.c.m.49.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.14.a.j.1.1 2 5.2 odd 4
150.14.a.p.1.2 yes 2 5.3 odd 4
150.14.c.m.49.1 4 5.4 even 2 inner
150.14.c.m.49.4 4 1.1 even 1 trivial