Properties

Label 150.12.a.j.1.2
Level $150$
Weight $12$
Character 150.1
Self dual yes
Analytic conductor $115.251$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [150,12,Mod(1,150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("150.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 12, names="a")
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 150.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-64,-486,2048,0,15552,24058] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(115.251477084\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1092762 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1044.85\) of defining polynomial
Character \(\chi\) \(=\) 150.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-32.0000 q^{2} -243.000 q^{3} +1024.00 q^{4} +7776.00 q^{6} +74750.2 q^{7} -32768.0 q^{8} +59049.0 q^{9} +802180. q^{11} -248832. q^{12} -555889. q^{13} -2.39201e6 q^{14} +1.04858e6 q^{16} -8.07710e6 q^{17} -1.88957e6 q^{18} -1.03389e7 q^{19} -1.81643e7 q^{21} -2.56698e7 q^{22} +2.24760e7 q^{23} +7.96262e6 q^{24} +1.77885e7 q^{26} -1.43489e7 q^{27} +7.65442e7 q^{28} -1.49185e8 q^{29} -4.97171e7 q^{31} -3.35544e7 q^{32} -1.94930e8 q^{33} +2.58467e8 q^{34} +6.04662e7 q^{36} -1.78955e8 q^{37} +3.30846e8 q^{38} +1.35081e8 q^{39} +7.97131e8 q^{41} +5.81257e8 q^{42} -1.91393e9 q^{43} +8.21432e8 q^{44} -7.19231e8 q^{46} -1.44701e9 q^{47} -2.54804e8 q^{48} +3.61026e9 q^{49} +1.96274e9 q^{51} -5.69231e8 q^{52} +3.15555e9 q^{53} +4.59165e8 q^{54} -2.44941e9 q^{56} +2.51236e9 q^{57} +4.77390e9 q^{58} -3.41149e9 q^{59} +5.20656e9 q^{61} +1.59095e9 q^{62} +4.41392e9 q^{63} +1.07374e9 q^{64} +6.23775e9 q^{66} -1.58402e10 q^{67} -8.27095e9 q^{68} -5.46166e9 q^{69} +1.38358e10 q^{71} -1.93492e9 q^{72} -3.25986e10 q^{73} +5.72655e9 q^{74} -1.05871e10 q^{76} +5.99631e10 q^{77} -4.32260e9 q^{78} +2.00781e10 q^{79} +3.48678e9 q^{81} -2.55082e10 q^{82} +5.86779e9 q^{83} -1.86002e10 q^{84} +6.12457e10 q^{86} +3.62518e10 q^{87} -2.62858e10 q^{88} +6.37265e10 q^{89} -4.15528e10 q^{91} +2.30154e10 q^{92} +1.20813e10 q^{93} +4.63043e10 q^{94} +8.15373e9 q^{96} +9.69296e10 q^{97} -1.15528e11 q^{98} +4.73679e10 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 64 q^{2} - 486 q^{3} + 2048 q^{4} + 15552 q^{6} + 24058 q^{7} - 65536 q^{8} + 118098 q^{9} + 726264 q^{11} - 497664 q^{12} - 860894 q^{13} - 769856 q^{14} + 2097152 q^{16} - 6996912 q^{17} - 3779136 q^{18}+ \cdots + 42885162936 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −32.0000 −0.707107
\(3\) −243.000 −0.577350
\(4\) 1024.00 0.500000
\(5\) 0 0
\(6\) 7776.00 0.408248
\(7\) 74750.2 1.68102 0.840510 0.541796i \(-0.182255\pi\)
0.840510 + 0.541796i \(0.182255\pi\)
\(8\) −32768.0 −0.353553
\(9\) 59049.0 0.333333
\(10\) 0 0
\(11\) 802180. 1.50180 0.750900 0.660416i \(-0.229620\pi\)
0.750900 + 0.660416i \(0.229620\pi\)
\(12\) −248832. −0.288675
\(13\) −555889. −0.415241 −0.207620 0.978209i \(-0.566572\pi\)
−0.207620 + 0.978209i \(0.566572\pi\)
\(14\) −2.39201e6 −1.18866
\(15\) 0 0
\(16\) 1.04858e6 0.250000
\(17\) −8.07710e6 −1.37971 −0.689853 0.723950i \(-0.742325\pi\)
−0.689853 + 0.723950i \(0.742325\pi\)
\(18\) −1.88957e6 −0.235702
\(19\) −1.03389e7 −0.957923 −0.478962 0.877836i \(-0.658987\pi\)
−0.478962 + 0.877836i \(0.658987\pi\)
\(20\) 0 0
\(21\) −1.81643e7 −0.970537
\(22\) −2.56698e7 −1.06193
\(23\) 2.24760e7 0.728141 0.364071 0.931371i \(-0.381387\pi\)
0.364071 + 0.931371i \(0.381387\pi\)
\(24\) 7.96262e6 0.204124
\(25\) 0 0
\(26\) 1.77885e7 0.293620
\(27\) −1.43489e7 −0.192450
\(28\) 7.65442e7 0.840510
\(29\) −1.49185e8 −1.35062 −0.675312 0.737532i \(-0.735991\pi\)
−0.675312 + 0.737532i \(0.735991\pi\)
\(30\) 0 0
\(31\) −4.97171e7 −0.311901 −0.155950 0.987765i \(-0.549844\pi\)
−0.155950 + 0.987765i \(0.549844\pi\)
\(32\) −3.35544e7 −0.176777
\(33\) −1.94930e8 −0.867065
\(34\) 2.58467e8 0.975599
\(35\) 0 0
\(36\) 6.04662e7 0.166667
\(37\) −1.78955e8 −0.424262 −0.212131 0.977241i \(-0.568040\pi\)
−0.212131 + 0.977241i \(0.568040\pi\)
\(38\) 3.30846e8 0.677354
\(39\) 1.35081e8 0.239739
\(40\) 0 0
\(41\) 7.97131e8 1.07453 0.537265 0.843414i \(-0.319458\pi\)
0.537265 + 0.843414i \(0.319458\pi\)
\(42\) 5.81257e8 0.686274
\(43\) −1.91393e9 −1.98541 −0.992703 0.120584i \(-0.961523\pi\)
−0.992703 + 0.120584i \(0.961523\pi\)
\(44\) 8.21432e8 0.750900
\(45\) 0 0
\(46\) −7.19231e8 −0.514874
\(47\) −1.44701e9 −0.920308 −0.460154 0.887839i \(-0.652206\pi\)
−0.460154 + 0.887839i \(0.652206\pi\)
\(48\) −2.54804e8 −0.144338
\(49\) 3.61026e9 1.82583
\(50\) 0 0
\(51\) 1.96274e9 0.796573
\(52\) −5.69231e8 −0.207620
\(53\) 3.15555e9 1.03647 0.518236 0.855238i \(-0.326589\pi\)
0.518236 + 0.855238i \(0.326589\pi\)
\(54\) 4.59165e8 0.136083
\(55\) 0 0
\(56\) −2.44941e9 −0.594330
\(57\) 2.51236e9 0.553057
\(58\) 4.77390e9 0.955036
\(59\) −3.41149e9 −0.621237 −0.310619 0.950535i \(-0.600536\pi\)
−0.310619 + 0.950535i \(0.600536\pi\)
\(60\) 0 0
\(61\) 5.20656e9 0.789290 0.394645 0.918834i \(-0.370868\pi\)
0.394645 + 0.918834i \(0.370868\pi\)
\(62\) 1.59095e9 0.220547
\(63\) 4.41392e9 0.560340
\(64\) 1.07374e9 0.125000
\(65\) 0 0
\(66\) 6.23775e9 0.613107
\(67\) −1.58402e10 −1.43334 −0.716671 0.697411i \(-0.754335\pi\)
−0.716671 + 0.697411i \(0.754335\pi\)
\(68\) −8.27095e9 −0.689853
\(69\) −5.46166e9 −0.420393
\(70\) 0 0
\(71\) 1.38358e10 0.910091 0.455045 0.890468i \(-0.349623\pi\)
0.455045 + 0.890468i \(0.349623\pi\)
\(72\) −1.93492e9 −0.117851
\(73\) −3.25986e10 −1.84045 −0.920223 0.391396i \(-0.871992\pi\)
−0.920223 + 0.391396i \(0.871992\pi\)
\(74\) 5.72655e9 0.299998
\(75\) 0 0
\(76\) −1.05871e10 −0.478962
\(77\) 5.99631e10 2.52456
\(78\) −4.32260e9 −0.169521
\(79\) 2.00781e10 0.734131 0.367065 0.930195i \(-0.380363\pi\)
0.367065 + 0.930195i \(0.380363\pi\)
\(80\) 0 0
\(81\) 3.48678e9 0.111111
\(82\) −2.55082e10 −0.759807
\(83\) 5.86779e9 0.163510 0.0817551 0.996652i \(-0.473947\pi\)
0.0817551 + 0.996652i \(0.473947\pi\)
\(84\) −1.86002e10 −0.485269
\(85\) 0 0
\(86\) 6.12457e10 1.40389
\(87\) 3.62518e10 0.779784
\(88\) −2.62858e10 −0.530967
\(89\) 6.37265e10 1.20969 0.604846 0.796342i \(-0.293235\pi\)
0.604846 + 0.796342i \(0.293235\pi\)
\(90\) 0 0
\(91\) −4.15528e10 −0.698028
\(92\) 2.30154e10 0.364071
\(93\) 1.20813e10 0.180076
\(94\) 4.63043e10 0.650756
\(95\) 0 0
\(96\) 8.15373e9 0.102062
\(97\) 9.69296e10 1.14607 0.573036 0.819530i \(-0.305765\pi\)
0.573036 + 0.819530i \(0.305765\pi\)
\(98\) −1.15528e11 −1.29106
\(99\) 4.73679e10 0.500600
\(100\) 0 0
\(101\) 3.62863e10 0.343539 0.171769 0.985137i \(-0.445052\pi\)
0.171769 + 0.985137i \(0.445052\pi\)
\(102\) −6.28075e10 −0.563262
\(103\) −1.23377e11 −1.04865 −0.524324 0.851519i \(-0.675682\pi\)
−0.524324 + 0.851519i \(0.675682\pi\)
\(104\) 1.82154e10 0.146810
\(105\) 0 0
\(106\) −1.00978e11 −0.732896
\(107\) −2.47752e11 −1.70768 −0.853838 0.520538i \(-0.825731\pi\)
−0.853838 + 0.520538i \(0.825731\pi\)
\(108\) −1.46933e10 −0.0962250
\(109\) −2.20320e11 −1.37154 −0.685768 0.727820i \(-0.740534\pi\)
−0.685768 + 0.727820i \(0.740534\pi\)
\(110\) 0 0
\(111\) 4.34860e10 0.244948
\(112\) 7.83812e10 0.420255
\(113\) −7.45232e10 −0.380505 −0.190252 0.981735i \(-0.560931\pi\)
−0.190252 + 0.981735i \(0.560931\pi\)
\(114\) −8.03955e10 −0.391070
\(115\) 0 0
\(116\) −1.52765e11 −0.675312
\(117\) −3.28247e10 −0.138414
\(118\) 1.09168e11 0.439281
\(119\) −6.03765e11 −2.31931
\(120\) 0 0
\(121\) 3.58181e11 1.25540
\(122\) −1.66610e11 −0.558112
\(123\) −1.93703e11 −0.620380
\(124\) −5.09103e10 −0.155950
\(125\) 0 0
\(126\) −1.41246e11 −0.396220
\(127\) 1.37238e11 0.368598 0.184299 0.982870i \(-0.440999\pi\)
0.184299 + 0.982870i \(0.440999\pi\)
\(128\) −3.43597e10 −0.0883883
\(129\) 4.65085e11 1.14627
\(130\) 0 0
\(131\) 7.96588e10 0.180402 0.0902011 0.995924i \(-0.471249\pi\)
0.0902011 + 0.995924i \(0.471249\pi\)
\(132\) −1.99608e11 −0.433532
\(133\) −7.72836e11 −1.61029
\(134\) 5.06887e11 1.01353
\(135\) 0 0
\(136\) 2.64670e11 0.487800
\(137\) −6.88285e10 −0.121844 −0.0609222 0.998143i \(-0.519404\pi\)
−0.0609222 + 0.998143i \(0.519404\pi\)
\(138\) 1.74773e11 0.297262
\(139\) −3.34458e11 −0.546714 −0.273357 0.961913i \(-0.588134\pi\)
−0.273357 + 0.961913i \(0.588134\pi\)
\(140\) 0 0
\(141\) 3.51623e11 0.531340
\(142\) −4.42747e11 −0.643532
\(143\) −4.45923e11 −0.623609
\(144\) 6.19174e10 0.0833333
\(145\) 0 0
\(146\) 1.04315e12 1.30139
\(147\) −8.77293e11 −1.05414
\(148\) −1.83250e11 −0.212131
\(149\) −1.73770e12 −1.93843 −0.969213 0.246223i \(-0.920810\pi\)
−0.969213 + 0.246223i \(0.920810\pi\)
\(150\) 0 0
\(151\) 5.01763e11 0.520146 0.260073 0.965589i \(-0.416253\pi\)
0.260073 + 0.965589i \(0.416253\pi\)
\(152\) 3.38786e11 0.338677
\(153\) −4.76945e11 −0.459902
\(154\) −1.91882e12 −1.78513
\(155\) 0 0
\(156\) 1.38323e11 0.119870
\(157\) 4.03146e11 0.337298 0.168649 0.985676i \(-0.446060\pi\)
0.168649 + 0.985676i \(0.446060\pi\)
\(158\) −6.42499e11 −0.519109
\(159\) −7.66798e11 −0.598407
\(160\) 0 0
\(161\) 1.68008e12 1.22402
\(162\) −1.11577e11 −0.0785674
\(163\) 3.16791e11 0.215646 0.107823 0.994170i \(-0.465612\pi\)
0.107823 + 0.994170i \(0.465612\pi\)
\(164\) 8.16262e11 0.537265
\(165\) 0 0
\(166\) −1.87769e11 −0.115619
\(167\) −2.11724e12 −1.26133 −0.630667 0.776053i \(-0.717219\pi\)
−0.630667 + 0.776053i \(0.717219\pi\)
\(168\) 5.95207e11 0.343137
\(169\) −1.48315e12 −0.827575
\(170\) 0 0
\(171\) −6.10503e11 −0.319308
\(172\) −1.95986e12 −0.992703
\(173\) 9.66212e11 0.474044 0.237022 0.971504i \(-0.423829\pi\)
0.237022 + 0.971504i \(0.423829\pi\)
\(174\) −1.16006e12 −0.551390
\(175\) 0 0
\(176\) 8.41147e11 0.375450
\(177\) 8.28991e11 0.358671
\(178\) −2.03925e12 −0.855382
\(179\) −1.30643e12 −0.531366 −0.265683 0.964060i \(-0.585597\pi\)
−0.265683 + 0.964060i \(0.585597\pi\)
\(180\) 0 0
\(181\) −2.52558e12 −0.966337 −0.483169 0.875527i \(-0.660514\pi\)
−0.483169 + 0.875527i \(0.660514\pi\)
\(182\) 1.32969e12 0.493580
\(183\) −1.26519e12 −0.455697
\(184\) −7.36493e11 −0.257437
\(185\) 0 0
\(186\) −3.86600e11 −0.127333
\(187\) −6.47929e12 −2.07204
\(188\) −1.48174e12 −0.460154
\(189\) −1.07258e12 −0.323512
\(190\) 0 0
\(191\) −3.52503e11 −0.100341 −0.0501706 0.998741i \(-0.515977\pi\)
−0.0501706 + 0.998741i \(0.515977\pi\)
\(192\) −2.60919e11 −0.0721688
\(193\) −6.60892e12 −1.77650 −0.888250 0.459360i \(-0.848079\pi\)
−0.888250 + 0.459360i \(0.848079\pi\)
\(194\) −3.10175e12 −0.810395
\(195\) 0 0
\(196\) 3.69691e12 0.912914
\(197\) 6.69180e12 1.60686 0.803431 0.595397i \(-0.203005\pi\)
0.803431 + 0.595397i \(0.203005\pi\)
\(198\) −1.51577e12 −0.353978
\(199\) 7.47387e12 1.69767 0.848835 0.528657i \(-0.177304\pi\)
0.848835 + 0.528657i \(0.177304\pi\)
\(200\) 0 0
\(201\) 3.84917e12 0.827541
\(202\) −1.16116e12 −0.242919
\(203\) −1.11516e13 −2.27043
\(204\) 2.00984e12 0.398287
\(205\) 0 0
\(206\) 3.94806e12 0.741506
\(207\) 1.32718e12 0.242714
\(208\) −5.82892e11 −0.103810
\(209\) −8.29368e12 −1.43861
\(210\) 0 0
\(211\) −1.88751e12 −0.310696 −0.155348 0.987860i \(-0.549650\pi\)
−0.155348 + 0.987860i \(0.549650\pi\)
\(212\) 3.23128e12 0.518236
\(213\) −3.36211e12 −0.525441
\(214\) 7.92805e12 1.20751
\(215\) 0 0
\(216\) 4.70185e11 0.0680414
\(217\) −3.71636e12 −0.524312
\(218\) 7.05023e12 0.969823
\(219\) 7.92145e12 1.06258
\(220\) 0 0
\(221\) 4.48997e12 0.572910
\(222\) −1.39155e12 −0.173204
\(223\) −1.03301e13 −1.25437 −0.627187 0.778869i \(-0.715794\pi\)
−0.627187 + 0.778869i \(0.715794\pi\)
\(224\) −2.50820e12 −0.297165
\(225\) 0 0
\(226\) 2.38474e12 0.269057
\(227\) 7.81273e12 0.860322 0.430161 0.902752i \(-0.358457\pi\)
0.430161 + 0.902752i \(0.358457\pi\)
\(228\) 2.57266e12 0.276529
\(229\) −1.39300e13 −1.46170 −0.730848 0.682541i \(-0.760875\pi\)
−0.730848 + 0.682541i \(0.760875\pi\)
\(230\) 0 0
\(231\) −1.45710e13 −1.45755
\(232\) 4.88848e12 0.477518
\(233\) 1.85940e12 0.177384 0.0886921 0.996059i \(-0.471731\pi\)
0.0886921 + 0.996059i \(0.471731\pi\)
\(234\) 1.05039e12 0.0978732
\(235\) 0 0
\(236\) −3.49336e12 −0.310619
\(237\) −4.87898e12 −0.423851
\(238\) 1.93205e13 1.64000
\(239\) 1.16641e13 0.967530 0.483765 0.875198i \(-0.339269\pi\)
0.483765 + 0.875198i \(0.339269\pi\)
\(240\) 0 0
\(241\) 3.44941e12 0.273307 0.136654 0.990619i \(-0.456365\pi\)
0.136654 + 0.990619i \(0.456365\pi\)
\(242\) −1.14618e13 −0.887704
\(243\) −8.47289e11 −0.0641500
\(244\) 5.33152e12 0.394645
\(245\) 0 0
\(246\) 6.19849e12 0.438675
\(247\) 5.74730e12 0.397769
\(248\) 1.62913e12 0.110274
\(249\) −1.42587e12 −0.0944026
\(250\) 0 0
\(251\) −1.59703e11 −0.0101183 −0.00505916 0.999987i \(-0.501610\pi\)
−0.00505916 + 0.999987i \(0.501610\pi\)
\(252\) 4.51986e12 0.280170
\(253\) 1.80298e13 1.09352
\(254\) −4.39161e12 −0.260638
\(255\) 0 0
\(256\) 1.09951e12 0.0625000
\(257\) 2.36770e13 1.31733 0.658664 0.752437i \(-0.271122\pi\)
0.658664 + 0.752437i \(0.271122\pi\)
\(258\) −1.48827e13 −0.810539
\(259\) −1.33769e13 −0.713193
\(260\) 0 0
\(261\) −8.80920e12 −0.450208
\(262\) −2.54908e12 −0.127564
\(263\) 3.42374e12 0.167782 0.0838909 0.996475i \(-0.473265\pi\)
0.0838909 + 0.996475i \(0.473265\pi\)
\(264\) 6.38746e12 0.306554
\(265\) 0 0
\(266\) 2.47308e13 1.13865
\(267\) −1.54855e13 −0.698416
\(268\) −1.62204e13 −0.716671
\(269\) 2.86821e13 1.24158 0.620788 0.783978i \(-0.286813\pi\)
0.620788 + 0.783978i \(0.286813\pi\)
\(270\) 0 0
\(271\) 5.59038e12 0.232332 0.116166 0.993230i \(-0.462939\pi\)
0.116166 + 0.993230i \(0.462939\pi\)
\(272\) −8.46945e12 −0.344926
\(273\) 1.00973e13 0.403007
\(274\) 2.20251e12 0.0861570
\(275\) 0 0
\(276\) −5.59274e12 −0.210196
\(277\) 4.28065e11 0.0157714 0.00788571 0.999969i \(-0.497490\pi\)
0.00788571 + 0.999969i \(0.497490\pi\)
\(278\) 1.07027e13 0.386585
\(279\) −2.93575e12 −0.103967
\(280\) 0 0
\(281\) −1.08985e13 −0.371093 −0.185546 0.982636i \(-0.559406\pi\)
−0.185546 + 0.982636i \(0.559406\pi\)
\(282\) −1.12519e13 −0.375714
\(283\) 5.65412e13 1.85157 0.925783 0.378055i \(-0.123407\pi\)
0.925783 + 0.378055i \(0.123407\pi\)
\(284\) 1.41679e13 0.455045
\(285\) 0 0
\(286\) 1.42695e13 0.440958
\(287\) 5.95856e13 1.80631
\(288\) −1.98136e12 −0.0589256
\(289\) 3.09677e13 0.903588
\(290\) 0 0
\(291\) −2.35539e13 −0.661685
\(292\) −3.33809e13 −0.920223
\(293\) 1.18315e13 0.320086 0.160043 0.987110i \(-0.448837\pi\)
0.160043 + 0.987110i \(0.448837\pi\)
\(294\) 2.80734e13 0.745391
\(295\) 0 0
\(296\) 5.86399e12 0.149999
\(297\) −1.15104e13 −0.289022
\(298\) 5.56063e13 1.37067
\(299\) −1.24942e13 −0.302354
\(300\) 0 0
\(301\) −1.43067e14 −3.33751
\(302\) −1.60564e13 −0.367799
\(303\) −8.81758e12 −0.198342
\(304\) −1.08412e13 −0.239481
\(305\) 0 0
\(306\) 1.52622e13 0.325200
\(307\) 2.35820e13 0.493537 0.246768 0.969074i \(-0.420631\pi\)
0.246768 + 0.969074i \(0.420631\pi\)
\(308\) 6.14022e13 1.26228
\(309\) 2.99806e13 0.605437
\(310\) 0 0
\(311\) −7.08127e13 −1.38016 −0.690079 0.723734i \(-0.742424\pi\)
−0.690079 + 0.723734i \(0.742424\pi\)
\(312\) −4.42634e12 −0.0847606
\(313\) −4.57873e13 −0.861492 −0.430746 0.902473i \(-0.641749\pi\)
−0.430746 + 0.902473i \(0.641749\pi\)
\(314\) −1.29007e13 −0.238506
\(315\) 0 0
\(316\) 2.05600e13 0.367065
\(317\) 3.48800e13 0.611999 0.305999 0.952032i \(-0.401009\pi\)
0.305999 + 0.952032i \(0.401009\pi\)
\(318\) 2.45375e13 0.423138
\(319\) −1.19673e14 −2.02837
\(320\) 0 0
\(321\) 6.02036e13 0.985928
\(322\) −5.37627e13 −0.865513
\(323\) 8.35086e13 1.32165
\(324\) 3.57047e12 0.0555556
\(325\) 0 0
\(326\) −1.01373e13 −0.152485
\(327\) 5.35377e13 0.791857
\(328\) −2.61204e13 −0.379904
\(329\) −1.08164e14 −1.54706
\(330\) 0 0
\(331\) −1.24374e14 −1.72058 −0.860291 0.509804i \(-0.829718\pi\)
−0.860291 + 0.509804i \(0.829718\pi\)
\(332\) 6.00861e12 0.0817551
\(333\) −1.05671e13 −0.141421
\(334\) 6.77518e13 0.891898
\(335\) 0 0
\(336\) −1.90466e13 −0.242634
\(337\) −9.29365e13 −1.16472 −0.582360 0.812931i \(-0.697871\pi\)
−0.582360 + 0.812931i \(0.697871\pi\)
\(338\) 4.74607e13 0.585184
\(339\) 1.81091e13 0.219684
\(340\) 0 0
\(341\) −3.98821e13 −0.468413
\(342\) 1.95361e13 0.225785
\(343\) 1.22062e14 1.38823
\(344\) 6.27156e13 0.701947
\(345\) 0 0
\(346\) −3.09188e13 −0.335200
\(347\) 1.70524e13 0.181959 0.0909793 0.995853i \(-0.471000\pi\)
0.0909793 + 0.995853i \(0.471000\pi\)
\(348\) 3.71219e13 0.389892
\(349\) 9.74613e13 1.00761 0.503805 0.863817i \(-0.331933\pi\)
0.503805 + 0.863817i \(0.331933\pi\)
\(350\) 0 0
\(351\) 7.97640e12 0.0799131
\(352\) −2.69167e13 −0.265483
\(353\) −1.26376e14 −1.22717 −0.613584 0.789630i \(-0.710273\pi\)
−0.613584 + 0.789630i \(0.710273\pi\)
\(354\) −2.65277e13 −0.253619
\(355\) 0 0
\(356\) 6.52559e13 0.604846
\(357\) 1.46715e14 1.33906
\(358\) 4.18057e13 0.375732
\(359\) 1.40779e14 1.24600 0.623002 0.782221i \(-0.285913\pi\)
0.623002 + 0.782221i \(0.285913\pi\)
\(360\) 0 0
\(361\) −9.59686e12 −0.0823834
\(362\) 8.08185e13 0.683304
\(363\) −8.70381e13 −0.724808
\(364\) −4.25501e13 −0.349014
\(365\) 0 0
\(366\) 4.04862e13 0.322226
\(367\) 2.05934e14 1.61460 0.807300 0.590141i \(-0.200928\pi\)
0.807300 + 0.590141i \(0.200928\pi\)
\(368\) 2.35678e13 0.182035
\(369\) 4.70698e13 0.358176
\(370\) 0 0
\(371\) 2.35878e14 1.74233
\(372\) 1.23712e13 0.0900380
\(373\) −1.16370e14 −0.834533 −0.417267 0.908784i \(-0.637012\pi\)
−0.417267 + 0.908784i \(0.637012\pi\)
\(374\) 2.07337e14 1.46515
\(375\) 0 0
\(376\) 4.74156e13 0.325378
\(377\) 8.29301e13 0.560834
\(378\) 3.43227e13 0.228758
\(379\) −1.53683e14 −1.00951 −0.504756 0.863262i \(-0.668418\pi\)
−0.504756 + 0.863262i \(0.668418\pi\)
\(380\) 0 0
\(381\) −3.33488e13 −0.212810
\(382\) 1.12801e13 0.0709520
\(383\) −1.08265e14 −0.671266 −0.335633 0.941993i \(-0.608950\pi\)
−0.335633 + 0.941993i \(0.608950\pi\)
\(384\) 8.34942e12 0.0510310
\(385\) 0 0
\(386\) 2.11485e14 1.25618
\(387\) −1.13016e14 −0.661802
\(388\) 9.92559e13 0.573036
\(389\) −2.05175e13 −0.116789 −0.0583944 0.998294i \(-0.518598\pi\)
−0.0583944 + 0.998294i \(0.518598\pi\)
\(390\) 0 0
\(391\) −1.81541e14 −1.00462
\(392\) −1.18301e14 −0.645528
\(393\) −1.93571e13 −0.104155
\(394\) −2.14138e14 −1.13622
\(395\) 0 0
\(396\) 4.85048e13 0.250300
\(397\) −3.54572e14 −1.80450 −0.902248 0.431217i \(-0.858084\pi\)
−0.902248 + 0.431217i \(0.858084\pi\)
\(398\) −2.39164e14 −1.20043
\(399\) 1.87799e14 0.929700
\(400\) 0 0
\(401\) −2.67932e14 −1.29042 −0.645208 0.764007i \(-0.723229\pi\)
−0.645208 + 0.764007i \(0.723229\pi\)
\(402\) −1.23174e14 −0.585160
\(403\) 2.76372e13 0.129514
\(404\) 3.71572e13 0.171769
\(405\) 0 0
\(406\) 3.56850e14 1.60543
\(407\) −1.43554e14 −0.637156
\(408\) −6.43149e13 −0.281631
\(409\) −3.26525e14 −1.41071 −0.705357 0.708853i \(-0.749213\pi\)
−0.705357 + 0.708853i \(0.749213\pi\)
\(410\) 0 0
\(411\) 1.67253e13 0.0703469
\(412\) −1.26338e14 −0.524324
\(413\) −2.55009e14 −1.04431
\(414\) −4.24699e13 −0.171625
\(415\) 0 0
\(416\) 1.86526e13 0.0734049
\(417\) 8.12733e13 0.315646
\(418\) 2.65398e14 1.01725
\(419\) 2.71180e14 1.02584 0.512921 0.858436i \(-0.328563\pi\)
0.512921 + 0.858436i \(0.328563\pi\)
\(420\) 0 0
\(421\) 2.40923e14 0.887824 0.443912 0.896071i \(-0.353590\pi\)
0.443912 + 0.896071i \(0.353590\pi\)
\(422\) 6.04003e13 0.219695
\(423\) −8.54445e13 −0.306769
\(424\) −1.03401e14 −0.366448
\(425\) 0 0
\(426\) 1.07588e14 0.371543
\(427\) 3.89191e14 1.32681
\(428\) −2.53698e14 −0.853838
\(429\) 1.08359e14 0.360041
\(430\) 0 0
\(431\) −4.57546e14 −1.48187 −0.740934 0.671578i \(-0.765617\pi\)
−0.740934 + 0.671578i \(0.765617\pi\)
\(432\) −1.50459e13 −0.0481125
\(433\) 1.44657e14 0.456727 0.228363 0.973576i \(-0.426663\pi\)
0.228363 + 0.973576i \(0.426663\pi\)
\(434\) 1.18924e14 0.370744
\(435\) 0 0
\(436\) −2.25607e14 −0.685768
\(437\) −2.32378e14 −0.697503
\(438\) −2.53486e14 −0.751359
\(439\) −3.09661e14 −0.906425 −0.453213 0.891402i \(-0.649722\pi\)
−0.453213 + 0.891402i \(0.649722\pi\)
\(440\) 0 0
\(441\) 2.13182e14 0.608610
\(442\) −1.43679e14 −0.405108
\(443\) −1.15594e14 −0.321895 −0.160947 0.986963i \(-0.551455\pi\)
−0.160947 + 0.986963i \(0.551455\pi\)
\(444\) 4.45297e13 0.122474
\(445\) 0 0
\(446\) 3.30563e14 0.886977
\(447\) 4.22260e14 1.11915
\(448\) 8.02624e13 0.210128
\(449\) 3.41151e13 0.0882251 0.0441126 0.999027i \(-0.485954\pi\)
0.0441126 + 0.999027i \(0.485954\pi\)
\(450\) 0 0
\(451\) 6.39442e14 1.61373
\(452\) −7.63117e13 −0.190252
\(453\) −1.21928e14 −0.300307
\(454\) −2.50007e14 −0.608339
\(455\) 0 0
\(456\) −8.23250e13 −0.195535
\(457\) −4.07927e14 −0.957290 −0.478645 0.878008i \(-0.658872\pi\)
−0.478645 + 0.878008i \(0.658872\pi\)
\(458\) 4.45761e14 1.03357
\(459\) 1.15898e14 0.265524
\(460\) 0 0
\(461\) 1.19457e14 0.267211 0.133606 0.991035i \(-0.457344\pi\)
0.133606 + 0.991035i \(0.457344\pi\)
\(462\) 4.66273e14 1.03065
\(463\) −7.00809e14 −1.53075 −0.765375 0.643585i \(-0.777446\pi\)
−0.765375 + 0.643585i \(0.777446\pi\)
\(464\) −1.56431e14 −0.337656
\(465\) 0 0
\(466\) −5.95008e13 −0.125430
\(467\) −7.08354e14 −1.47573 −0.737866 0.674947i \(-0.764166\pi\)
−0.737866 + 0.674947i \(0.764166\pi\)
\(468\) −3.36125e13 −0.0692068
\(469\) −1.18406e15 −2.40948
\(470\) 0 0
\(471\) −9.79644e13 −0.194739
\(472\) 1.11788e14 0.219641
\(473\) −1.53532e15 −2.98168
\(474\) 1.56127e14 0.299708
\(475\) 0 0
\(476\) −6.18255e14 −1.15966
\(477\) 1.86332e14 0.345491
\(478\) −3.73253e14 −0.684147
\(479\) 9.47376e13 0.171663 0.0858316 0.996310i \(-0.472645\pi\)
0.0858316 + 0.996310i \(0.472645\pi\)
\(480\) 0 0
\(481\) 9.94791e13 0.176171
\(482\) −1.10381e14 −0.193257
\(483\) −4.08260e14 −0.706688
\(484\) 3.66778e14 0.627702
\(485\) 0 0
\(486\) 2.71132e13 0.0453609
\(487\) −8.16124e14 −1.35004 −0.675020 0.737799i \(-0.735865\pi\)
−0.675020 + 0.737799i \(0.735865\pi\)
\(488\) −1.70608e14 −0.279056
\(489\) −7.69802e13 −0.124503
\(490\) 0 0
\(491\) 1.18590e15 1.87542 0.937712 0.347414i \(-0.112940\pi\)
0.937712 + 0.347414i \(0.112940\pi\)
\(492\) −1.98352e14 −0.310190
\(493\) 1.20498e15 1.86346
\(494\) −1.83914e14 −0.281265
\(495\) 0 0
\(496\) −5.21322e13 −0.0779752
\(497\) 1.03423e15 1.52988
\(498\) 4.56279e13 0.0667528
\(499\) −1.22260e15 −1.76901 −0.884506 0.466530i \(-0.845504\pi\)
−0.884506 + 0.466530i \(0.845504\pi\)
\(500\) 0 0
\(501\) 5.14490e14 0.728232
\(502\) 5.11050e12 0.00715473
\(503\) 6.35941e14 0.880629 0.440314 0.897844i \(-0.354867\pi\)
0.440314 + 0.897844i \(0.354867\pi\)
\(504\) −1.44635e14 −0.198110
\(505\) 0 0
\(506\) −5.76953e14 −0.773237
\(507\) 3.60405e14 0.477801
\(508\) 1.40531e14 0.184299
\(509\) −9.13225e14 −1.18476 −0.592379 0.805659i \(-0.701811\pi\)
−0.592379 + 0.805659i \(0.701811\pi\)
\(510\) 0 0
\(511\) −2.43675e15 −3.09383
\(512\) −3.51844e13 −0.0441942
\(513\) 1.48352e14 0.184352
\(514\) −7.57663e14 −0.931492
\(515\) 0 0
\(516\) 4.76247e14 0.573137
\(517\) −1.16076e15 −1.38212
\(518\) 4.28061e14 0.504303
\(519\) −2.34790e14 −0.273690
\(520\) 0 0
\(521\) −3.94860e13 −0.0450646 −0.0225323 0.999746i \(-0.507173\pi\)
−0.0225323 + 0.999746i \(0.507173\pi\)
\(522\) 2.81894e14 0.318345
\(523\) 1.53528e15 1.71565 0.857826 0.513940i \(-0.171814\pi\)
0.857826 + 0.513940i \(0.171814\pi\)
\(524\) 8.15706e13 0.0902011
\(525\) 0 0
\(526\) −1.09560e14 −0.118640
\(527\) 4.01570e14 0.430331
\(528\) −2.04399e14 −0.216766
\(529\) −4.47640e14 −0.469810
\(530\) 0 0
\(531\) −2.01445e14 −0.207079
\(532\) −7.91384e14 −0.805144
\(533\) −4.43116e14 −0.446188
\(534\) 4.95537e14 0.493855
\(535\) 0 0
\(536\) 5.19052e14 0.506763
\(537\) 3.17462e14 0.306784
\(538\) −9.17827e14 −0.877927
\(539\) 2.89608e15 2.74203
\(540\) 0 0
\(541\) 5.01924e14 0.465643 0.232821 0.972520i \(-0.425204\pi\)
0.232821 + 0.972520i \(0.425204\pi\)
\(542\) −1.78892e14 −0.164284
\(543\) 6.13715e14 0.557915
\(544\) 2.71023e14 0.243900
\(545\) 0 0
\(546\) −3.23115e14 −0.284969
\(547\) −1.76289e15 −1.53920 −0.769601 0.638525i \(-0.779545\pi\)
−0.769601 + 0.638525i \(0.779545\pi\)
\(548\) −7.04804e13 −0.0609222
\(549\) 3.07442e14 0.263097
\(550\) 0 0
\(551\) 1.54241e15 1.29379
\(552\) 1.78968e14 0.148631
\(553\) 1.50084e15 1.23409
\(554\) −1.36981e13 −0.0111521
\(555\) 0 0
\(556\) −3.42485e14 −0.273357
\(557\) 1.58933e15 1.25606 0.628030 0.778189i \(-0.283862\pi\)
0.628030 + 0.778189i \(0.283862\pi\)
\(558\) 9.39439e13 0.0735157
\(559\) 1.06393e15 0.824421
\(560\) 0 0
\(561\) 1.57447e15 1.19629
\(562\) 3.48752e14 0.262402
\(563\) −1.88077e15 −1.40132 −0.700662 0.713493i \(-0.747112\pi\)
−0.700662 + 0.713493i \(0.747112\pi\)
\(564\) 3.60062e14 0.265670
\(565\) 0 0
\(566\) −1.80932e15 −1.30926
\(567\) 2.60638e14 0.186780
\(568\) −4.53373e14 −0.321766
\(569\) 2.32892e15 1.63696 0.818479 0.574536i \(-0.194818\pi\)
0.818479 + 0.574536i \(0.194818\pi\)
\(570\) 0 0
\(571\) 1.33508e14 0.0920468 0.0460234 0.998940i \(-0.485345\pi\)
0.0460234 + 0.998940i \(0.485345\pi\)
\(572\) −4.56626e14 −0.311804
\(573\) 8.56583e13 0.0579320
\(574\) −1.90674e15 −1.27725
\(575\) 0 0
\(576\) 6.34034e13 0.0416667
\(577\) 2.30907e15 1.50304 0.751521 0.659710i \(-0.229321\pi\)
0.751521 + 0.659710i \(0.229321\pi\)
\(578\) −9.90965e14 −0.638933
\(579\) 1.60597e15 1.02566
\(580\) 0 0
\(581\) 4.38618e14 0.274864
\(582\) 7.53725e14 0.467882
\(583\) 2.53132e15 1.55657
\(584\) 1.06819e15 0.650696
\(585\) 0 0
\(586\) −3.78607e14 −0.226335
\(587\) −2.59880e15 −1.53909 −0.769543 0.638595i \(-0.779516\pi\)
−0.769543 + 0.638595i \(0.779516\pi\)
\(588\) −8.98348e14 −0.527071
\(589\) 5.14022e14 0.298777
\(590\) 0 0
\(591\) −1.62611e15 −0.927723
\(592\) −1.87648e14 −0.106065
\(593\) 3.42653e15 1.91891 0.959453 0.281867i \(-0.0909537\pi\)
0.959453 + 0.281867i \(0.0909537\pi\)
\(594\) 3.68333e14 0.204369
\(595\) 0 0
\(596\) −1.77940e15 −0.969213
\(597\) −1.81615e15 −0.980151
\(598\) 3.99813e14 0.213796
\(599\) −5.85067e14 −0.309997 −0.154999 0.987915i \(-0.549537\pi\)
−0.154999 + 0.987915i \(0.549537\pi\)
\(600\) 0 0
\(601\) 8.31015e14 0.432314 0.216157 0.976359i \(-0.430648\pi\)
0.216157 + 0.976359i \(0.430648\pi\)
\(602\) 4.57813e15 2.35997
\(603\) −9.35349e14 −0.477781
\(604\) 5.13805e14 0.260073
\(605\) 0 0
\(606\) 2.82163e14 0.140249
\(607\) 2.43525e15 1.19952 0.599758 0.800182i \(-0.295264\pi\)
0.599758 + 0.800182i \(0.295264\pi\)
\(608\) 3.46917e14 0.169338
\(609\) 2.70983e15 1.31083
\(610\) 0 0
\(611\) 8.04377e14 0.382149
\(612\) −4.88391e14 −0.229951
\(613\) −3.67501e14 −0.171485 −0.0857425 0.996317i \(-0.527326\pi\)
−0.0857425 + 0.996317i \(0.527326\pi\)
\(614\) −7.54624e14 −0.348983
\(615\) 0 0
\(616\) −1.96487e15 −0.892565
\(617\) −1.63543e15 −0.736316 −0.368158 0.929763i \(-0.620011\pi\)
−0.368158 + 0.929763i \(0.620011\pi\)
\(618\) −9.59380e14 −0.428108
\(619\) −1.39239e15 −0.615831 −0.307916 0.951414i \(-0.599631\pi\)
−0.307916 + 0.951414i \(0.599631\pi\)
\(620\) 0 0
\(621\) −3.22506e14 −0.140131
\(622\) 2.26601e15 0.975919
\(623\) 4.76357e15 2.03352
\(624\) 1.41643e14 0.0599348
\(625\) 0 0
\(626\) 1.46519e15 0.609167
\(627\) 2.01536e15 0.830581
\(628\) 4.12821e14 0.168649
\(629\) 1.44544e15 0.585356
\(630\) 0 0
\(631\) −2.72790e15 −1.08559 −0.542796 0.839865i \(-0.682634\pi\)
−0.542796 + 0.839865i \(0.682634\pi\)
\(632\) −6.57919e14 −0.259554
\(633\) 4.58665e14 0.179380
\(634\) −1.11616e15 −0.432748
\(635\) 0 0
\(636\) −7.85201e14 −0.299204
\(637\) −2.00690e15 −0.758158
\(638\) 3.82953e15 1.43427
\(639\) 8.16993e14 0.303364
\(640\) 0 0
\(641\) −1.08741e15 −0.396894 −0.198447 0.980112i \(-0.563590\pi\)
−0.198447 + 0.980112i \(0.563590\pi\)
\(642\) −1.92652e15 −0.697156
\(643\) −3.77029e14 −0.135274 −0.0676371 0.997710i \(-0.521546\pi\)
−0.0676371 + 0.997710i \(0.521546\pi\)
\(644\) 1.72041e15 0.612010
\(645\) 0 0
\(646\) −2.67227e15 −0.934549
\(647\) 3.69951e15 1.28284 0.641418 0.767192i \(-0.278347\pi\)
0.641418 + 0.767192i \(0.278347\pi\)
\(648\) −1.14255e14 −0.0392837
\(649\) −2.73663e15 −0.932974
\(650\) 0 0
\(651\) 9.03076e14 0.302711
\(652\) 3.24394e14 0.107823
\(653\) −5.26986e15 −1.73691 −0.868453 0.495771i \(-0.834886\pi\)
−0.868453 + 0.495771i \(0.834886\pi\)
\(654\) −1.71320e15 −0.559927
\(655\) 0 0
\(656\) 8.35852e14 0.268632
\(657\) −1.92491e15 −0.613482
\(658\) 3.46126e15 1.09393
\(659\) −4.27769e15 −1.34072 −0.670362 0.742034i \(-0.733861\pi\)
−0.670362 + 0.742034i \(0.733861\pi\)
\(660\) 0 0
\(661\) 7.65436e14 0.235939 0.117970 0.993017i \(-0.462361\pi\)
0.117970 + 0.993017i \(0.462361\pi\)
\(662\) 3.97996e15 1.21663
\(663\) −1.09106e15 −0.330770
\(664\) −1.92276e14 −0.0578096
\(665\) 0 0
\(666\) 3.38147e14 0.0999995
\(667\) −3.35307e15 −0.983446
\(668\) −2.16806e15 −0.630667
\(669\) 2.51021e15 0.724213
\(670\) 0 0
\(671\) 4.17660e15 1.18536
\(672\) 6.09492e14 0.171568
\(673\) 2.28621e15 0.638313 0.319157 0.947702i \(-0.396600\pi\)
0.319157 + 0.947702i \(0.396600\pi\)
\(674\) 2.97397e15 0.823582
\(675\) 0 0
\(676\) −1.51874e15 −0.413788
\(677\) 2.47195e15 0.668039 0.334020 0.942566i \(-0.391595\pi\)
0.334020 + 0.942566i \(0.391595\pi\)
\(678\) −5.79492e14 −0.155340
\(679\) 7.24550e15 1.92657
\(680\) 0 0
\(681\) −1.89849e15 −0.496707
\(682\) 1.27623e15 0.331218
\(683\) 1.51816e15 0.390844 0.195422 0.980719i \(-0.437392\pi\)
0.195422 + 0.980719i \(0.437392\pi\)
\(684\) −6.25155e14 −0.159654
\(685\) 0 0
\(686\) −3.90598e15 −0.981630
\(687\) 3.38500e15 0.843910
\(688\) −2.00690e15 −0.496352
\(689\) −1.75414e15 −0.430385
\(690\) 0 0
\(691\) 3.61124e15 0.872022 0.436011 0.899941i \(-0.356391\pi\)
0.436011 + 0.899941i \(0.356391\pi\)
\(692\) 9.89401e14 0.237022
\(693\) 3.54076e15 0.841519
\(694\) −5.45676e14 −0.128664
\(695\) 0 0
\(696\) −1.18790e15 −0.275695
\(697\) −6.43850e15 −1.48253
\(698\) −3.11876e15 −0.712488
\(699\) −4.51834e14 −0.102413
\(700\) 0 0
\(701\) −7.61693e15 −1.69954 −0.849769 0.527155i \(-0.823259\pi\)
−0.849769 + 0.527155i \(0.823259\pi\)
\(702\) −2.55245e14 −0.0565071
\(703\) 1.85020e15 0.406410
\(704\) 8.61334e14 0.187725
\(705\) 0 0
\(706\) 4.04403e15 0.867738
\(707\) 2.71241e15 0.577495
\(708\) 8.48887e14 0.179336
\(709\) 1.17640e15 0.246603 0.123302 0.992369i \(-0.460652\pi\)
0.123302 + 0.992369i \(0.460652\pi\)
\(710\) 0 0
\(711\) 1.18559e15 0.244710
\(712\) −2.08819e15 −0.427691
\(713\) −1.11744e15 −0.227108
\(714\) −4.69487e15 −0.946856
\(715\) 0 0
\(716\) −1.33778e15 −0.265683
\(717\) −2.83439e15 −0.558604
\(718\) −4.50494e15 −0.881057
\(719\) 2.86879e15 0.556789 0.278394 0.960467i \(-0.410198\pi\)
0.278394 + 0.960467i \(0.410198\pi\)
\(720\) 0 0
\(721\) −9.22245e15 −1.76280
\(722\) 3.07099e14 0.0582538
\(723\) −8.38206e14 −0.157794
\(724\) −2.58619e15 −0.483169
\(725\) 0 0
\(726\) 2.78522e15 0.512516
\(727\) −5.56955e15 −1.01714 −0.508570 0.861020i \(-0.669826\pi\)
−0.508570 + 0.861020i \(0.669826\pi\)
\(728\) 1.36160e15 0.246790
\(729\) 2.05891e14 0.0370370
\(730\) 0 0
\(731\) 1.54590e16 2.73928
\(732\) −1.29556e15 −0.227848
\(733\) 6.43548e15 1.12334 0.561668 0.827363i \(-0.310160\pi\)
0.561668 + 0.827363i \(0.310160\pi\)
\(734\) −6.58989e15 −1.14169
\(735\) 0 0
\(736\) −7.54169e14 −0.128718
\(737\) −1.27067e16 −2.15259
\(738\) −1.50623e15 −0.253269
\(739\) −4.26005e15 −0.711001 −0.355500 0.934676i \(-0.615689\pi\)
−0.355500 + 0.934676i \(0.615689\pi\)
\(740\) 0 0
\(741\) −1.39659e15 −0.229652
\(742\) −7.54809e15 −1.23201
\(743\) −1.05025e15 −0.170158 −0.0850792 0.996374i \(-0.527114\pi\)
−0.0850792 + 0.996374i \(0.527114\pi\)
\(744\) −3.95879e14 −0.0636665
\(745\) 0 0
\(746\) 3.72385e15 0.590104
\(747\) 3.46487e14 0.0545034
\(748\) −6.63479e15 −1.03602
\(749\) −1.85195e16 −2.87064
\(750\) 0 0
\(751\) 3.21524e15 0.491127 0.245564 0.969380i \(-0.421027\pi\)
0.245564 + 0.969380i \(0.421027\pi\)
\(752\) −1.51730e15 −0.230077
\(753\) 3.88079e13 0.00584181
\(754\) −2.65376e15 −0.396570
\(755\) 0 0
\(756\) −1.09833e15 −0.161756
\(757\) 3.23511e15 0.473000 0.236500 0.971631i \(-0.424000\pi\)
0.236500 + 0.971631i \(0.424000\pi\)
\(758\) 4.91787e15 0.713833
\(759\) −4.38124e15 −0.631346
\(760\) 0 0
\(761\) 7.22075e15 1.02557 0.512787 0.858516i \(-0.328613\pi\)
0.512787 + 0.858516i \(0.328613\pi\)
\(762\) 1.06716e15 0.150479
\(763\) −1.64689e16 −2.30558
\(764\) −3.60963e14 −0.0501706
\(765\) 0 0
\(766\) 3.46448e15 0.474657
\(767\) 1.89641e15 0.257963
\(768\) −2.67181e14 −0.0360844
\(769\) 6.56763e15 0.880672 0.440336 0.897833i \(-0.354859\pi\)
0.440336 + 0.897833i \(0.354859\pi\)
\(770\) 0 0
\(771\) −5.75351e15 −0.760560
\(772\) −6.76753e15 −0.888250
\(773\) 5.15062e15 0.671232 0.335616 0.941999i \(-0.391056\pi\)
0.335616 + 0.941999i \(0.391056\pi\)
\(774\) 3.61650e15 0.467965
\(775\) 0 0
\(776\) −3.17619e15 −0.405198
\(777\) 3.25059e15 0.411762
\(778\) 6.56560e14 0.0825822
\(779\) −8.24148e15 −1.02932
\(780\) 0 0
\(781\) 1.10988e16 1.36677
\(782\) 5.80931e15 0.710374
\(783\) 2.14063e15 0.259928
\(784\) 3.78563e15 0.456457
\(785\) 0 0
\(786\) 6.19427e14 0.0736489
\(787\) 7.05175e15 0.832599 0.416299 0.909228i \(-0.363327\pi\)
0.416299 + 0.909228i \(0.363327\pi\)
\(788\) 6.85241e15 0.803431
\(789\) −8.31970e14 −0.0968688
\(790\) 0 0
\(791\) −5.57062e15 −0.639636
\(792\) −1.55215e15 −0.176989
\(793\) −2.89427e15 −0.327745
\(794\) 1.13463e16 1.27597
\(795\) 0 0
\(796\) 7.65324e15 0.848835
\(797\) 1.94619e15 0.214370 0.107185 0.994239i \(-0.465816\pi\)
0.107185 + 0.994239i \(0.465816\pi\)
\(798\) −6.00958e15 −0.657397
\(799\) 1.16876e16 1.26975
\(800\) 0 0
\(801\) 3.76299e15 0.403231
\(802\) 8.57381e15 0.912462
\(803\) −2.61499e16 −2.76398
\(804\) 3.94155e15 0.413770
\(805\) 0 0
\(806\) −8.84391e14 −0.0915802
\(807\) −6.96975e15 −0.716824
\(808\) −1.18903e15 −0.121459
\(809\) −3.86583e15 −0.392217 −0.196108 0.980582i \(-0.562830\pi\)
−0.196108 + 0.980582i \(0.562830\pi\)
\(810\) 0 0
\(811\) −3.90743e15 −0.391090 −0.195545 0.980695i \(-0.562648\pi\)
−0.195545 + 0.980695i \(0.562648\pi\)
\(812\) −1.14192e16 −1.13521
\(813\) −1.35846e15 −0.134137
\(814\) 4.59373e15 0.450538
\(815\) 0 0
\(816\) 2.05808e15 0.199143
\(817\) 1.97880e16 1.90187
\(818\) 1.04488e16 0.997525
\(819\) −2.45365e15 −0.232676
\(820\) 0 0
\(821\) 1.70915e15 0.159916 0.0799580 0.996798i \(-0.474521\pi\)
0.0799580 + 0.996798i \(0.474521\pi\)
\(822\) −5.35211e14 −0.0497427
\(823\) −2.02375e15 −0.186835 −0.0934173 0.995627i \(-0.529779\pi\)
−0.0934173 + 0.995627i \(0.529779\pi\)
\(824\) 4.04282e15 0.370753
\(825\) 0 0
\(826\) 8.16029e15 0.738440
\(827\) −1.00880e16 −0.906826 −0.453413 0.891300i \(-0.649794\pi\)
−0.453413 + 0.891300i \(0.649794\pi\)
\(828\) 1.35904e15 0.121357
\(829\) −3.31015e15 −0.293628 −0.146814 0.989164i \(-0.546902\pi\)
−0.146814 + 0.989164i \(0.546902\pi\)
\(830\) 0 0
\(831\) −1.04020e14 −0.00910564
\(832\) −5.96882e14 −0.0519051
\(833\) −2.91604e16 −2.51911
\(834\) −2.60075e15 −0.223195
\(835\) 0 0
\(836\) −8.49273e15 −0.719304
\(837\) 7.13386e14 0.0600253
\(838\) −8.67776e15 −0.725380
\(839\) 4.00589e15 0.332666 0.166333 0.986070i \(-0.446807\pi\)
0.166333 + 0.986070i \(0.446807\pi\)
\(840\) 0 0
\(841\) 1.00555e16 0.824188
\(842\) −7.70953e15 −0.627786
\(843\) 2.64834e15 0.214251
\(844\) −1.93281e15 −0.155348
\(845\) 0 0
\(846\) 2.73422e15 0.216919
\(847\) 2.67741e16 2.11036
\(848\) 3.30883e15 0.259118
\(849\) −1.37395e16 −1.06900
\(850\) 0 0
\(851\) −4.02219e15 −0.308923
\(852\) −3.44280e15 −0.262721
\(853\) 2.76334e15 0.209515 0.104757 0.994498i \(-0.466593\pi\)
0.104757 + 0.994498i \(0.466593\pi\)
\(854\) −1.24541e16 −0.938198
\(855\) 0 0
\(856\) 8.11832e15 0.603755
\(857\) 5.65045e15 0.417531 0.208766 0.977966i \(-0.433055\pi\)
0.208766 + 0.977966i \(0.433055\pi\)
\(858\) −3.46750e15 −0.254587
\(859\) −2.06725e16 −1.50810 −0.754052 0.656815i \(-0.771903\pi\)
−0.754052 + 0.656815i \(0.771903\pi\)
\(860\) 0 0
\(861\) −1.44793e16 −1.04287
\(862\) 1.46415e16 1.04784
\(863\) −9.23100e15 −0.656431 −0.328216 0.944603i \(-0.606447\pi\)
−0.328216 + 0.944603i \(0.606447\pi\)
\(864\) 4.81469e14 0.0340207
\(865\) 0 0
\(866\) −4.62903e15 −0.322955
\(867\) −7.52514e15 −0.521687
\(868\) −3.80555e15 −0.262156
\(869\) 1.61062e16 1.10252
\(870\) 0 0
\(871\) 8.80541e15 0.595182
\(872\) 7.21943e15 0.484911
\(873\) 5.72360e15 0.382024
\(874\) 7.43608e15 0.493209
\(875\) 0 0
\(876\) 8.11157e15 0.531291
\(877\) −6.03959e15 −0.393106 −0.196553 0.980493i \(-0.562975\pi\)
−0.196553 + 0.980493i \(0.562975\pi\)
\(878\) 9.90916e15 0.640939
\(879\) −2.87505e15 −0.184802
\(880\) 0 0
\(881\) −7.34004e15 −0.465941 −0.232971 0.972484i \(-0.574845\pi\)
−0.232971 + 0.972484i \(0.574845\pi\)
\(882\) −6.82183e15 −0.430352
\(883\) −2.80456e16 −1.75825 −0.879127 0.476588i \(-0.841874\pi\)
−0.879127 + 0.476588i \(0.841874\pi\)
\(884\) 4.59773e15 0.286455
\(885\) 0 0
\(886\) 3.69900e15 0.227614
\(887\) −1.99237e16 −1.21840 −0.609200 0.793017i \(-0.708509\pi\)
−0.609200 + 0.793017i \(0.708509\pi\)
\(888\) −1.42495e15 −0.0866021
\(889\) 1.02585e16 0.619620
\(890\) 0 0
\(891\) 2.79703e15 0.166867
\(892\) −1.05780e16 −0.627187
\(893\) 1.49605e16 0.881584
\(894\) −1.35123e16 −0.791359
\(895\) 0 0
\(896\) −2.56840e15 −0.148583
\(897\) 3.03608e15 0.174564
\(898\) −1.09168e15 −0.0623846
\(899\) 7.41702e15 0.421261
\(900\) 0 0
\(901\) −2.54877e16 −1.43003
\(902\) −2.04622e16 −1.14108
\(903\) 3.47652e16 1.92691
\(904\) 2.44198e15 0.134529
\(905\) 0 0
\(906\) 3.90171e15 0.212349
\(907\) −5.41309e14 −0.0292823 −0.0146412 0.999893i \(-0.504661\pi\)
−0.0146412 + 0.999893i \(0.504661\pi\)
\(908\) 8.00024e15 0.430161
\(909\) 2.14267e15 0.114513
\(910\) 0 0
\(911\) −1.91638e16 −1.01188 −0.505941 0.862568i \(-0.668855\pi\)
−0.505941 + 0.862568i \(0.668855\pi\)
\(912\) 2.63440e15 0.138264
\(913\) 4.70702e15 0.245560
\(914\) 1.30537e16 0.676906
\(915\) 0 0
\(916\) −1.42644e16 −0.730848
\(917\) 5.95451e15 0.303260
\(918\) −3.70872e15 −0.187754
\(919\) 3.88332e16 1.95420 0.977099 0.212787i \(-0.0682539\pi\)
0.977099 + 0.212787i \(0.0682539\pi\)
\(920\) 0 0
\(921\) −5.73043e15 −0.284944
\(922\) −3.82261e15 −0.188947
\(923\) −7.69120e15 −0.377907
\(924\) −1.49207e16 −0.728777
\(925\) 0 0
\(926\) 2.24259e16 1.08240
\(927\) −7.28529e15 −0.349549
\(928\) 5.00580e15 0.238759
\(929\) −3.51219e16 −1.66530 −0.832648 0.553803i \(-0.813176\pi\)
−0.832648 + 0.553803i \(0.813176\pi\)
\(930\) 0 0
\(931\) −3.73262e16 −1.74900
\(932\) 1.90403e15 0.0886921
\(933\) 1.72075e16 0.796835
\(934\) 2.26673e16 1.04350
\(935\) 0 0
\(936\) 1.07560e15 0.0489366
\(937\) 1.27459e16 0.576504 0.288252 0.957555i \(-0.406926\pi\)
0.288252 + 0.957555i \(0.406926\pi\)
\(938\) 3.78899e16 1.70376
\(939\) 1.11263e16 0.497383
\(940\) 0 0
\(941\) 1.69186e16 0.747519 0.373759 0.927526i \(-0.378069\pi\)
0.373759 + 0.927526i \(0.378069\pi\)
\(942\) 3.13486e15 0.137701
\(943\) 1.79163e16 0.782409
\(944\) −3.57720e15 −0.155309
\(945\) 0 0
\(946\) 4.91301e16 2.10837
\(947\) 1.11373e16 0.475175 0.237587 0.971366i \(-0.423643\pi\)
0.237587 + 0.971366i \(0.423643\pi\)
\(948\) −4.99607e15 −0.211925
\(949\) 1.81212e16 0.764228
\(950\) 0 0
\(951\) −8.47584e15 −0.353338
\(952\) 1.97842e16 0.820001
\(953\) 2.38806e16 0.984091 0.492045 0.870570i \(-0.336249\pi\)
0.492045 + 0.870570i \(0.336249\pi\)
\(954\) −5.96262e15 −0.244299
\(955\) 0 0
\(956\) 1.19441e16 0.483765
\(957\) 2.90805e16 1.17108
\(958\) −3.03160e15 −0.121384
\(959\) −5.14494e15 −0.204823
\(960\) 0 0
\(961\) −2.29367e16 −0.902718
\(962\) −3.18333e15 −0.124572
\(963\) −1.46295e16 −0.569226
\(964\) 3.53219e15 0.136654
\(965\) 0 0
\(966\) 1.30643e16 0.499704
\(967\) 4.36732e16 1.66100 0.830499 0.557020i \(-0.188055\pi\)
0.830499 + 0.557020i \(0.188055\pi\)
\(968\) −1.17369e16 −0.443852
\(969\) −2.02926e16 −0.763056
\(970\) 0 0
\(971\) −2.17127e16 −0.807251 −0.403626 0.914924i \(-0.632250\pi\)
−0.403626 + 0.914924i \(0.632250\pi\)
\(972\) −8.67624e14 −0.0320750
\(973\) −2.50008e16 −0.919038
\(974\) 2.61160e16 0.954623
\(975\) 0 0
\(976\) 5.45947e15 0.197323
\(977\) −5.23688e16 −1.88214 −0.941071 0.338210i \(-0.890178\pi\)
−0.941071 + 0.338210i \(0.890178\pi\)
\(978\) 2.46337e15 0.0880370
\(979\) 5.11201e16 1.81672
\(980\) 0 0
\(981\) −1.30097e16 −0.457179
\(982\) −3.79488e16 −1.32612
\(983\) 3.67253e15 0.127621 0.0638103 0.997962i \(-0.479675\pi\)
0.0638103 + 0.997962i \(0.479675\pi\)
\(984\) 6.34725e15 0.219337
\(985\) 0 0
\(986\) −3.85593e16 −1.31767
\(987\) 2.62839e16 0.893193
\(988\) 5.88523e15 0.198884
\(989\) −4.30174e16 −1.44566
\(990\) 0 0
\(991\) 4.81435e16 1.60005 0.800023 0.599969i \(-0.204820\pi\)
0.800023 + 0.599969i \(0.204820\pi\)
\(992\) 1.66823e15 0.0551368
\(993\) 3.02228e16 0.993378
\(994\) −3.30954e16 −1.08179
\(995\) 0 0
\(996\) −1.46009e15 −0.0472013
\(997\) −8.11665e15 −0.260948 −0.130474 0.991452i \(-0.541650\pi\)
−0.130474 + 0.991452i \(0.541650\pi\)
\(998\) 3.91231e16 1.25088
\(999\) 2.56781e15 0.0816492
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.12.a.j.1.2 2
5.2 odd 4 150.12.c.m.49.2 4
5.3 odd 4 150.12.c.m.49.3 4
5.4 even 2 150.12.a.s.1.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.12.a.j.1.2 2 1.1 even 1 trivial
150.12.a.s.1.1 yes 2 5.4 even 2
150.12.c.m.49.2 4 5.2 odd 4
150.12.c.m.49.3 4 5.3 odd 4