Properties

Label 150.14.a.j
Level $150$
Weight $14$
Character orbit 150.a
Self dual yes
Analytic conductor $160.846$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [150,14,Mod(1,150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("150.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 150.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-128,-1458,8192,0,93312,-13894] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(160.846393428\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 20258911 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 60\sqrt{20258911}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 64 q^{2} - 729 q^{3} + 4096 q^{4} + 46656 q^{6} + (\beta - 6947) q^{7} - 262144 q^{8} + 531441 q^{9} + (11 \beta + 2989602) q^{11} - 2985984 q^{12} + ( - 68 \beta - 12353861) q^{13} + ( - 64 \beta + 444608) q^{14}+ \cdots + (5845851 \beta + 1588797076482) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 128 q^{2} - 1458 q^{3} + 8192 q^{4} + 93312 q^{6} - 13894 q^{7} - 524288 q^{8} + 1062882 q^{9} + 5979204 q^{11} - 5971968 q^{12} - 24707722 q^{13} + 889216 q^{14} + 33554432 q^{16} + 48518196 q^{17}+ \cdots + 3177594152964 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4500.99
4500.99
−64.0000 −729.000 4096.00 0 46656.0 −277006. −262144. 531441. 0
1.2 −64.0000 −729.000 4096.00 0 46656.0 263112. −262144. 531441. 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.14.a.j 2
5.b even 2 1 150.14.a.p yes 2
5.c odd 4 2 150.14.c.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
150.14.a.j 2 1.a even 1 1 trivial
150.14.a.p yes 2 5.b even 2 1
150.14.c.m 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} + 13894T_{7} - 72883818791 \) acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(150))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 64)^{2} \) Copy content Toggle raw display
$3$ \( (T + 729)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 72883818791 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots + 112938486804 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 184620054463079 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 13\!\cdots\!96 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 15\!\cdots\!75 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 20\!\cdots\!84 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 15\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 34\!\cdots\!91 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 13\!\cdots\!56 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 14\!\cdots\!96 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 86\!\cdots\!99 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 32\!\cdots\!56 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 10\!\cdots\!84 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 19\!\cdots\!29 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 52\!\cdots\!91 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 15\!\cdots\!24 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 17\!\cdots\!84 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 45\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 78\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 28\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 54\!\cdots\!31 \) Copy content Toggle raw display
show more
show less