Properties

Label 150.12.a.s.1.2
Level $150$
Weight $12$
Character 150.1
Self dual yes
Analytic conductor $115.251$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [150,12,Mod(1,150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("150.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 12, names="a")
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 150.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,64,486,2048,0,15552,-24058] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(115.251477084\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1092762 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1044.85\) of defining polynomial
Character \(\chi\) \(=\) 150.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+32.0000 q^{2} +243.000 q^{3} +1024.00 q^{4} +7776.00 q^{6} +50692.2 q^{7} +32768.0 q^{8} +59049.0 q^{9} -75916.1 q^{11} +248832. q^{12} +305005. q^{13} +1.62215e6 q^{14} +1.04858e6 q^{16} -1.08019e6 q^{17} +1.88957e6 q^{18} +7.09756e6 q^{19} +1.23182e7 q^{21} -2.42932e6 q^{22} +1.80419e7 q^{23} +7.96262e6 q^{24} +9.76015e6 q^{26} +1.43489e7 q^{27} +5.19088e7 q^{28} +7.29738e7 q^{29} +3.77162e7 q^{31} +3.35544e7 q^{32} -1.84476e7 q^{33} -3.45660e7 q^{34} +6.04662e7 q^{36} +1.48096e8 q^{37} +2.27122e8 q^{38} +7.41161e7 q^{39} -4.45125e8 q^{41} +3.94182e8 q^{42} -1.00624e9 q^{43} -7.77381e7 q^{44} +5.77340e8 q^{46} +8.45388e8 q^{47} +2.54804e8 q^{48} +5.92368e8 q^{49} -2.62486e8 q^{51} +3.12325e8 q^{52} -1.38443e9 q^{53} +4.59165e8 q^{54} +1.66108e9 q^{56} +1.72471e9 q^{57} +2.33516e9 q^{58} +9.47897e9 q^{59} +8.26835e9 q^{61} +1.20692e9 q^{62} +2.99332e9 q^{63} +1.07374e9 q^{64} -5.90324e8 q^{66} -2.06345e10 q^{67} -1.10611e9 q^{68} +4.38418e9 q^{69} +1.57969e10 q^{71} +1.93492e9 q^{72} +1.07362e10 q^{73} +4.73907e9 q^{74} +7.26790e9 q^{76} -3.84835e9 q^{77} +2.37172e9 q^{78} -2.29541e10 q^{79} +3.48678e9 q^{81} -1.42440e10 q^{82} +3.56526e10 q^{83} +1.26138e10 q^{84} -3.21998e10 q^{86} +1.77326e10 q^{87} -2.48762e9 q^{88} -7.98531e8 q^{89} +1.54613e10 q^{91} +1.84749e10 q^{92} +9.16503e9 q^{93} +2.70524e10 q^{94} +8.15373e9 q^{96} -4.48480e10 q^{97} +1.89558e10 q^{98} -4.48277e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 64 q^{2} + 486 q^{3} + 2048 q^{4} + 15552 q^{6} - 24058 q^{7} + 65536 q^{8} + 118098 q^{9} + 726264 q^{11} + 497664 q^{12} + 860894 q^{13} - 769856 q^{14} + 2097152 q^{16} + 6996912 q^{17} + 3779136 q^{18}+ \cdots + 42885162936 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 32.0000 0.707107
\(3\) 243.000 0.577350
\(4\) 1024.00 0.500000
\(5\) 0 0
\(6\) 7776.00 0.408248
\(7\) 50692.2 1.13999 0.569996 0.821648i \(-0.306945\pi\)
0.569996 + 0.821648i \(0.306945\pi\)
\(8\) 32768.0 0.353553
\(9\) 59049.0 0.333333
\(10\) 0 0
\(11\) −75916.1 −0.142126 −0.0710631 0.997472i \(-0.522639\pi\)
−0.0710631 + 0.997472i \(0.522639\pi\)
\(12\) 248832. 0.288675
\(13\) 305005. 0.227834 0.113917 0.993490i \(-0.463660\pi\)
0.113917 + 0.993490i \(0.463660\pi\)
\(14\) 1.62215e6 0.806096
\(15\) 0 0
\(16\) 1.04858e6 0.250000
\(17\) −1.08019e6 −0.184515 −0.0922573 0.995735i \(-0.529408\pi\)
−0.0922573 + 0.995735i \(0.529408\pi\)
\(18\) 1.88957e6 0.235702
\(19\) 7.09756e6 0.657603 0.328802 0.944399i \(-0.393355\pi\)
0.328802 + 0.944399i \(0.393355\pi\)
\(20\) 0 0
\(21\) 1.23182e7 0.658174
\(22\) −2.42932e6 −0.100498
\(23\) 1.80419e7 0.584492 0.292246 0.956343i \(-0.405597\pi\)
0.292246 + 0.956343i \(0.405597\pi\)
\(24\) 7.96262e6 0.204124
\(25\) 0 0
\(26\) 9.76015e6 0.161103
\(27\) 1.43489e7 0.192450
\(28\) 5.19088e7 0.569996
\(29\) 7.29738e7 0.660660 0.330330 0.943865i \(-0.392840\pi\)
0.330330 + 0.943865i \(0.392840\pi\)
\(30\) 0 0
\(31\) 3.77162e7 0.236613 0.118306 0.992977i \(-0.462253\pi\)
0.118306 + 0.992977i \(0.462253\pi\)
\(32\) 3.35544e7 0.176777
\(33\) −1.84476e7 −0.0820566
\(34\) −3.45660e7 −0.130471
\(35\) 0 0
\(36\) 6.04662e7 0.166667
\(37\) 1.48096e8 0.351102 0.175551 0.984470i \(-0.443829\pi\)
0.175551 + 0.984470i \(0.443829\pi\)
\(38\) 2.27122e8 0.464996
\(39\) 7.41161e7 0.131540
\(40\) 0 0
\(41\) −4.45125e8 −0.600026 −0.300013 0.953935i \(-0.596991\pi\)
−0.300013 + 0.953935i \(0.596991\pi\)
\(42\) 3.94182e8 0.465400
\(43\) −1.00624e9 −1.04382 −0.521911 0.853000i \(-0.674781\pi\)
−0.521911 + 0.853000i \(0.674781\pi\)
\(44\) −7.77381e7 −0.0710631
\(45\) 0 0
\(46\) 5.77340e8 0.413299
\(47\) 8.45388e8 0.537673 0.268836 0.963186i \(-0.413361\pi\)
0.268836 + 0.963186i \(0.413361\pi\)
\(48\) 2.54804e8 0.144338
\(49\) 5.92368e8 0.299580
\(50\) 0 0
\(51\) −2.62486e8 −0.106530
\(52\) 3.12325e8 0.113917
\(53\) −1.38443e9 −0.454729 −0.227365 0.973810i \(-0.573011\pi\)
−0.227365 + 0.973810i \(0.573011\pi\)
\(54\) 4.59165e8 0.136083
\(55\) 0 0
\(56\) 1.66108e9 0.403048
\(57\) 1.72471e9 0.379668
\(58\) 2.33516e9 0.467157
\(59\) 9.47897e9 1.72614 0.863068 0.505088i \(-0.168540\pi\)
0.863068 + 0.505088i \(0.168540\pi\)
\(60\) 0 0
\(61\) 8.26835e9 1.25344 0.626722 0.779243i \(-0.284396\pi\)
0.626722 + 0.779243i \(0.284396\pi\)
\(62\) 1.20692e9 0.167311
\(63\) 2.99332e9 0.379997
\(64\) 1.07374e9 0.125000
\(65\) 0 0
\(66\) −5.90324e8 −0.0580228
\(67\) −2.06345e10 −1.86717 −0.933583 0.358362i \(-0.883335\pi\)
−0.933583 + 0.358362i \(0.883335\pi\)
\(68\) −1.10611e9 −0.0922573
\(69\) 4.38418e9 0.337457
\(70\) 0 0
\(71\) 1.57969e10 1.03908 0.519542 0.854445i \(-0.326103\pi\)
0.519542 + 0.854445i \(0.326103\pi\)
\(72\) 1.93492e9 0.117851
\(73\) 1.07362e10 0.606145 0.303072 0.952968i \(-0.401988\pi\)
0.303072 + 0.952968i \(0.401988\pi\)
\(74\) 4.73907e9 0.248267
\(75\) 0 0
\(76\) 7.26790e9 0.328802
\(77\) −3.84835e9 −0.162023
\(78\) 2.37172e9 0.0930127
\(79\) −2.29541e10 −0.839290 −0.419645 0.907688i \(-0.637845\pi\)
−0.419645 + 0.907688i \(0.637845\pi\)
\(80\) 0 0
\(81\) 3.48678e9 0.111111
\(82\) −1.42440e10 −0.424283
\(83\) 3.56526e10 0.993486 0.496743 0.867898i \(-0.334529\pi\)
0.496743 + 0.867898i \(0.334529\pi\)
\(84\) 1.26138e10 0.329087
\(85\) 0 0
\(86\) −3.21998e10 −0.738093
\(87\) 1.77326e10 0.381432
\(88\) −2.48762e9 −0.0502492
\(89\) −7.98531e8 −0.0151582 −0.00757909 0.999971i \(-0.502413\pi\)
−0.00757909 + 0.999971i \(0.502413\pi\)
\(90\) 0 0
\(91\) 1.54613e10 0.259729
\(92\) 1.84749e10 0.292246
\(93\) 9.16503e9 0.136609
\(94\) 2.70524e10 0.380192
\(95\) 0 0
\(96\) 8.15373e9 0.102062
\(97\) −4.48480e10 −0.530271 −0.265136 0.964211i \(-0.585417\pi\)
−0.265136 + 0.964211i \(0.585417\pi\)
\(98\) 1.89558e10 0.211835
\(99\) −4.48277e9 −0.0473754
\(100\) 0 0
\(101\) 5.41836e10 0.512980 0.256490 0.966547i \(-0.417434\pi\)
0.256490 + 0.966547i \(0.417434\pi\)
\(102\) −8.39955e9 −0.0753277
\(103\) 1.20789e11 1.02665 0.513324 0.858195i \(-0.328414\pi\)
0.513324 + 0.858195i \(0.328414\pi\)
\(104\) 9.99439e9 0.0805514
\(105\) 0 0
\(106\) −4.43017e10 −0.321542
\(107\) −1.41955e11 −0.978456 −0.489228 0.872156i \(-0.662721\pi\)
−0.489228 + 0.872156i \(0.662721\pi\)
\(108\) 1.46933e10 0.0962250
\(109\) 2.08333e10 0.129692 0.0648458 0.997895i \(-0.479344\pi\)
0.0648458 + 0.997895i \(0.479344\pi\)
\(110\) 0 0
\(111\) 3.59873e10 0.202709
\(112\) 5.31546e10 0.284998
\(113\) 2.32341e11 1.18630 0.593149 0.805093i \(-0.297884\pi\)
0.593149 + 0.805093i \(0.297884\pi\)
\(114\) 5.51906e10 0.268465
\(115\) 0 0
\(116\) 7.47252e10 0.330330
\(117\) 1.80102e10 0.0759446
\(118\) 3.03327e11 1.22056
\(119\) −5.47571e10 −0.210345
\(120\) 0 0
\(121\) −2.79548e11 −0.979800
\(122\) 2.64587e11 0.886319
\(123\) −1.08165e11 −0.346425
\(124\) 3.86214e10 0.118306
\(125\) 0 0
\(126\) 9.57863e10 0.268699
\(127\) 2.90739e11 0.780876 0.390438 0.920629i \(-0.372323\pi\)
0.390438 + 0.920629i \(0.372323\pi\)
\(128\) 3.43597e10 0.0883883
\(129\) −2.44517e11 −0.602651
\(130\) 0 0
\(131\) 7.23610e11 1.63875 0.819375 0.573258i \(-0.194321\pi\)
0.819375 + 0.573258i \(0.194321\pi\)
\(132\) −1.88904e10 −0.0410283
\(133\) 3.59790e11 0.749662
\(134\) −6.60304e11 −1.32029
\(135\) 0 0
\(136\) −3.53956e10 −0.0652357
\(137\) 1.91230e11 0.338527 0.169264 0.985571i \(-0.445861\pi\)
0.169264 + 0.985571i \(0.445861\pi\)
\(138\) 1.40294e11 0.238618
\(139\) −1.03256e12 −1.68785 −0.843927 0.536458i \(-0.819762\pi\)
−0.843927 + 0.536458i \(0.819762\pi\)
\(140\) 0 0
\(141\) 2.05429e11 0.310426
\(142\) 5.05500e11 0.734743
\(143\) −2.31548e10 −0.0323812
\(144\) 6.19174e10 0.0833333
\(145\) 0 0
\(146\) 3.43559e11 0.428609
\(147\) 1.43946e11 0.172963
\(148\) 1.51650e11 0.175551
\(149\) −8.15470e11 −0.909669 −0.454835 0.890576i \(-0.650302\pi\)
−0.454835 + 0.890576i \(0.650302\pi\)
\(150\) 0 0
\(151\) 6.11640e11 0.634049 0.317024 0.948417i \(-0.397316\pi\)
0.317024 + 0.948417i \(0.397316\pi\)
\(152\) 2.32573e11 0.232498
\(153\) −6.37841e10 −0.0615048
\(154\) −1.23147e11 −0.114567
\(155\) 0 0
\(156\) 7.58949e10 0.0657699
\(157\) 1.47006e12 1.22994 0.614972 0.788549i \(-0.289167\pi\)
0.614972 + 0.788549i \(0.289167\pi\)
\(158\) −7.34533e11 −0.593468
\(159\) −3.36416e11 −0.262538
\(160\) 0 0
\(161\) 9.14582e11 0.666316
\(162\) 1.11577e11 0.0785674
\(163\) 1.28912e12 0.877531 0.438765 0.898602i \(-0.355416\pi\)
0.438765 + 0.898602i \(0.355416\pi\)
\(164\) −4.55808e11 −0.300013
\(165\) 0 0
\(166\) 1.14088e12 0.702501
\(167\) −9.39303e11 −0.559584 −0.279792 0.960061i \(-0.590265\pi\)
−0.279792 + 0.960061i \(0.590265\pi\)
\(168\) 4.03643e11 0.232700
\(169\) −1.69913e12 −0.948092
\(170\) 0 0
\(171\) 4.19104e11 0.219201
\(172\) −1.03039e12 −0.521911
\(173\) 3.44324e12 1.68933 0.844664 0.535296i \(-0.179800\pi\)
0.844664 + 0.535296i \(0.179800\pi\)
\(174\) 5.67445e11 0.269713
\(175\) 0 0
\(176\) −7.96038e10 −0.0355316
\(177\) 2.30339e12 0.996585
\(178\) −2.55530e10 −0.0107184
\(179\) −1.93673e12 −0.787728 −0.393864 0.919169i \(-0.628862\pi\)
−0.393864 + 0.919169i \(0.628862\pi\)
\(180\) 0 0
\(181\) 3.37063e11 0.128967 0.0644835 0.997919i \(-0.479460\pi\)
0.0644835 + 0.997919i \(0.479460\pi\)
\(182\) 4.94763e11 0.183656
\(183\) 2.00921e12 0.723676
\(184\) 5.91197e11 0.206649
\(185\) 0 0
\(186\) 2.93281e11 0.0965968
\(187\) 8.20038e10 0.0262244
\(188\) 8.65678e11 0.268836
\(189\) 7.27377e11 0.219391
\(190\) 0 0
\(191\) 9.42200e11 0.268200 0.134100 0.990968i \(-0.457186\pi\)
0.134100 + 0.990968i \(0.457186\pi\)
\(192\) 2.60919e11 0.0721688
\(193\) 5.10162e12 1.37133 0.685666 0.727916i \(-0.259511\pi\)
0.685666 + 0.727916i \(0.259511\pi\)
\(194\) −1.43513e12 −0.374959
\(195\) 0 0
\(196\) 6.06585e11 0.149790
\(197\) 2.09359e12 0.502722 0.251361 0.967893i \(-0.419122\pi\)
0.251361 + 0.967893i \(0.419122\pi\)
\(198\) −1.43449e11 −0.0334995
\(199\) −3.42476e12 −0.777926 −0.388963 0.921253i \(-0.627167\pi\)
−0.388963 + 0.921253i \(0.627167\pi\)
\(200\) 0 0
\(201\) −5.01419e12 −1.07801
\(202\) 1.73387e12 0.362731
\(203\) 3.69920e12 0.753147
\(204\) −2.68786e11 −0.0532648
\(205\) 0 0
\(206\) 3.86524e12 0.725949
\(207\) 1.06536e12 0.194831
\(208\) 3.19821e11 0.0569584
\(209\) −5.38819e11 −0.0934627
\(210\) 0 0
\(211\) 1.59301e11 0.0262219 0.0131109 0.999914i \(-0.495827\pi\)
0.0131109 + 0.999914i \(0.495827\pi\)
\(212\) −1.41765e12 −0.227365
\(213\) 3.83864e12 0.599915
\(214\) −4.54257e12 −0.691873
\(215\) 0 0
\(216\) 4.70185e11 0.0680414
\(217\) 1.91192e12 0.269737
\(218\) 6.66664e11 0.0917057
\(219\) 2.60890e12 0.349958
\(220\) 0 0
\(221\) −3.29463e11 −0.0420386
\(222\) 1.15159e12 0.143337
\(223\) 4.70223e11 0.0570988 0.0285494 0.999592i \(-0.490911\pi\)
0.0285494 + 0.999592i \(0.490911\pi\)
\(224\) 1.70095e12 0.201524
\(225\) 0 0
\(226\) 7.43490e12 0.838839
\(227\) −1.64771e13 −1.81443 −0.907214 0.420669i \(-0.861795\pi\)
−0.907214 + 0.420669i \(0.861795\pi\)
\(228\) 1.76610e12 0.189834
\(229\) 1.36753e13 1.43496 0.717482 0.696577i \(-0.245295\pi\)
0.717482 + 0.696577i \(0.245295\pi\)
\(230\) 0 0
\(231\) −9.35150e11 −0.0935439
\(232\) 2.39121e12 0.233579
\(233\) 3.16743e12 0.302168 0.151084 0.988521i \(-0.451724\pi\)
0.151084 + 0.988521i \(0.451724\pi\)
\(234\) 5.76327e11 0.0537009
\(235\) 0 0
\(236\) 9.70646e12 0.863068
\(237\) −5.57786e12 −0.484564
\(238\) −1.75223e12 −0.148736
\(239\) −4.28172e12 −0.355165 −0.177583 0.984106i \(-0.556828\pi\)
−0.177583 + 0.984106i \(0.556828\pi\)
\(240\) 0 0
\(241\) −6.01989e12 −0.476974 −0.238487 0.971146i \(-0.576652\pi\)
−0.238487 + 0.971146i \(0.576652\pi\)
\(242\) −8.94555e12 −0.692823
\(243\) 8.47289e11 0.0641500
\(244\) 8.46679e12 0.626722
\(245\) 0 0
\(246\) −3.46129e12 −0.244960
\(247\) 2.16479e12 0.149824
\(248\) 1.23588e12 0.0836553
\(249\) 8.66359e12 0.573590
\(250\) 0 0
\(251\) −1.03996e11 −0.00658888 −0.00329444 0.999995i \(-0.501049\pi\)
−0.00329444 + 0.999995i \(0.501049\pi\)
\(252\) 3.06516e12 0.189999
\(253\) −1.36967e12 −0.0830717
\(254\) 9.30364e12 0.552163
\(255\) 0 0
\(256\) 1.09951e12 0.0625000
\(257\) −1.77317e13 −0.986549 −0.493275 0.869874i \(-0.664200\pi\)
−0.493275 + 0.869874i \(0.664200\pi\)
\(258\) −7.82454e12 −0.426138
\(259\) 7.50731e12 0.400254
\(260\) 0 0
\(261\) 4.30903e12 0.220220
\(262\) 2.31555e13 1.15877
\(263\) −1.97378e13 −0.967256 −0.483628 0.875274i \(-0.660681\pi\)
−0.483628 + 0.875274i \(0.660681\pi\)
\(264\) −6.04492e11 −0.0290114
\(265\) 0 0
\(266\) 1.15133e13 0.530091
\(267\) −1.94043e11 −0.00875157
\(268\) −2.11297e13 −0.933583
\(269\) −2.98190e13 −1.29079 −0.645396 0.763848i \(-0.723307\pi\)
−0.645396 + 0.763848i \(0.723307\pi\)
\(270\) 0 0
\(271\) −2.89071e13 −1.20136 −0.600681 0.799489i \(-0.705104\pi\)
−0.600681 + 0.799489i \(0.705104\pi\)
\(272\) −1.13266e12 −0.0461286
\(273\) 3.75711e12 0.149954
\(274\) 6.11937e12 0.239375
\(275\) 0 0
\(276\) 4.48940e12 0.168728
\(277\) 2.06140e13 0.759491 0.379745 0.925091i \(-0.376012\pi\)
0.379745 + 0.925091i \(0.376012\pi\)
\(278\) −3.30420e13 −1.19349
\(279\) 2.22710e12 0.0788710
\(280\) 0 0
\(281\) −6.03979e12 −0.205654 −0.102827 0.994699i \(-0.532789\pi\)
−0.102827 + 0.994699i \(0.532789\pi\)
\(282\) 6.57374e12 0.219504
\(283\) −1.35178e13 −0.442670 −0.221335 0.975198i \(-0.571041\pi\)
−0.221335 + 0.975198i \(0.571041\pi\)
\(284\) 1.61760e13 0.519542
\(285\) 0 0
\(286\) −7.40953e11 −0.0228969
\(287\) −2.25643e13 −0.684025
\(288\) 1.98136e12 0.0589256
\(289\) −3.31051e13 −0.965954
\(290\) 0 0
\(291\) −1.08981e13 −0.306152
\(292\) 1.09939e13 0.303072
\(293\) −3.76701e13 −1.01912 −0.509560 0.860435i \(-0.670192\pi\)
−0.509560 + 0.860435i \(0.670192\pi\)
\(294\) 4.60626e12 0.122303
\(295\) 0 0
\(296\) 4.85281e12 0.124133
\(297\) −1.08931e12 −0.0273522
\(298\) −2.60950e13 −0.643233
\(299\) 5.50286e12 0.133167
\(300\) 0 0
\(301\) −5.10086e13 −1.18995
\(302\) 1.95725e13 0.448340
\(303\) 1.31666e13 0.296169
\(304\) 7.44233e12 0.164401
\(305\) 0 0
\(306\) −2.04109e12 −0.0434905
\(307\) −1.61401e13 −0.337789 −0.168894 0.985634i \(-0.554020\pi\)
−0.168894 + 0.985634i \(0.554020\pi\)
\(308\) −3.94071e12 −0.0810114
\(309\) 2.93516e13 0.592735
\(310\) 0 0
\(311\) −7.74446e13 −1.50942 −0.754708 0.656061i \(-0.772222\pi\)
−0.754708 + 0.656061i \(0.772222\pi\)
\(312\) 2.42864e12 0.0465064
\(313\) −3.96245e13 −0.745539 −0.372769 0.927924i \(-0.621592\pi\)
−0.372769 + 0.927924i \(0.621592\pi\)
\(314\) 4.70418e13 0.869702
\(315\) 0 0
\(316\) −2.35050e13 −0.419645
\(317\) −6.63630e13 −1.16439 −0.582197 0.813048i \(-0.697807\pi\)
−0.582197 + 0.813048i \(0.697807\pi\)
\(318\) −1.07653e13 −0.185642
\(319\) −5.53989e12 −0.0938972
\(320\) 0 0
\(321\) −3.44952e13 −0.564912
\(322\) 2.92666e13 0.471157
\(323\) −7.66670e12 −0.121337
\(324\) 3.57047e12 0.0555556
\(325\) 0 0
\(326\) 4.12519e13 0.620508
\(327\) 5.06248e12 0.0748774
\(328\) −1.45858e13 −0.212141
\(329\) 4.28546e13 0.612942
\(330\) 0 0
\(331\) −1.35207e14 −1.87045 −0.935223 0.354059i \(-0.884801\pi\)
−0.935223 + 0.354059i \(0.884801\pi\)
\(332\) 3.65083e13 0.496743
\(333\) 8.74492e12 0.117034
\(334\) −3.00577e13 −0.395686
\(335\) 0 0
\(336\) 1.29166e13 0.164544
\(337\) −1.28718e14 −1.61314 −0.806572 0.591135i \(-0.798680\pi\)
−0.806572 + 0.591135i \(0.798680\pi\)
\(338\) −5.43722e13 −0.670402
\(339\) 5.64588e13 0.684909
\(340\) 0 0
\(341\) −2.86327e12 −0.0336289
\(342\) 1.34113e13 0.154999
\(343\) −7.02065e13 −0.798472
\(344\) −3.29726e13 −0.369047
\(345\) 0 0
\(346\) 1.10184e14 1.19454
\(347\) −7.81048e13 −0.833423 −0.416711 0.909039i \(-0.636817\pi\)
−0.416711 + 0.909039i \(0.636817\pi\)
\(348\) 1.81582e13 0.190716
\(349\) −1.80809e14 −1.86931 −0.934653 0.355562i \(-0.884290\pi\)
−0.934653 + 0.355562i \(0.884290\pi\)
\(350\) 0 0
\(351\) 4.37648e12 0.0438466
\(352\) −2.54732e12 −0.0251246
\(353\) 2.93802e13 0.285295 0.142648 0.989774i \(-0.454438\pi\)
0.142648 + 0.989774i \(0.454438\pi\)
\(354\) 7.37085e13 0.704692
\(355\) 0 0
\(356\) −8.17696e11 −0.00757909
\(357\) −1.33060e13 −0.121443
\(358\) −6.19752e13 −0.557008
\(359\) 5.78634e13 0.512135 0.256067 0.966659i \(-0.417573\pi\)
0.256067 + 0.966659i \(0.417573\pi\)
\(360\) 0 0
\(361\) −6.61150e13 −0.567558
\(362\) 1.07860e13 0.0911934
\(363\) −6.79303e13 −0.565688
\(364\) 1.58324e13 0.129864
\(365\) 0 0
\(366\) 6.42947e13 0.511716
\(367\) 6.30385e13 0.494246 0.247123 0.968984i \(-0.420515\pi\)
0.247123 + 0.968984i \(0.420515\pi\)
\(368\) 1.89183e13 0.146123
\(369\) −2.62842e13 −0.200009
\(370\) 0 0
\(371\) −7.01796e13 −0.518387
\(372\) 9.38499e12 0.0683043
\(373\) 2.26968e13 0.162767 0.0813834 0.996683i \(-0.474066\pi\)
0.0813834 + 0.996683i \(0.474066\pi\)
\(374\) 2.62412e12 0.0185434
\(375\) 0 0
\(376\) 2.77017e13 0.190096
\(377\) 2.22574e13 0.150521
\(378\) 2.32761e13 0.155133
\(379\) −6.06246e13 −0.398229 −0.199115 0.979976i \(-0.563807\pi\)
−0.199115 + 0.979976i \(0.563807\pi\)
\(380\) 0 0
\(381\) 7.06495e13 0.450839
\(382\) 3.01504e13 0.189646
\(383\) 2.38540e14 1.47900 0.739500 0.673156i \(-0.235062\pi\)
0.739500 + 0.673156i \(0.235062\pi\)
\(384\) 8.34942e12 0.0510310
\(385\) 0 0
\(386\) 1.63252e14 0.969679
\(387\) −5.94176e13 −0.347940
\(388\) −4.59243e13 −0.265136
\(389\) 1.43501e14 0.816828 0.408414 0.912797i \(-0.366082\pi\)
0.408414 + 0.912797i \(0.366082\pi\)
\(390\) 0 0
\(391\) −1.94886e13 −0.107847
\(392\) 1.94107e13 0.105918
\(393\) 1.75837e14 0.946132
\(394\) 6.69949e13 0.355478
\(395\) 0 0
\(396\) −4.59036e12 −0.0236877
\(397\) 1.12723e14 0.573674 0.286837 0.957979i \(-0.407396\pi\)
0.286837 + 0.957979i \(0.407396\pi\)
\(398\) −1.09592e14 −0.550077
\(399\) 8.74291e13 0.432818
\(400\) 0 0
\(401\) 1.94480e14 0.936655 0.468328 0.883555i \(-0.344857\pi\)
0.468328 + 0.883555i \(0.344857\pi\)
\(402\) −1.60454e14 −0.762267
\(403\) 1.15036e13 0.0539084
\(404\) 5.54840e13 0.256490
\(405\) 0 0
\(406\) 1.18374e14 0.532555
\(407\) −1.12429e13 −0.0499009
\(408\) −8.60114e12 −0.0376639
\(409\) −1.46521e14 −0.633027 −0.316513 0.948588i \(-0.602512\pi\)
−0.316513 + 0.948588i \(0.602512\pi\)
\(410\) 0 0
\(411\) 4.64690e13 0.195449
\(412\) 1.23688e14 0.513324
\(413\) 4.80509e14 1.96778
\(414\) 3.40914e13 0.137766
\(415\) 0 0
\(416\) 1.02343e13 0.0402757
\(417\) −2.50913e14 −0.974483
\(418\) −1.72422e13 −0.0660881
\(419\) 3.37095e14 1.27519 0.637595 0.770371i \(-0.279929\pi\)
0.637595 + 0.770371i \(0.279929\pi\)
\(420\) 0 0
\(421\) −6.17552e13 −0.227574 −0.113787 0.993505i \(-0.536298\pi\)
−0.113787 + 0.993505i \(0.536298\pi\)
\(422\) 5.09762e12 0.0185417
\(423\) 4.99193e13 0.179224
\(424\) −4.53649e13 −0.160771
\(425\) 0 0
\(426\) 1.22837e14 0.424204
\(427\) 4.19141e14 1.42892
\(428\) −1.45362e14 −0.489228
\(429\) −5.62661e12 −0.0186953
\(430\) 0 0
\(431\) 3.74885e13 0.121415 0.0607076 0.998156i \(-0.480664\pi\)
0.0607076 + 0.998156i \(0.480664\pi\)
\(432\) 1.50459e13 0.0481125
\(433\) 2.52848e14 0.798319 0.399160 0.916881i \(-0.369302\pi\)
0.399160 + 0.916881i \(0.369302\pi\)
\(434\) 6.11813e13 0.190733
\(435\) 0 0
\(436\) 2.13333e13 0.0648458
\(437\) 1.28053e14 0.384364
\(438\) 8.34849e13 0.247457
\(439\) −4.21760e14 −1.23455 −0.617277 0.786746i \(-0.711764\pi\)
−0.617277 + 0.786746i \(0.711764\pi\)
\(440\) 0 0
\(441\) 3.49788e13 0.0998602
\(442\) −1.05428e13 −0.0297258
\(443\) 3.38043e14 0.941349 0.470675 0.882307i \(-0.344011\pi\)
0.470675 + 0.882307i \(0.344011\pi\)
\(444\) 3.68510e13 0.101355
\(445\) 0 0
\(446\) 1.50471e13 0.0403750
\(447\) −1.98159e14 −0.525198
\(448\) 5.44303e13 0.142499
\(449\) −2.19965e14 −0.568851 −0.284426 0.958698i \(-0.591803\pi\)
−0.284426 + 0.958698i \(0.591803\pi\)
\(450\) 0 0
\(451\) 3.37921e13 0.0852795
\(452\) 2.37917e14 0.593149
\(453\) 1.48628e14 0.366068
\(454\) −5.27269e14 −1.28299
\(455\) 0 0
\(456\) 5.65152e13 0.134233
\(457\) 5.24669e14 1.23125 0.615625 0.788040i \(-0.288904\pi\)
0.615625 + 0.788040i \(0.288904\pi\)
\(458\) 4.37609e14 1.01467
\(459\) −1.54995e13 −0.0355098
\(460\) 0 0
\(461\) −8.87822e13 −0.198596 −0.0992981 0.995058i \(-0.531660\pi\)
−0.0992981 + 0.995058i \(0.531660\pi\)
\(462\) −2.99248e13 −0.0661455
\(463\) −5.86281e14 −1.28059 −0.640296 0.768128i \(-0.721188\pi\)
−0.640296 + 0.768128i \(0.721188\pi\)
\(464\) 7.65186e13 0.165165
\(465\) 0 0
\(466\) 1.01358e14 0.213665
\(467\) −2.07097e14 −0.431451 −0.215725 0.976454i \(-0.569212\pi\)
−0.215725 + 0.976454i \(0.569212\pi\)
\(468\) 1.84425e13 0.0379723
\(469\) −1.04601e15 −2.12855
\(470\) 0 0
\(471\) 3.57224e14 0.710109
\(472\) 3.10607e14 0.610281
\(473\) 7.63900e13 0.148354
\(474\) −1.78491e14 −0.342639
\(475\) 0 0
\(476\) −5.60713e13 −0.105172
\(477\) −8.17490e13 −0.151576
\(478\) −1.37015e14 −0.251140
\(479\) −3.65244e14 −0.661816 −0.330908 0.943663i \(-0.607355\pi\)
−0.330908 + 0.943663i \(0.607355\pi\)
\(480\) 0 0
\(481\) 4.51700e13 0.0799930
\(482\) −1.92637e14 −0.337272
\(483\) 2.22243e14 0.384698
\(484\) −2.86258e14 −0.489900
\(485\) 0 0
\(486\) 2.71132e13 0.0453609
\(487\) −3.11560e14 −0.515386 −0.257693 0.966227i \(-0.582962\pi\)
−0.257693 + 0.966227i \(0.582962\pi\)
\(488\) 2.70937e14 0.443159
\(489\) 3.13257e14 0.506643
\(490\) 0 0
\(491\) −7.38304e14 −1.16758 −0.583791 0.811904i \(-0.698431\pi\)
−0.583791 + 0.811904i \(0.698431\pi\)
\(492\) −1.10761e14 −0.173213
\(493\) −7.88255e13 −0.121901
\(494\) 6.92732e13 0.105942
\(495\) 0 0
\(496\) 3.95483e13 0.0591532
\(497\) 8.00778e14 1.18455
\(498\) 2.77235e14 0.405589
\(499\) −9.26777e14 −1.34098 −0.670490 0.741918i \(-0.733916\pi\)
−0.670490 + 0.741918i \(0.733916\pi\)
\(500\) 0 0
\(501\) −2.28251e14 −0.323076
\(502\) −3.32787e12 −0.00465904
\(503\) 8.47541e14 1.17364 0.586822 0.809716i \(-0.300379\pi\)
0.586822 + 0.809716i \(0.300379\pi\)
\(504\) 9.80852e13 0.134349
\(505\) 0 0
\(506\) −4.38294e13 −0.0587406
\(507\) −4.12889e14 −0.547381
\(508\) 2.97716e14 0.390438
\(509\) 6.72162e14 0.872020 0.436010 0.899942i \(-0.356391\pi\)
0.436010 + 0.899942i \(0.356391\pi\)
\(510\) 0 0
\(511\) 5.44243e14 0.691000
\(512\) 3.51844e13 0.0441942
\(513\) 1.01842e14 0.126556
\(514\) −5.67415e14 −0.697596
\(515\) 0 0
\(516\) −2.50385e14 −0.301325
\(517\) −6.41786e13 −0.0764174
\(518\) 2.40234e14 0.283022
\(519\) 8.36708e14 0.975334
\(520\) 0 0
\(521\) 1.29604e15 1.47914 0.739571 0.673079i \(-0.235028\pi\)
0.739571 + 0.673079i \(0.235028\pi\)
\(522\) 1.37889e14 0.155719
\(523\) −1.60871e15 −1.79771 −0.898854 0.438248i \(-0.855599\pi\)
−0.898854 + 0.438248i \(0.855599\pi\)
\(524\) 7.40977e14 0.819375
\(525\) 0 0
\(526\) −6.31609e14 −0.683954
\(527\) −4.07406e13 −0.0436585
\(528\) −1.93437e13 −0.0205142
\(529\) −6.27300e14 −0.658369
\(530\) 0 0
\(531\) 5.59724e14 0.575379
\(532\) 3.68425e14 0.374831
\(533\) −1.35765e14 −0.136706
\(534\) −6.20938e12 −0.00618830
\(535\) 0 0
\(536\) −6.76152e14 −0.660143
\(537\) −4.70624e14 −0.454795
\(538\) −9.54209e14 −0.912727
\(539\) −4.49703e13 −0.0425782
\(540\) 0 0
\(541\) −2.84573e14 −0.264003 −0.132002 0.991249i \(-0.542140\pi\)
−0.132002 + 0.991249i \(0.542140\pi\)
\(542\) −9.25028e14 −0.849491
\(543\) 8.19062e13 0.0744591
\(544\) −3.62451e13 −0.0326179
\(545\) 0 0
\(546\) 1.20227e14 0.106034
\(547\) 1.94391e14 0.169725 0.0848627 0.996393i \(-0.472955\pi\)
0.0848627 + 0.996393i \(0.472955\pi\)
\(548\) 1.95820e14 0.169264
\(549\) 4.88238e14 0.417815
\(550\) 0 0
\(551\) 5.17936e14 0.434452
\(552\) 1.43661e14 0.119309
\(553\) −1.16360e15 −0.956784
\(554\) 6.59647e14 0.537041
\(555\) 0 0
\(556\) −1.05734e15 −0.843927
\(557\) 1.83873e15 1.45316 0.726580 0.687082i \(-0.241109\pi\)
0.726580 + 0.687082i \(0.241109\pi\)
\(558\) 7.12673e13 0.0557702
\(559\) −3.06909e14 −0.237818
\(560\) 0 0
\(561\) 1.99269e13 0.0151406
\(562\) −1.93273e14 −0.145419
\(563\) −1.91860e15 −1.42951 −0.714757 0.699373i \(-0.753463\pi\)
−0.714757 + 0.699373i \(0.753463\pi\)
\(564\) 2.10360e14 0.155213
\(565\) 0 0
\(566\) −4.32569e14 −0.313015
\(567\) 1.76753e14 0.126666
\(568\) 5.17632e14 0.367372
\(569\) 1.48515e15 1.04388 0.521941 0.852981i \(-0.325208\pi\)
0.521941 + 0.852981i \(0.325208\pi\)
\(570\) 0 0
\(571\) −6.49667e14 −0.447911 −0.223956 0.974599i \(-0.571897\pi\)
−0.223956 + 0.974599i \(0.571897\pi\)
\(572\) −2.37105e13 −0.0161906
\(573\) 2.28954e14 0.154846
\(574\) −7.22059e14 −0.483679
\(575\) 0 0
\(576\) 6.34034e13 0.0416667
\(577\) 1.60418e15 1.04420 0.522102 0.852883i \(-0.325148\pi\)
0.522102 + 0.852883i \(0.325148\pi\)
\(578\) −1.05936e15 −0.683033
\(579\) 1.23969e15 0.791739
\(580\) 0 0
\(581\) 1.80731e15 1.13257
\(582\) −3.48738e14 −0.216482
\(583\) 1.05100e14 0.0646290
\(584\) 3.51805e14 0.214304
\(585\) 0 0
\(586\) −1.20544e15 −0.720626
\(587\) −2.36229e15 −1.39902 −0.699509 0.714624i \(-0.746598\pi\)
−0.699509 + 0.714624i \(0.746598\pi\)
\(588\) 1.47400e14 0.0864814
\(589\) 2.67693e14 0.155597
\(590\) 0 0
\(591\) 5.08743e14 0.290247
\(592\) 1.55290e14 0.0877756
\(593\) 9.18852e14 0.514571 0.257285 0.966335i \(-0.417172\pi\)
0.257285 + 0.966335i \(0.417172\pi\)
\(594\) −3.48580e13 −0.0193409
\(595\) 0 0
\(596\) −8.35041e14 −0.454835
\(597\) −8.32217e14 −0.449136
\(598\) 1.76092e14 0.0941634
\(599\) 2.23950e15 1.18660 0.593299 0.804982i \(-0.297825\pi\)
0.593299 + 0.804982i \(0.297825\pi\)
\(600\) 0 0
\(601\) −1.82448e15 −0.949137 −0.474568 0.880219i \(-0.657396\pi\)
−0.474568 + 0.880219i \(0.657396\pi\)
\(602\) −1.63228e15 −0.841420
\(603\) −1.21845e15 −0.622389
\(604\) 6.26319e14 0.317024
\(605\) 0 0
\(606\) 4.21332e14 0.209423
\(607\) 1.78003e15 0.876778 0.438389 0.898785i \(-0.355549\pi\)
0.438389 + 0.898785i \(0.355549\pi\)
\(608\) 2.38154e14 0.116249
\(609\) 8.98906e14 0.434830
\(610\) 0 0
\(611\) 2.57847e14 0.122500
\(612\) −6.53149e13 −0.0307524
\(613\) −2.41155e15 −1.12529 −0.562645 0.826699i \(-0.690216\pi\)
−0.562645 + 0.826699i \(0.690216\pi\)
\(614\) −5.16483e14 −0.238853
\(615\) 0 0
\(616\) −1.26103e14 −0.0572837
\(617\) −4.04949e15 −1.82319 −0.911595 0.411090i \(-0.865148\pi\)
−0.911595 + 0.411090i \(0.865148\pi\)
\(618\) 9.39252e14 0.419127
\(619\) 3.66980e15 1.62309 0.811547 0.584287i \(-0.198626\pi\)
0.811547 + 0.584287i \(0.198626\pi\)
\(620\) 0 0
\(621\) 2.58881e14 0.112486
\(622\) −2.47823e15 −1.06732
\(623\) −4.04793e13 −0.0172802
\(624\) 7.77164e13 0.0328850
\(625\) 0 0
\(626\) −1.26798e15 −0.527175
\(627\) −1.30933e14 −0.0539607
\(628\) 1.50534e15 0.614972
\(629\) −1.59972e14 −0.0647835
\(630\) 0 0
\(631\) −1.28463e14 −0.0511231 −0.0255616 0.999673i \(-0.508137\pi\)
−0.0255616 + 0.999673i \(0.508137\pi\)
\(632\) −7.52161e14 −0.296734
\(633\) 3.87100e13 0.0151392
\(634\) −2.12361e15 −0.823351
\(635\) 0 0
\(636\) −3.44490e14 −0.131269
\(637\) 1.80675e14 0.0682545
\(638\) −1.77277e14 −0.0663953
\(639\) 9.32790e14 0.346361
\(640\) 0 0
\(641\) 1.55882e15 0.568954 0.284477 0.958683i \(-0.408180\pi\)
0.284477 + 0.958683i \(0.408180\pi\)
\(642\) −1.10385e15 −0.399453
\(643\) −3.23739e15 −1.16154 −0.580770 0.814068i \(-0.697248\pi\)
−0.580770 + 0.814068i \(0.697248\pi\)
\(644\) 9.36532e14 0.333158
\(645\) 0 0
\(646\) −2.45334e14 −0.0857985
\(647\) −1.01764e15 −0.352874 −0.176437 0.984312i \(-0.556457\pi\)
−0.176437 + 0.984312i \(0.556457\pi\)
\(648\) 1.14255e14 0.0392837
\(649\) −7.19607e14 −0.245329
\(650\) 0 0
\(651\) 4.64595e14 0.155733
\(652\) 1.32006e15 0.438765
\(653\) −5.06875e15 −1.67062 −0.835311 0.549778i \(-0.814712\pi\)
−0.835311 + 0.549778i \(0.814712\pi\)
\(654\) 1.61999e14 0.0529463
\(655\) 0 0
\(656\) −4.66747e14 −0.150007
\(657\) 6.33964e14 0.202048
\(658\) 1.37135e15 0.433416
\(659\) 1.52920e15 0.479284 0.239642 0.970861i \(-0.422970\pi\)
0.239642 + 0.970861i \(0.422970\pi\)
\(660\) 0 0
\(661\) −3.76754e15 −1.16131 −0.580657 0.814148i \(-0.697204\pi\)
−0.580657 + 0.814148i \(0.697204\pi\)
\(662\) −4.32662e15 −1.32261
\(663\) −8.00594e13 −0.0242710
\(664\) 1.16827e15 0.351250
\(665\) 0 0
\(666\) 2.79838e14 0.0827556
\(667\) 1.31659e15 0.386151
\(668\) −9.61846e14 −0.279792
\(669\) 1.14264e14 0.0329660
\(670\) 0 0
\(671\) −6.27701e14 −0.178147
\(672\) 4.13330e14 0.116350
\(673\) −2.90026e15 −0.809757 −0.404878 0.914371i \(-0.632686\pi\)
−0.404878 + 0.914371i \(0.632686\pi\)
\(674\) −4.11896e15 −1.14067
\(675\) 0 0
\(676\) −1.73991e15 −0.474046
\(677\) 2.07034e15 0.559506 0.279753 0.960072i \(-0.409747\pi\)
0.279753 + 0.960072i \(0.409747\pi\)
\(678\) 1.80668e15 0.484304
\(679\) −2.27344e15 −0.604505
\(680\) 0 0
\(681\) −4.00395e15 −1.04756
\(682\) −9.16245e13 −0.0237792
\(683\) 4.72888e15 1.21743 0.608716 0.793389i \(-0.291685\pi\)
0.608716 + 0.793389i \(0.291685\pi\)
\(684\) 4.29162e14 0.109601
\(685\) 0 0
\(686\) −2.24661e15 −0.564605
\(687\) 3.32309e15 0.828477
\(688\) −1.05512e15 −0.260955
\(689\) −4.22257e14 −0.103603
\(690\) 0 0
\(691\) −1.29144e15 −0.311849 −0.155925 0.987769i \(-0.549836\pi\)
−0.155925 + 0.987769i \(0.549836\pi\)
\(692\) 3.52588e15 0.844664
\(693\) −2.27241e14 −0.0540076
\(694\) −2.49935e15 −0.589319
\(695\) 0 0
\(696\) 5.81063e14 0.134857
\(697\) 4.80819e14 0.110714
\(698\) −5.78589e15 −1.32180
\(699\) 7.69685e14 0.174457
\(700\) 0 0
\(701\) 6.26537e15 1.39797 0.698985 0.715136i \(-0.253635\pi\)
0.698985 + 0.715136i \(0.253635\pi\)
\(702\) 1.40047e14 0.0310042
\(703\) 1.05112e15 0.230886
\(704\) −8.15143e13 −0.0177658
\(705\) 0 0
\(706\) 9.40168e14 0.201734
\(707\) 2.74668e15 0.584792
\(708\) 2.35867e15 0.498293
\(709\) −2.87770e15 −0.603241 −0.301620 0.953428i \(-0.597528\pi\)
−0.301620 + 0.953428i \(0.597528\pi\)
\(710\) 0 0
\(711\) −1.35542e15 −0.279763
\(712\) −2.61663e13 −0.00535922
\(713\) 6.80471e14 0.138298
\(714\) −4.25791e14 −0.0858730
\(715\) 0 0
\(716\) −1.98321e15 −0.393864
\(717\) −1.04046e15 −0.205055
\(718\) 1.85163e15 0.362134
\(719\) −6.34976e15 −1.23239 −0.616195 0.787593i \(-0.711327\pi\)
−0.616195 + 0.787593i \(0.711327\pi\)
\(720\) 0 0
\(721\) 6.12304e15 1.17037
\(722\) −2.11568e15 −0.401324
\(723\) −1.46283e15 −0.275381
\(724\) 3.45152e14 0.0644835
\(725\) 0 0
\(726\) −2.17377e15 −0.400002
\(727\) 4.58889e15 0.838047 0.419023 0.907975i \(-0.362373\pi\)
0.419023 + 0.907975i \(0.362373\pi\)
\(728\) 5.06637e14 0.0918279
\(729\) 2.05891e14 0.0370370
\(730\) 0 0
\(731\) 1.08693e15 0.192600
\(732\) 2.05743e15 0.361838
\(733\) 1.12999e15 0.197244 0.0986218 0.995125i \(-0.468557\pi\)
0.0986218 + 0.995125i \(0.468557\pi\)
\(734\) 2.01723e15 0.349484
\(735\) 0 0
\(736\) 6.05385e14 0.103325
\(737\) 1.56649e15 0.265373
\(738\) −8.41093e14 −0.141428
\(739\) 3.41995e15 0.570788 0.285394 0.958410i \(-0.407875\pi\)
0.285394 + 0.958410i \(0.407875\pi\)
\(740\) 0 0
\(741\) 5.26043e14 0.0865011
\(742\) −2.24575e15 −0.366555
\(743\) 1.08101e16 1.75142 0.875711 0.482835i \(-0.160393\pi\)
0.875711 + 0.482835i \(0.160393\pi\)
\(744\) 3.00320e14 0.0482984
\(745\) 0 0
\(746\) 7.26298e14 0.115094
\(747\) 2.10525e15 0.331162
\(748\) 8.39718e13 0.0131122
\(749\) −7.19603e15 −1.11543
\(750\) 0 0
\(751\) 1.13998e16 1.74132 0.870661 0.491884i \(-0.163692\pi\)
0.870661 + 0.491884i \(0.163692\pi\)
\(752\) 8.86454e14 0.134418
\(753\) −2.52710e13 −0.00380409
\(754\) 7.12236e14 0.106434
\(755\) 0 0
\(756\) 7.44834e14 0.109696
\(757\) −3.86631e14 −0.0565287 −0.0282644 0.999600i \(-0.508998\pi\)
−0.0282644 + 0.999600i \(0.508998\pi\)
\(758\) −1.93999e15 −0.281591
\(759\) −3.32830e14 −0.0479615
\(760\) 0 0
\(761\) −9.19001e14 −0.130527 −0.0652635 0.997868i \(-0.520789\pi\)
−0.0652635 + 0.997868i \(0.520789\pi\)
\(762\) 2.26078e15 0.318791
\(763\) 1.05608e15 0.147847
\(764\) 9.64812e14 0.134100
\(765\) 0 0
\(766\) 7.63328e15 1.04581
\(767\) 2.89113e15 0.393272
\(768\) 2.67181e14 0.0360844
\(769\) 3.54298e15 0.475088 0.237544 0.971377i \(-0.423658\pi\)
0.237544 + 0.971377i \(0.423658\pi\)
\(770\) 0 0
\(771\) −4.30881e15 −0.569584
\(772\) 5.22406e15 0.685666
\(773\) 4.60796e15 0.600512 0.300256 0.953859i \(-0.402928\pi\)
0.300256 + 0.953859i \(0.402928\pi\)
\(774\) −1.90136e15 −0.246031
\(775\) 0 0
\(776\) −1.46958e15 −0.187479
\(777\) 1.82428e15 0.231087
\(778\) 4.59202e15 0.577585
\(779\) −3.15930e15 −0.394579
\(780\) 0 0
\(781\) −1.19924e15 −0.147681
\(782\) −6.23637e14 −0.0762596
\(783\) 1.04709e15 0.127144
\(784\) 6.21143e14 0.0748951
\(785\) 0 0
\(786\) 5.62679e15 0.669017
\(787\) −6.46240e15 −0.763015 −0.381507 0.924366i \(-0.624595\pi\)
−0.381507 + 0.924366i \(0.624595\pi\)
\(788\) 2.14384e15 0.251361
\(789\) −4.79628e15 −0.558446
\(790\) 0 0
\(791\) 1.17779e16 1.35237
\(792\) −1.46891e14 −0.0167497
\(793\) 2.52189e15 0.285577
\(794\) 3.60714e15 0.405649
\(795\) 0 0
\(796\) −3.50695e15 −0.388963
\(797\) −1.71141e15 −0.188510 −0.0942548 0.995548i \(-0.530047\pi\)
−0.0942548 + 0.995548i \(0.530047\pi\)
\(798\) 2.79773e15 0.306048
\(799\) −9.13179e14 −0.0992085
\(800\) 0 0
\(801\) −4.71525e13 −0.00505272
\(802\) 6.22335e15 0.662315
\(803\) −8.15053e14 −0.0861490
\(804\) −5.13453e15 −0.539004
\(805\) 0 0
\(806\) 3.68116e14 0.0381190
\(807\) −7.24602e15 −0.745239
\(808\) 1.77549e15 0.181366
\(809\) −1.34056e16 −1.36009 −0.680046 0.733170i \(-0.738040\pi\)
−0.680046 + 0.733170i \(0.738040\pi\)
\(810\) 0 0
\(811\) −3.70518e15 −0.370847 −0.185423 0.982659i \(-0.559366\pi\)
−0.185423 + 0.982659i \(0.559366\pi\)
\(812\) 3.78798e15 0.376574
\(813\) −7.02443e15 −0.693607
\(814\) −3.59772e14 −0.0352853
\(815\) 0 0
\(816\) −2.75236e14 −0.0266324
\(817\) −7.14186e15 −0.686421
\(818\) −4.68868e15 −0.447617
\(819\) 9.12977e14 0.0865762
\(820\) 0 0
\(821\) −8.02428e15 −0.750791 −0.375395 0.926865i \(-0.622493\pi\)
−0.375395 + 0.926865i \(0.622493\pi\)
\(822\) 1.48701e15 0.138203
\(823\) 1.93160e16 1.78328 0.891638 0.452750i \(-0.149557\pi\)
0.891638 + 0.452750i \(0.149557\pi\)
\(824\) 3.95800e15 0.362975
\(825\) 0 0
\(826\) 1.53763e16 1.39143
\(827\) −1.98183e15 −0.178150 −0.0890751 0.996025i \(-0.528391\pi\)
−0.0890751 + 0.996025i \(0.528391\pi\)
\(828\) 1.09092e15 0.0974154
\(829\) 5.27226e15 0.467678 0.233839 0.972275i \(-0.424871\pi\)
0.233839 + 0.972275i \(0.424871\pi\)
\(830\) 0 0
\(831\) 5.00919e15 0.438492
\(832\) 3.27496e14 0.0284792
\(833\) −6.39870e14 −0.0552770
\(834\) −8.02920e15 −0.689063
\(835\) 0 0
\(836\) −5.51751e14 −0.0467314
\(837\) 5.41186e14 0.0455362
\(838\) 1.07870e16 0.901696
\(839\) −1.31150e16 −1.08912 −0.544562 0.838721i \(-0.683304\pi\)
−0.544562 + 0.838721i \(0.683304\pi\)
\(840\) 0 0
\(841\) −6.87533e15 −0.563528
\(842\) −1.97617e15 −0.160919
\(843\) −1.46767e15 −0.118734
\(844\) 1.63124e14 0.0131109
\(845\) 0 0
\(846\) 1.59742e15 0.126731
\(847\) −1.41709e16 −1.11696
\(848\) −1.45168e15 −0.113682
\(849\) −3.28482e15 −0.255575
\(850\) 0 0
\(851\) 2.67193e15 0.205217
\(852\) 3.93077e15 0.299958
\(853\) 1.31856e16 0.999721 0.499861 0.866106i \(-0.333385\pi\)
0.499861 + 0.866106i \(0.333385\pi\)
\(854\) 1.34125e16 1.01040
\(855\) 0 0
\(856\) −4.65160e15 −0.345936
\(857\) 1.20555e16 0.890820 0.445410 0.895327i \(-0.353058\pi\)
0.445410 + 0.895327i \(0.353058\pi\)
\(858\) −1.80052e14 −0.0132196
\(859\) 2.39322e16 1.74590 0.872951 0.487807i \(-0.162203\pi\)
0.872951 + 0.487807i \(0.162203\pi\)
\(860\) 0 0
\(861\) −5.48313e15 −0.394922
\(862\) 1.19963e15 0.0858536
\(863\) 2.56601e16 1.82473 0.912366 0.409376i \(-0.134253\pi\)
0.912366 + 0.409376i \(0.134253\pi\)
\(864\) 4.81469e14 0.0340207
\(865\) 0 0
\(866\) 8.09115e15 0.564497
\(867\) −8.04454e15 −0.557694
\(868\) 1.95780e15 0.134868
\(869\) 1.74259e15 0.119285
\(870\) 0 0
\(871\) −6.29362e15 −0.425403
\(872\) 6.82664e14 0.0458529
\(873\) −2.64823e15 −0.176757
\(874\) 4.09771e15 0.271787
\(875\) 0 0
\(876\) 2.67152e15 0.174979
\(877\) −1.09298e16 −0.711402 −0.355701 0.934600i \(-0.615758\pi\)
−0.355701 + 0.934600i \(0.615758\pi\)
\(878\) −1.34963e16 −0.872962
\(879\) −9.15384e15 −0.588389
\(880\) 0 0
\(881\) −1.22007e16 −0.774490 −0.387245 0.921977i \(-0.626573\pi\)
−0.387245 + 0.921977i \(0.626573\pi\)
\(882\) 1.11932e15 0.0706118
\(883\) 1.11717e16 0.700380 0.350190 0.936679i \(-0.386117\pi\)
0.350190 + 0.936679i \(0.386117\pi\)
\(884\) −3.37370e14 −0.0210193
\(885\) 0 0
\(886\) 1.08174e16 0.665635
\(887\) 2.02845e15 0.124047 0.0620233 0.998075i \(-0.480245\pi\)
0.0620233 + 0.998075i \(0.480245\pi\)
\(888\) 1.17923e15 0.0716685
\(889\) 1.47382e16 0.890193
\(890\) 0 0
\(891\) −2.64703e14 −0.0157918
\(892\) 4.81508e14 0.0285494
\(893\) 6.00019e15 0.353575
\(894\) −6.34109e15 −0.371371
\(895\) 0 0
\(896\) 1.74177e15 0.100762
\(897\) 1.33719e15 0.0768841
\(898\) −7.03888e15 −0.402238
\(899\) 2.75229e15 0.156321
\(900\) 0 0
\(901\) 1.49544e15 0.0839041
\(902\) 1.08135e15 0.0603017
\(903\) −1.23951e16 −0.687016
\(904\) 7.61334e15 0.419420
\(905\) 0 0
\(906\) 4.75611e15 0.258849
\(907\) −3.36811e16 −1.82199 −0.910996 0.412416i \(-0.864685\pi\)
−0.910996 + 0.412416i \(0.864685\pi\)
\(908\) −1.68726e16 −0.907214
\(909\) 3.19949e15 0.170993
\(910\) 0 0
\(911\) −8.09337e15 −0.427345 −0.213672 0.976905i \(-0.568542\pi\)
−0.213672 + 0.976905i \(0.568542\pi\)
\(912\) 1.80849e15 0.0949169
\(913\) −2.70661e15 −0.141200
\(914\) 1.67894e16 0.870625
\(915\) 0 0
\(916\) 1.40035e16 0.717482
\(917\) 3.66814e16 1.86816
\(918\) −4.95985e14 −0.0251092
\(919\) 9.80555e15 0.493442 0.246721 0.969087i \(-0.420647\pi\)
0.246721 + 0.969087i \(0.420647\pi\)
\(920\) 0 0
\(921\) −3.92204e15 −0.195022
\(922\) −2.84103e15 −0.140429
\(923\) 4.81812e15 0.236738
\(924\) −9.57593e14 −0.0467719
\(925\) 0 0
\(926\) −1.87610e16 −0.905515
\(927\) 7.13245e15 0.342216
\(928\) 2.44860e15 0.116789
\(929\) −2.72736e16 −1.29317 −0.646586 0.762841i \(-0.723804\pi\)
−0.646586 + 0.762841i \(0.723804\pi\)
\(930\) 0 0
\(931\) 4.20437e15 0.197005
\(932\) 3.24344e15 0.151084
\(933\) −1.88190e16 −0.871462
\(934\) −6.62711e15 −0.305082
\(935\) 0 0
\(936\) 5.90159e14 0.0268505
\(937\) 4.79056e15 0.216680 0.108340 0.994114i \(-0.465446\pi\)
0.108340 + 0.994114i \(0.465446\pi\)
\(938\) −3.34723e16 −1.50511
\(939\) −9.62876e15 −0.430437
\(940\) 0 0
\(941\) −2.71262e16 −1.19852 −0.599261 0.800553i \(-0.704539\pi\)
−0.599261 + 0.800553i \(0.704539\pi\)
\(942\) 1.14312e16 0.502123
\(943\) −8.03089e15 −0.350711
\(944\) 9.93942e15 0.431534
\(945\) 0 0
\(946\) 2.44448e15 0.104902
\(947\) 1.71472e16 0.731593 0.365796 0.930695i \(-0.380797\pi\)
0.365796 + 0.930695i \(0.380797\pi\)
\(948\) −5.71173e15 −0.242282
\(949\) 3.27460e15 0.138100
\(950\) 0 0
\(951\) −1.61262e16 −0.672263
\(952\) −1.79428e15 −0.0743682
\(953\) −1.32342e16 −0.545363 −0.272681 0.962104i \(-0.587910\pi\)
−0.272681 + 0.962104i \(0.587910\pi\)
\(954\) −2.61597e15 −0.107181
\(955\) 0 0
\(956\) −4.38449e15 −0.177583
\(957\) −1.34619e15 −0.0542116
\(958\) −1.16878e16 −0.467975
\(959\) 9.69388e15 0.385918
\(960\) 0 0
\(961\) −2.39860e16 −0.944014
\(962\) 1.44544e15 0.0565636
\(963\) −8.38233e15 −0.326152
\(964\) −6.16437e15 −0.238487
\(965\) 0 0
\(966\) 7.11179e15 0.272023
\(967\) −2.85016e16 −1.08398 −0.541992 0.840383i \(-0.682330\pi\)
−0.541992 + 0.840383i \(0.682330\pi\)
\(968\) −9.16024e15 −0.346412
\(969\) −1.86301e15 −0.0700542
\(970\) 0 0
\(971\) −1.14914e16 −0.427235 −0.213617 0.976917i \(-0.568525\pi\)
−0.213617 + 0.976917i \(0.568525\pi\)
\(972\) 8.67624e14 0.0320750
\(973\) −5.23428e16 −1.92414
\(974\) −9.96992e15 −0.364433
\(975\) 0 0
\(976\) 8.67000e15 0.313361
\(977\) 5.79239e15 0.208180 0.104090 0.994568i \(-0.466807\pi\)
0.104090 + 0.994568i \(0.466807\pi\)
\(978\) 1.00242e16 0.358251
\(979\) 6.06214e13 0.00215437
\(980\) 0 0
\(981\) 1.23018e15 0.0432305
\(982\) −2.36257e16 −0.825605
\(983\) −1.26558e16 −0.439791 −0.219895 0.975523i \(-0.570572\pi\)
−0.219895 + 0.975523i \(0.570572\pi\)
\(984\) −3.54436e15 −0.122480
\(985\) 0 0
\(986\) −2.52242e15 −0.0861973
\(987\) 1.04137e16 0.353882
\(988\) 2.21674e15 0.0749121
\(989\) −1.81545e16 −0.610106
\(990\) 0 0
\(991\) 7.36077e14 0.0244635 0.0122317 0.999925i \(-0.496106\pi\)
0.0122317 + 0.999925i \(0.496106\pi\)
\(992\) 1.26555e15 0.0418277
\(993\) −3.28553e16 −1.07990
\(994\) 2.56249e16 0.837601
\(995\) 0 0
\(996\) 8.87151e15 0.286795
\(997\) −3.93520e16 −1.26515 −0.632577 0.774498i \(-0.718003\pi\)
−0.632577 + 0.774498i \(0.718003\pi\)
\(998\) −2.96569e16 −0.948216
\(999\) 2.12502e15 0.0675697
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.12.a.s.1.2 yes 2
5.2 odd 4 150.12.c.m.49.4 4
5.3 odd 4 150.12.c.m.49.1 4
5.4 even 2 150.12.a.j.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.12.a.j.1.1 2 5.4 even 2
150.12.a.s.1.2 yes 2 1.1 even 1 trivial
150.12.c.m.49.1 4 5.3 odd 4
150.12.c.m.49.4 4 5.2 odd 4