Properties

Label 150.10.a.l.1.2
Level $150$
Weight $10$
Character 150.1
Self dual yes
Analytic conductor $77.255$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [150,10,Mod(1,150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("150.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 150.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-32,-162,512,0,2592,-3166] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(77.2553754246\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6679}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6679 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(81.7251\) of defining polynomial
Character \(\chi\) \(=\) 150.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.0000 q^{2} -81.0000 q^{3} +256.000 q^{4} +1296.00 q^{6} +8224.02 q^{7} -4096.00 q^{8} +6561.00 q^{9} +3734.98 q^{11} -20736.0 q^{12} -113885. q^{13} -131584. q^{14} +65536.0 q^{16} +94341.3 q^{17} -104976. q^{18} -403085. q^{19} -666145. q^{21} -59759.7 q^{22} -1.40996e6 q^{23} +331776. q^{24} +1.82216e6 q^{26} -531441. q^{27} +2.10535e6 q^{28} +4.37774e6 q^{29} +5.54354e6 q^{31} -1.04858e6 q^{32} -302534. q^{33} -1.50946e6 q^{34} +1.67962e6 q^{36} -1.62958e7 q^{37} +6.44936e6 q^{38} +9.22470e6 q^{39} +8.38307e6 q^{41} +1.06583e7 q^{42} -1.61666e7 q^{43} +956155. q^{44} +2.25593e7 q^{46} +3.68255e7 q^{47} -5.30842e6 q^{48} +2.72809e7 q^{49} -7.64165e6 q^{51} -2.91546e7 q^{52} +2.76382e7 q^{53} +8.50306e6 q^{54} -3.36856e7 q^{56} +3.26499e7 q^{57} -7.00438e7 q^{58} +1.21434e8 q^{59} -6.20320e7 q^{61} -8.86966e7 q^{62} +5.39578e7 q^{63} +1.67772e7 q^{64} +4.84054e6 q^{66} -2.35447e8 q^{67} +2.41514e7 q^{68} +1.14207e8 q^{69} -6.28284e7 q^{71} -2.68739e7 q^{72} +2.55855e8 q^{73} +2.60733e8 q^{74} -1.03190e8 q^{76} +3.07166e7 q^{77} -1.47595e8 q^{78} +1.78504e8 q^{79} +4.30467e7 q^{81} -1.34129e8 q^{82} -6.62058e8 q^{83} -1.70533e8 q^{84} +2.58666e8 q^{86} -3.54597e8 q^{87} -1.52985e7 q^{88} -1.29543e8 q^{89} -9.36593e8 q^{91} -3.60949e8 q^{92} -4.49027e8 q^{93} -5.89208e8 q^{94} +8.49347e7 q^{96} +3.64733e8 q^{97} -4.36494e8 q^{98} +2.45052e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{2} - 162 q^{3} + 512 q^{4} + 2592 q^{6} - 3166 q^{7} - 8192 q^{8} + 13122 q^{9} + 27084 q^{11} - 41472 q^{12} - 70858 q^{13} + 50656 q^{14} + 131072 q^{16} - 144756 q^{17} - 209952 q^{18} + 115690 q^{19}+ \cdots + 177698124 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.0000 −0.707107
\(3\) −81.0000 −0.577350
\(4\) 256.000 0.500000
\(5\) 0 0
\(6\) 1296.00 0.408248
\(7\) 8224.02 1.29462 0.647311 0.762226i \(-0.275894\pi\)
0.647311 + 0.762226i \(0.275894\pi\)
\(8\) −4096.00 −0.353553
\(9\) 6561.00 0.333333
\(10\) 0 0
\(11\) 3734.98 0.0769168 0.0384584 0.999260i \(-0.487755\pi\)
0.0384584 + 0.999260i \(0.487755\pi\)
\(12\) −20736.0 −0.288675
\(13\) −113885. −1.10592 −0.552958 0.833209i \(-0.686501\pi\)
−0.552958 + 0.833209i \(0.686501\pi\)
\(14\) −131584. −0.915436
\(15\) 0 0
\(16\) 65536.0 0.250000
\(17\) 94341.3 0.273957 0.136978 0.990574i \(-0.456261\pi\)
0.136978 + 0.990574i \(0.456261\pi\)
\(18\) −104976. −0.235702
\(19\) −403085. −0.709586 −0.354793 0.934945i \(-0.615449\pi\)
−0.354793 + 0.934945i \(0.615449\pi\)
\(20\) 0 0
\(21\) −666145. −0.747450
\(22\) −59759.7 −0.0543884
\(23\) −1.40996e6 −1.05058 −0.525292 0.850922i \(-0.676044\pi\)
−0.525292 + 0.850922i \(0.676044\pi\)
\(24\) 331776. 0.204124
\(25\) 0 0
\(26\) 1.82216e6 0.782000
\(27\) −531441. −0.192450
\(28\) 2.10535e6 0.647311
\(29\) 4.37774e6 1.14937 0.574683 0.818376i \(-0.305125\pi\)
0.574683 + 0.818376i \(0.305125\pi\)
\(30\) 0 0
\(31\) 5.54354e6 1.07810 0.539050 0.842273i \(-0.318783\pi\)
0.539050 + 0.842273i \(0.318783\pi\)
\(32\) −1.04858e6 −0.176777
\(33\) −302534. −0.0444080
\(34\) −1.50946e6 −0.193717
\(35\) 0 0
\(36\) 1.67962e6 0.166667
\(37\) −1.62958e7 −1.42945 −0.714724 0.699407i \(-0.753448\pi\)
−0.714724 + 0.699407i \(0.753448\pi\)
\(38\) 6.44936e6 0.501753
\(39\) 9.22470e6 0.638501
\(40\) 0 0
\(41\) 8.38307e6 0.463314 0.231657 0.972797i \(-0.425585\pi\)
0.231657 + 0.972797i \(0.425585\pi\)
\(42\) 1.06583e7 0.528527
\(43\) −1.61666e7 −0.721127 −0.360563 0.932735i \(-0.617416\pi\)
−0.360563 + 0.932735i \(0.617416\pi\)
\(44\) 956155. 0.0384584
\(45\) 0 0
\(46\) 2.25593e7 0.742875
\(47\) 3.68255e7 1.10080 0.550400 0.834901i \(-0.314475\pi\)
0.550400 + 0.834901i \(0.314475\pi\)
\(48\) −5.30842e6 −0.144338
\(49\) 2.72809e7 0.676045
\(50\) 0 0
\(51\) −7.64165e6 −0.158169
\(52\) −2.91546e7 −0.552958
\(53\) 2.76382e7 0.481136 0.240568 0.970632i \(-0.422666\pi\)
0.240568 + 0.970632i \(0.422666\pi\)
\(54\) 8.50306e6 0.136083
\(55\) 0 0
\(56\) −3.36856e7 −0.457718
\(57\) 3.26499e7 0.409680
\(58\) −7.00438e7 −0.812725
\(59\) 1.21434e8 1.30469 0.652345 0.757922i \(-0.273785\pi\)
0.652345 + 0.757922i \(0.273785\pi\)
\(60\) 0 0
\(61\) −6.20320e7 −0.573630 −0.286815 0.957986i \(-0.592596\pi\)
−0.286815 + 0.957986i \(0.592596\pi\)
\(62\) −8.86966e7 −0.762332
\(63\) 5.39578e7 0.431541
\(64\) 1.67772e7 0.125000
\(65\) 0 0
\(66\) 4.84054e6 0.0314012
\(67\) −2.35447e8 −1.42744 −0.713718 0.700433i \(-0.752990\pi\)
−0.713718 + 0.700433i \(0.752990\pi\)
\(68\) 2.41514e7 0.136978
\(69\) 1.14207e8 0.606555
\(70\) 0 0
\(71\) −6.28284e7 −0.293422 −0.146711 0.989179i \(-0.546869\pi\)
−0.146711 + 0.989179i \(0.546869\pi\)
\(72\) −2.68739e7 −0.117851
\(73\) 2.55855e8 1.05449 0.527243 0.849715i \(-0.323226\pi\)
0.527243 + 0.849715i \(0.323226\pi\)
\(74\) 2.60733e8 1.01077
\(75\) 0 0
\(76\) −1.03190e8 −0.354793
\(77\) 3.07166e7 0.0995782
\(78\) −1.47595e8 −0.451488
\(79\) 1.78504e8 0.515615 0.257807 0.966196i \(-0.417000\pi\)
0.257807 + 0.966196i \(0.417000\pi\)
\(80\) 0 0
\(81\) 4.30467e7 0.111111
\(82\) −1.34129e8 −0.327613
\(83\) −6.62058e8 −1.53124 −0.765622 0.643290i \(-0.777569\pi\)
−0.765622 + 0.643290i \(0.777569\pi\)
\(84\) −1.70533e8 −0.373725
\(85\) 0 0
\(86\) 2.58666e8 0.509914
\(87\) −3.54597e8 −0.663587
\(88\) −1.52985e7 −0.0271942
\(89\) −1.29543e8 −0.218856 −0.109428 0.993995i \(-0.534902\pi\)
−0.109428 + 0.993995i \(0.534902\pi\)
\(90\) 0 0
\(91\) −9.36593e8 −1.43174
\(92\) −3.60949e8 −0.525292
\(93\) −4.49027e8 −0.622442
\(94\) −5.89208e8 −0.778383
\(95\) 0 0
\(96\) 8.49347e7 0.102062
\(97\) 3.64733e8 0.418314 0.209157 0.977882i \(-0.432928\pi\)
0.209157 + 0.977882i \(0.432928\pi\)
\(98\) −4.36494e8 −0.478036
\(99\) 2.45052e7 0.0256389
\(100\) 0 0
\(101\) −2.05953e9 −1.96935 −0.984674 0.174405i \(-0.944200\pi\)
−0.984674 + 0.174405i \(0.944200\pi\)
\(102\) 1.22266e8 0.111842
\(103\) −1.93446e9 −1.69353 −0.846766 0.531966i \(-0.821453\pi\)
−0.846766 + 0.531966i \(0.821453\pi\)
\(104\) 4.66474e8 0.391000
\(105\) 0 0
\(106\) −4.42211e8 −0.340215
\(107\) −4.81098e7 −0.0354819 −0.0177409 0.999843i \(-0.505647\pi\)
−0.0177409 + 0.999843i \(0.505647\pi\)
\(108\) −1.36049e8 −0.0962250
\(109\) 2.04390e9 1.38689 0.693444 0.720510i \(-0.256092\pi\)
0.693444 + 0.720510i \(0.256092\pi\)
\(110\) 0 0
\(111\) 1.31996e9 0.825292
\(112\) 5.38969e8 0.323655
\(113\) −2.39410e9 −1.38130 −0.690652 0.723187i \(-0.742676\pi\)
−0.690652 + 0.723187i \(0.742676\pi\)
\(114\) −5.22398e8 −0.289687
\(115\) 0 0
\(116\) 1.12070e9 0.574683
\(117\) −7.47200e8 −0.368639
\(118\) −1.94295e9 −0.922555
\(119\) 7.75865e8 0.354670
\(120\) 0 0
\(121\) −2.34400e9 −0.994084
\(122\) 9.92512e8 0.405617
\(123\) −6.79029e8 −0.267495
\(124\) 1.41915e9 0.539050
\(125\) 0 0
\(126\) −8.63325e8 −0.305145
\(127\) −2.79320e9 −0.952764 −0.476382 0.879239i \(-0.658052\pi\)
−0.476382 + 0.879239i \(0.658052\pi\)
\(128\) −2.68435e8 −0.0883883
\(129\) 1.30950e9 0.416343
\(130\) 0 0
\(131\) −1.91859e9 −0.569194 −0.284597 0.958647i \(-0.591860\pi\)
−0.284597 + 0.958647i \(0.591860\pi\)
\(132\) −7.74486e7 −0.0222040
\(133\) −3.31498e9 −0.918646
\(134\) 3.76715e9 1.00935
\(135\) 0 0
\(136\) −3.86422e8 −0.0968583
\(137\) 5.36382e9 1.30086 0.650432 0.759565i \(-0.274588\pi\)
0.650432 + 0.759565i \(0.274588\pi\)
\(138\) −1.82730e9 −0.428899
\(139\) −7.00655e9 −1.59198 −0.795990 0.605310i \(-0.793049\pi\)
−0.795990 + 0.605310i \(0.793049\pi\)
\(140\) 0 0
\(141\) −2.98287e9 −0.635547
\(142\) 1.00525e9 0.207481
\(143\) −4.25359e8 −0.0850635
\(144\) 4.29982e8 0.0833333
\(145\) 0 0
\(146\) −4.09368e9 −0.745634
\(147\) −2.20975e9 −0.390315
\(148\) −4.17173e9 −0.714724
\(149\) 3.39634e9 0.564512 0.282256 0.959339i \(-0.408917\pi\)
0.282256 + 0.959339i \(0.408917\pi\)
\(150\) 0 0
\(151\) 3.01245e9 0.471545 0.235772 0.971808i \(-0.424238\pi\)
0.235772 + 0.971808i \(0.424238\pi\)
\(152\) 1.65104e9 0.250877
\(153\) 6.18973e8 0.0913189
\(154\) −4.91465e8 −0.0704124
\(155\) 0 0
\(156\) 2.36152e9 0.319250
\(157\) −1.14626e10 −1.50569 −0.752844 0.658199i \(-0.771319\pi\)
−0.752844 + 0.658199i \(0.771319\pi\)
\(158\) −2.85606e9 −0.364595
\(159\) −2.23869e9 −0.277784
\(160\) 0 0
\(161\) −1.15955e10 −1.36011
\(162\) −6.88748e8 −0.0785674
\(163\) −1.65677e9 −0.183831 −0.0919154 0.995767i \(-0.529299\pi\)
−0.0919154 + 0.995767i \(0.529299\pi\)
\(164\) 2.14607e9 0.231657
\(165\) 0 0
\(166\) 1.05929e10 1.08275
\(167\) −1.46089e10 −1.45343 −0.726716 0.686938i \(-0.758954\pi\)
−0.726716 + 0.686938i \(0.758954\pi\)
\(168\) 2.72853e9 0.264264
\(169\) 2.36533e9 0.223049
\(170\) 0 0
\(171\) −2.64464e9 −0.236529
\(172\) −4.13866e9 −0.360563
\(173\) 1.44203e10 1.22396 0.611978 0.790875i \(-0.290374\pi\)
0.611978 + 0.790875i \(0.290374\pi\)
\(174\) 5.67355e9 0.469227
\(175\) 0 0
\(176\) 2.44776e8 0.0192292
\(177\) −9.83618e9 −0.753263
\(178\) 2.07269e9 0.154755
\(179\) 2.01766e10 1.46896 0.734480 0.678630i \(-0.237426\pi\)
0.734480 + 0.678630i \(0.237426\pi\)
\(180\) 0 0
\(181\) −2.09616e9 −0.145168 −0.0725840 0.997362i \(-0.523125\pi\)
−0.0725840 + 0.997362i \(0.523125\pi\)
\(182\) 1.49855e10 1.01239
\(183\) 5.02459e9 0.331185
\(184\) 5.77518e9 0.371437
\(185\) 0 0
\(186\) 7.18443e9 0.440133
\(187\) 3.52363e8 0.0210719
\(188\) 9.42733e9 0.550400
\(189\) −4.37058e9 −0.249150
\(190\) 0 0
\(191\) −1.52653e9 −0.0829956 −0.0414978 0.999139i \(-0.513213\pi\)
−0.0414978 + 0.999139i \(0.513213\pi\)
\(192\) −1.35895e9 −0.0721688
\(193\) −3.59523e9 −0.186517 −0.0932587 0.995642i \(-0.529728\pi\)
−0.0932587 + 0.995642i \(0.529728\pi\)
\(194\) −5.83573e9 −0.295793
\(195\) 0 0
\(196\) 6.98390e9 0.338023
\(197\) 6.38747e9 0.302156 0.151078 0.988522i \(-0.451726\pi\)
0.151078 + 0.988522i \(0.451726\pi\)
\(198\) −3.92083e8 −0.0181295
\(199\) −2.32330e10 −1.05019 −0.525094 0.851044i \(-0.675970\pi\)
−0.525094 + 0.851044i \(0.675970\pi\)
\(200\) 0 0
\(201\) 1.90712e10 0.824130
\(202\) 3.29525e10 1.39254
\(203\) 3.60026e10 1.48800
\(204\) −1.95626e9 −0.0790845
\(205\) 0 0
\(206\) 3.09514e10 1.19751
\(207\) −9.25073e9 −0.350194
\(208\) −7.46358e9 −0.276479
\(209\) −1.50551e9 −0.0545791
\(210\) 0 0
\(211\) −2.29725e10 −0.797878 −0.398939 0.916977i \(-0.630621\pi\)
−0.398939 + 0.916977i \(0.630621\pi\)
\(212\) 7.07537e9 0.240568
\(213\) 5.08910e9 0.169408
\(214\) 7.69756e8 0.0250895
\(215\) 0 0
\(216\) 2.17678e9 0.0680414
\(217\) 4.55902e10 1.39573
\(218\) −3.27025e10 −0.980678
\(219\) −2.07242e10 −0.608807
\(220\) 0 0
\(221\) −1.07441e10 −0.302973
\(222\) −2.11194e10 −0.583569
\(223\) 5.48275e10 1.48466 0.742329 0.670036i \(-0.233721\pi\)
0.742329 + 0.670036i \(0.233721\pi\)
\(224\) −8.62351e9 −0.228859
\(225\) 0 0
\(226\) 3.83056e10 0.976730
\(227\) 3.42251e10 0.855517 0.427758 0.903893i \(-0.359303\pi\)
0.427758 + 0.903893i \(0.359303\pi\)
\(228\) 8.35837e9 0.204840
\(229\) −7.66049e10 −1.84076 −0.920379 0.391027i \(-0.872120\pi\)
−0.920379 + 0.391027i \(0.872120\pi\)
\(230\) 0 0
\(231\) −2.48804e9 −0.0574915
\(232\) −1.79312e10 −0.406363
\(233\) 5.69117e10 1.26503 0.632513 0.774550i \(-0.282023\pi\)
0.632513 + 0.774550i \(0.282023\pi\)
\(234\) 1.19552e10 0.260667
\(235\) 0 0
\(236\) 3.10872e10 0.652345
\(237\) −1.44588e10 −0.297690
\(238\) −1.24138e10 −0.250790
\(239\) −6.35267e9 −0.125941 −0.0629703 0.998015i \(-0.520057\pi\)
−0.0629703 + 0.998015i \(0.520057\pi\)
\(240\) 0 0
\(241\) 1.45644e9 0.0278109 0.0139054 0.999903i \(-0.495574\pi\)
0.0139054 + 0.999903i \(0.495574\pi\)
\(242\) 3.75040e10 0.702923
\(243\) −3.48678e9 −0.0641500
\(244\) −1.58802e10 −0.286815
\(245\) 0 0
\(246\) 1.08645e10 0.189147
\(247\) 4.59054e10 0.784743
\(248\) −2.27063e10 −0.381166
\(249\) 5.36267e10 0.884065
\(250\) 0 0
\(251\) 2.51346e10 0.399705 0.199853 0.979826i \(-0.435954\pi\)
0.199853 + 0.979826i \(0.435954\pi\)
\(252\) 1.38132e10 0.215770
\(253\) −5.26616e9 −0.0808076
\(254\) 4.46912e10 0.673706
\(255\) 0 0
\(256\) 4.29497e9 0.0625000
\(257\) −8.89054e10 −1.27124 −0.635622 0.772000i \(-0.719256\pi\)
−0.635622 + 0.772000i \(0.719256\pi\)
\(258\) −2.09520e10 −0.294399
\(259\) −1.34017e11 −1.85059
\(260\) 0 0
\(261\) 2.87223e10 0.383122
\(262\) 3.06974e10 0.402481
\(263\) 1.07693e11 1.38799 0.693993 0.719982i \(-0.255850\pi\)
0.693993 + 0.719982i \(0.255850\pi\)
\(264\) 1.23918e9 0.0157006
\(265\) 0 0
\(266\) 5.30396e10 0.649581
\(267\) 1.04930e10 0.126357
\(268\) −6.02744e10 −0.713718
\(269\) −1.00087e11 −1.16544 −0.582722 0.812671i \(-0.698013\pi\)
−0.582722 + 0.812671i \(0.698013\pi\)
\(270\) 0 0
\(271\) −1.11318e11 −1.25373 −0.626867 0.779127i \(-0.715663\pi\)
−0.626867 + 0.779127i \(0.715663\pi\)
\(272\) 6.18275e9 0.0684891
\(273\) 7.58641e10 0.826617
\(274\) −8.58211e10 −0.919849
\(275\) 0 0
\(276\) 2.92369e10 0.303277
\(277\) −1.12732e11 −1.15050 −0.575251 0.817977i \(-0.695096\pi\)
−0.575251 + 0.817977i \(0.695096\pi\)
\(278\) 1.12105e11 1.12570
\(279\) 3.63712e10 0.359367
\(280\) 0 0
\(281\) −1.44296e11 −1.38062 −0.690311 0.723513i \(-0.742526\pi\)
−0.690311 + 0.723513i \(0.742526\pi\)
\(282\) 4.77259e10 0.449400
\(283\) −1.86409e10 −0.172754 −0.0863768 0.996263i \(-0.527529\pi\)
−0.0863768 + 0.996263i \(0.527529\pi\)
\(284\) −1.60841e10 −0.146711
\(285\) 0 0
\(286\) 6.80574e9 0.0601490
\(287\) 6.89425e10 0.599817
\(288\) −6.87971e9 −0.0589256
\(289\) −1.09688e11 −0.924948
\(290\) 0 0
\(291\) −2.95434e10 −0.241514
\(292\) 6.54988e10 0.527243
\(293\) −1.71380e11 −1.35848 −0.679242 0.733914i \(-0.737691\pi\)
−0.679242 + 0.733914i \(0.737691\pi\)
\(294\) 3.53560e10 0.275994
\(295\) 0 0
\(296\) 6.67476e10 0.505386
\(297\) −1.98492e9 −0.0148027
\(298\) −5.43415e10 −0.399170
\(299\) 1.60573e11 1.16186
\(300\) 0 0
\(301\) −1.32955e11 −0.933586
\(302\) −4.81991e10 −0.333432
\(303\) 1.66822e11 1.13700
\(304\) −2.64166e10 −0.177397
\(305\) 0 0
\(306\) −9.90357e9 −0.0645722
\(307\) 2.10696e10 0.135374 0.0676868 0.997707i \(-0.478438\pi\)
0.0676868 + 0.997707i \(0.478438\pi\)
\(308\) 7.86344e9 0.0497891
\(309\) 1.56692e11 0.977761
\(310\) 0 0
\(311\) 1.54254e11 0.935005 0.467503 0.883992i \(-0.345154\pi\)
0.467503 + 0.883992i \(0.345154\pi\)
\(312\) −3.77844e10 −0.225744
\(313\) −1.09082e11 −0.642397 −0.321198 0.947012i \(-0.604086\pi\)
−0.321198 + 0.947012i \(0.604086\pi\)
\(314\) 1.83402e11 1.06468
\(315\) 0 0
\(316\) 4.56969e10 0.257807
\(317\) −2.49559e11 −1.38806 −0.694028 0.719948i \(-0.744166\pi\)
−0.694028 + 0.719948i \(0.744166\pi\)
\(318\) 3.58191e10 0.196423
\(319\) 1.63508e10 0.0884057
\(320\) 0 0
\(321\) 3.89689e9 0.0204855
\(322\) 1.85528e11 0.961742
\(323\) −3.80275e10 −0.194396
\(324\) 1.10200e10 0.0555556
\(325\) 0 0
\(326\) 2.65083e10 0.129988
\(327\) −1.65556e11 −0.800720
\(328\) −3.43371e10 −0.163806
\(329\) 3.02854e11 1.42512
\(330\) 0 0
\(331\) −6.11723e10 −0.280110 −0.140055 0.990144i \(-0.544728\pi\)
−0.140055 + 0.990144i \(0.544728\pi\)
\(332\) −1.69487e11 −0.765622
\(333\) −1.06917e11 −0.476482
\(334\) 2.33743e11 1.02773
\(335\) 0 0
\(336\) −4.36565e10 −0.186863
\(337\) 2.69481e11 1.13814 0.569068 0.822291i \(-0.307304\pi\)
0.569068 + 0.822291i \(0.307304\pi\)
\(338\) −3.78452e10 −0.157720
\(339\) 1.93922e11 0.797496
\(340\) 0 0
\(341\) 2.07050e10 0.0829241
\(342\) 4.23142e10 0.167251
\(343\) −1.07510e11 −0.419399
\(344\) 6.62186e10 0.254957
\(345\) 0 0
\(346\) −2.30724e11 −0.865468
\(347\) −4.98526e11 −1.84589 −0.922943 0.384937i \(-0.874223\pi\)
−0.922943 + 0.384937i \(0.874223\pi\)
\(348\) −9.07768e10 −0.331794
\(349\) 1.48163e10 0.0534597 0.0267298 0.999643i \(-0.491491\pi\)
0.0267298 + 0.999643i \(0.491491\pi\)
\(350\) 0 0
\(351\) 6.05232e10 0.212834
\(352\) −3.91641e9 −0.0135971
\(353\) −1.65317e11 −0.566673 −0.283336 0.959021i \(-0.591441\pi\)
−0.283336 + 0.959021i \(0.591441\pi\)
\(354\) 1.57379e11 0.532637
\(355\) 0 0
\(356\) −3.31630e10 −0.109428
\(357\) −6.28450e10 −0.204769
\(358\) −3.22826e11 −1.03871
\(359\) −2.43386e11 −0.773342 −0.386671 0.922218i \(-0.626375\pi\)
−0.386671 + 0.922218i \(0.626375\pi\)
\(360\) 0 0
\(361\) −1.60210e11 −0.496487
\(362\) 3.35386e10 0.102649
\(363\) 1.89864e11 0.573935
\(364\) −2.39768e11 −0.715871
\(365\) 0 0
\(366\) −8.03935e10 −0.234183
\(367\) 4.69919e11 1.35215 0.676076 0.736832i \(-0.263679\pi\)
0.676076 + 0.736832i \(0.263679\pi\)
\(368\) −9.24029e10 −0.262646
\(369\) 5.50013e10 0.154438
\(370\) 0 0
\(371\) 2.27297e11 0.622889
\(372\) −1.14951e11 −0.311221
\(373\) −6.88216e11 −1.84092 −0.920460 0.390836i \(-0.872186\pi\)
−0.920460 + 0.390836i \(0.872186\pi\)
\(374\) −5.63781e9 −0.0149001
\(375\) 0 0
\(376\) −1.50837e11 −0.389192
\(377\) −4.98559e11 −1.27110
\(378\) 6.99293e10 0.176176
\(379\) −4.12000e11 −1.02570 −0.512851 0.858478i \(-0.671411\pi\)
−0.512851 + 0.858478i \(0.671411\pi\)
\(380\) 0 0
\(381\) 2.26249e11 0.550078
\(382\) 2.44245e10 0.0586868
\(383\) −4.78515e11 −1.13632 −0.568160 0.822918i \(-0.692345\pi\)
−0.568160 + 0.822918i \(0.692345\pi\)
\(384\) 2.17433e10 0.0510310
\(385\) 0 0
\(386\) 5.75238e10 0.131888
\(387\) −1.06069e11 −0.240376
\(388\) 9.33717e10 0.209157
\(389\) 2.29201e11 0.507509 0.253754 0.967269i \(-0.418335\pi\)
0.253754 + 0.967269i \(0.418335\pi\)
\(390\) 0 0
\(391\) −1.33017e11 −0.287814
\(392\) −1.11742e11 −0.239018
\(393\) 1.55405e11 0.328624
\(394\) −1.02200e11 −0.213656
\(395\) 0 0
\(396\) 6.27334e9 0.0128195
\(397\) 8.10866e11 1.63829 0.819147 0.573584i \(-0.194447\pi\)
0.819147 + 0.573584i \(0.194447\pi\)
\(398\) 3.71728e11 0.742595
\(399\) 2.68513e11 0.530380
\(400\) 0 0
\(401\) −7.46341e11 −1.44141 −0.720705 0.693242i \(-0.756182\pi\)
−0.720705 + 0.693242i \(0.756182\pi\)
\(402\) −3.05139e11 −0.582748
\(403\) −6.31327e11 −1.19229
\(404\) −5.27240e11 −0.984674
\(405\) 0 0
\(406\) −5.76041e11 −1.05217
\(407\) −6.08646e10 −0.109949
\(408\) 3.13002e10 0.0559212
\(409\) −5.49776e10 −0.0971473 −0.0485737 0.998820i \(-0.515468\pi\)
−0.0485737 + 0.998820i \(0.515468\pi\)
\(410\) 0 0
\(411\) −4.34469e11 −0.751054
\(412\) −4.95223e11 −0.846766
\(413\) 9.98678e11 1.68908
\(414\) 1.48012e11 0.247625
\(415\) 0 0
\(416\) 1.19417e11 0.195500
\(417\) 5.67530e11 0.919130
\(418\) 2.40882e10 0.0385933
\(419\) 1.20182e12 1.90492 0.952461 0.304660i \(-0.0985429\pi\)
0.952461 + 0.304660i \(0.0985429\pi\)
\(420\) 0 0
\(421\) −6.30366e10 −0.0977966 −0.0488983 0.998804i \(-0.515571\pi\)
−0.0488983 + 0.998804i \(0.515571\pi\)
\(422\) 3.67559e11 0.564185
\(423\) 2.41612e11 0.366933
\(424\) −1.13206e11 −0.170107
\(425\) 0 0
\(426\) −8.14256e10 −0.119789
\(427\) −5.10152e11 −0.742633
\(428\) −1.23161e10 −0.0177409
\(429\) 3.44541e10 0.0491115
\(430\) 0 0
\(431\) 9.86422e11 1.37694 0.688470 0.725265i \(-0.258283\pi\)
0.688470 + 0.725265i \(0.258283\pi\)
\(432\) −3.48285e10 −0.0481125
\(433\) −6.88083e11 −0.940688 −0.470344 0.882483i \(-0.655870\pi\)
−0.470344 + 0.882483i \(0.655870\pi\)
\(434\) −7.29443e11 −0.986932
\(435\) 0 0
\(436\) 5.23240e11 0.693444
\(437\) 5.68332e11 0.745480
\(438\) 3.31588e11 0.430492
\(439\) −1.45118e12 −1.86479 −0.932396 0.361439i \(-0.882285\pi\)
−0.932396 + 0.361439i \(0.882285\pi\)
\(440\) 0 0
\(441\) 1.78990e11 0.225348
\(442\) 1.71905e11 0.214234
\(443\) −1.26776e12 −1.56394 −0.781971 0.623315i \(-0.785785\pi\)
−0.781971 + 0.623315i \(0.785785\pi\)
\(444\) 3.37910e11 0.412646
\(445\) 0 0
\(446\) −8.77239e11 −1.04981
\(447\) −2.75104e11 −0.325921
\(448\) 1.37976e11 0.161828
\(449\) 2.55287e11 0.296429 0.148215 0.988955i \(-0.452647\pi\)
0.148215 + 0.988955i \(0.452647\pi\)
\(450\) 0 0
\(451\) 3.13106e10 0.0356367
\(452\) −6.12890e11 −0.690652
\(453\) −2.44008e11 −0.272246
\(454\) −5.47602e11 −0.604942
\(455\) 0 0
\(456\) −1.33734e11 −0.144844
\(457\) 1.02881e12 1.10335 0.551674 0.834060i \(-0.313989\pi\)
0.551674 + 0.834060i \(0.313989\pi\)
\(458\) 1.22568e12 1.30161
\(459\) −5.01368e10 −0.0527230
\(460\) 0 0
\(461\) 2.23245e11 0.230211 0.115106 0.993353i \(-0.463279\pi\)
0.115106 + 0.993353i \(0.463279\pi\)
\(462\) 3.98087e10 0.0406526
\(463\) 1.90133e12 1.92284 0.961418 0.275091i \(-0.0887081\pi\)
0.961418 + 0.275091i \(0.0887081\pi\)
\(464\) 2.86899e11 0.287342
\(465\) 0 0
\(466\) −9.10587e11 −0.894509
\(467\) 1.45106e12 1.41175 0.705876 0.708336i \(-0.250554\pi\)
0.705876 + 0.708336i \(0.250554\pi\)
\(468\) −1.91283e11 −0.184319
\(469\) −1.93632e12 −1.84799
\(470\) 0 0
\(471\) 9.28471e11 0.869310
\(472\) −4.97395e11 −0.461278
\(473\) −6.03821e10 −0.0554668
\(474\) 2.31341e11 0.210499
\(475\) 0 0
\(476\) 1.98621e11 0.177335
\(477\) 1.81334e11 0.160379
\(478\) 1.01643e11 0.0890534
\(479\) 5.35569e11 0.464842 0.232421 0.972615i \(-0.425335\pi\)
0.232421 + 0.972615i \(0.425335\pi\)
\(480\) 0 0
\(481\) 1.85585e12 1.58085
\(482\) −2.33030e10 −0.0196653
\(483\) 9.39236e11 0.785259
\(484\) −6.00063e11 −0.497042
\(485\) 0 0
\(486\) 5.57886e10 0.0453609
\(487\) 6.30916e11 0.508266 0.254133 0.967169i \(-0.418210\pi\)
0.254133 + 0.967169i \(0.418210\pi\)
\(488\) 2.54083e11 0.202809
\(489\) 1.34198e11 0.106135
\(490\) 0 0
\(491\) 7.42654e11 0.576660 0.288330 0.957531i \(-0.406900\pi\)
0.288330 + 0.957531i \(0.406900\pi\)
\(492\) −1.73831e11 −0.133747
\(493\) 4.13001e11 0.314877
\(494\) −7.34486e11 −0.554897
\(495\) 0 0
\(496\) 3.63301e11 0.269525
\(497\) −5.16702e11 −0.379871
\(498\) −8.58027e11 −0.625128
\(499\) 1.47516e12 1.06509 0.532544 0.846402i \(-0.321236\pi\)
0.532544 + 0.846402i \(0.321236\pi\)
\(500\) 0 0
\(501\) 1.18332e12 0.839139
\(502\) −4.02153e11 −0.282634
\(503\) 2.29676e12 1.59978 0.799891 0.600146i \(-0.204891\pi\)
0.799891 + 0.600146i \(0.204891\pi\)
\(504\) −2.21011e11 −0.152573
\(505\) 0 0
\(506\) 8.42586e10 0.0571396
\(507\) −1.91591e11 −0.128778
\(508\) −7.15059e11 −0.476382
\(509\) 1.05824e12 0.698803 0.349402 0.936973i \(-0.386385\pi\)
0.349402 + 0.936973i \(0.386385\pi\)
\(510\) 0 0
\(511\) 2.10415e12 1.36516
\(512\) −6.87195e10 −0.0441942
\(513\) 2.14216e11 0.136560
\(514\) 1.42249e12 0.898905
\(515\) 0 0
\(516\) 3.35231e11 0.208171
\(517\) 1.37543e11 0.0846700
\(518\) 2.14427e12 1.30857
\(519\) −1.16804e12 −0.706652
\(520\) 0 0
\(521\) 1.88235e12 1.11926 0.559628 0.828744i \(-0.310944\pi\)
0.559628 + 0.828744i \(0.310944\pi\)
\(522\) −4.59557e11 −0.270908
\(523\) 4.89479e11 0.286073 0.143036 0.989717i \(-0.454313\pi\)
0.143036 + 0.989717i \(0.454313\pi\)
\(524\) −4.91158e11 −0.284597
\(525\) 0 0
\(526\) −1.72308e12 −0.981454
\(527\) 5.22985e11 0.295353
\(528\) −1.98268e10 −0.0111020
\(529\) 1.86826e11 0.103726
\(530\) 0 0
\(531\) 7.96730e11 0.434897
\(532\) −8.48634e11 −0.459323
\(533\) −9.54707e11 −0.512387
\(534\) −1.67888e11 −0.0893476
\(535\) 0 0
\(536\) 9.64391e11 0.504675
\(537\) −1.63431e12 −0.848105
\(538\) 1.60139e12 0.824094
\(539\) 1.01894e11 0.0519993
\(540\) 0 0
\(541\) −8.00915e11 −0.401975 −0.200987 0.979594i \(-0.564415\pi\)
−0.200987 + 0.979594i \(0.564415\pi\)
\(542\) 1.78109e12 0.886523
\(543\) 1.69789e11 0.0838128
\(544\) −9.89240e10 −0.0484291
\(545\) 0 0
\(546\) −1.21383e12 −0.584506
\(547\) −1.39381e12 −0.665673 −0.332837 0.942985i \(-0.608006\pi\)
−0.332837 + 0.942985i \(0.608006\pi\)
\(548\) 1.37314e12 0.650432
\(549\) −4.06992e11 −0.191210
\(550\) 0 0
\(551\) −1.76460e12 −0.815575
\(552\) −4.67790e11 −0.214449
\(553\) 1.46802e12 0.667526
\(554\) 1.80371e12 0.813528
\(555\) 0 0
\(556\) −1.79368e12 −0.795990
\(557\) 7.96649e11 0.350686 0.175343 0.984507i \(-0.443897\pi\)
0.175343 + 0.984507i \(0.443897\pi\)
\(558\) −5.81938e11 −0.254111
\(559\) 1.84114e12 0.797505
\(560\) 0 0
\(561\) −2.85414e10 −0.0121659
\(562\) 2.30873e12 0.976247
\(563\) −3.20673e12 −1.34516 −0.672580 0.740024i \(-0.734814\pi\)
−0.672580 + 0.740024i \(0.734814\pi\)
\(564\) −7.63614e11 −0.317774
\(565\) 0 0
\(566\) 2.98254e11 0.122155
\(567\) 3.54017e11 0.143847
\(568\) 2.57345e11 0.103741
\(569\) −4.14631e12 −1.65828 −0.829138 0.559043i \(-0.811168\pi\)
−0.829138 + 0.559043i \(0.811168\pi\)
\(570\) 0 0
\(571\) −1.26421e12 −0.497687 −0.248844 0.968544i \(-0.580051\pi\)
−0.248844 + 0.968544i \(0.580051\pi\)
\(572\) −1.08892e11 −0.0425318
\(573\) 1.23649e11 0.0479175
\(574\) −1.10308e12 −0.424134
\(575\) 0 0
\(576\) 1.10075e11 0.0416667
\(577\) −8.08451e11 −0.303643 −0.151821 0.988408i \(-0.548514\pi\)
−0.151821 + 0.988408i \(0.548514\pi\)
\(578\) 1.75500e12 0.654037
\(579\) 2.91214e11 0.107686
\(580\) 0 0
\(581\) −5.44478e12 −1.98238
\(582\) 4.72694e11 0.170776
\(583\) 1.03228e11 0.0370075
\(584\) −1.04798e12 −0.372817
\(585\) 0 0
\(586\) 2.74207e12 0.960593
\(587\) 8.37879e11 0.291280 0.145640 0.989338i \(-0.453476\pi\)
0.145640 + 0.989338i \(0.453476\pi\)
\(588\) −5.65696e11 −0.195157
\(589\) −2.23452e12 −0.765006
\(590\) 0 0
\(591\) −5.17385e11 −0.174450
\(592\) −1.06796e12 −0.357362
\(593\) −3.13947e12 −1.04258 −0.521291 0.853379i \(-0.674549\pi\)
−0.521291 + 0.853379i \(0.674549\pi\)
\(594\) 3.17588e10 0.0104671
\(595\) 0 0
\(596\) 8.69464e11 0.282256
\(597\) 1.88188e12 0.606326
\(598\) −2.56917e12 −0.821557
\(599\) 3.79611e12 1.20481 0.602404 0.798191i \(-0.294209\pi\)
0.602404 + 0.798191i \(0.294209\pi\)
\(600\) 0 0
\(601\) 4.10001e12 1.28189 0.640943 0.767589i \(-0.278544\pi\)
0.640943 + 0.767589i \(0.278544\pi\)
\(602\) 2.12728e12 0.660145
\(603\) −1.54477e12 −0.475812
\(604\) 7.71186e11 0.235772
\(605\) 0 0
\(606\) −2.66915e12 −0.803983
\(607\) −1.01349e12 −0.303020 −0.151510 0.988456i \(-0.548414\pi\)
−0.151510 + 0.988456i \(0.548414\pi\)
\(608\) 4.22665e11 0.125438
\(609\) −2.91621e12 −0.859094
\(610\) 0 0
\(611\) −4.19388e12 −1.21739
\(612\) 1.58457e11 0.0456594
\(613\) 1.01720e12 0.290960 0.145480 0.989361i \(-0.453527\pi\)
0.145480 + 0.989361i \(0.453527\pi\)
\(614\) −3.37114e11 −0.0957236
\(615\) 0 0
\(616\) −1.25815e11 −0.0352062
\(617\) −2.71258e11 −0.0753529 −0.0376764 0.999290i \(-0.511996\pi\)
−0.0376764 + 0.999290i \(0.511996\pi\)
\(618\) −2.50707e12 −0.691381
\(619\) 4.15719e12 1.13813 0.569065 0.822293i \(-0.307305\pi\)
0.569065 + 0.822293i \(0.307305\pi\)
\(620\) 0 0
\(621\) 7.49309e11 0.202185
\(622\) −2.46806e12 −0.661149
\(623\) −1.06536e12 −0.283336
\(624\) 6.04550e11 0.159625
\(625\) 0 0
\(626\) 1.74531e12 0.454243
\(627\) 1.21947e11 0.0315113
\(628\) −2.93443e12 −0.752844
\(629\) −1.53737e12 −0.391606
\(630\) 0 0
\(631\) 9.66429e11 0.242682 0.121341 0.992611i \(-0.461281\pi\)
0.121341 + 0.992611i \(0.461281\pi\)
\(632\) −7.31151e11 −0.182297
\(633\) 1.86077e12 0.460655
\(634\) 3.99295e12 0.981504
\(635\) 0 0
\(636\) −5.73105e11 −0.138892
\(637\) −3.10689e12 −0.747649
\(638\) −2.61612e11 −0.0625123
\(639\) −4.12217e11 −0.0978075
\(640\) 0 0
\(641\) −5.26532e12 −1.23187 −0.615934 0.787798i \(-0.711221\pi\)
−0.615934 + 0.787798i \(0.711221\pi\)
\(642\) −6.23503e10 −0.0144854
\(643\) −1.46647e12 −0.338317 −0.169158 0.985589i \(-0.554105\pi\)
−0.169158 + 0.985589i \(0.554105\pi\)
\(644\) −2.96845e12 −0.680054
\(645\) 0 0
\(646\) 6.08441e11 0.137459
\(647\) −4.68611e12 −1.05134 −0.525670 0.850689i \(-0.676185\pi\)
−0.525670 + 0.850689i \(0.676185\pi\)
\(648\) −1.76319e11 −0.0392837
\(649\) 4.53555e11 0.100353
\(650\) 0 0
\(651\) −3.69280e12 −0.805827
\(652\) −4.24133e11 −0.0919154
\(653\) −6.00529e12 −1.29248 −0.646242 0.763133i \(-0.723660\pi\)
−0.646242 + 0.763133i \(0.723660\pi\)
\(654\) 2.64890e12 0.566195
\(655\) 0 0
\(656\) 5.49393e11 0.115829
\(657\) 1.67866e12 0.351495
\(658\) −4.84566e12 −1.00771
\(659\) 4.76526e12 0.984243 0.492122 0.870526i \(-0.336221\pi\)
0.492122 + 0.870526i \(0.336221\pi\)
\(660\) 0 0
\(661\) 1.09459e12 0.223021 0.111510 0.993763i \(-0.464431\pi\)
0.111510 + 0.993763i \(0.464431\pi\)
\(662\) 9.78757e11 0.198068
\(663\) 8.70270e11 0.174921
\(664\) 2.71179e12 0.541377
\(665\) 0 0
\(666\) 1.71067e12 0.336924
\(667\) −6.17242e12 −1.20751
\(668\) −3.73989e12 −0.726716
\(669\) −4.44102e12 −0.857167
\(670\) 0 0
\(671\) −2.31688e11 −0.0441218
\(672\) 6.98504e11 0.132132
\(673\) −6.96795e10 −0.0130929 −0.00654647 0.999979i \(-0.502084\pi\)
−0.00654647 + 0.999979i \(0.502084\pi\)
\(674\) −4.31170e12 −0.804783
\(675\) 0 0
\(676\) 6.05524e11 0.111525
\(677\) 7.19055e12 1.31557 0.657784 0.753207i \(-0.271494\pi\)
0.657784 + 0.753207i \(0.271494\pi\)
\(678\) −3.10275e12 −0.563915
\(679\) 2.99957e12 0.541558
\(680\) 0 0
\(681\) −2.77223e12 −0.493933
\(682\) −3.31280e11 −0.0586362
\(683\) −7.36932e12 −1.29579 −0.647894 0.761730i \(-0.724350\pi\)
−0.647894 + 0.761730i \(0.724350\pi\)
\(684\) −6.77028e11 −0.118264
\(685\) 0 0
\(686\) 1.72017e12 0.296560
\(687\) 6.20499e12 1.06276
\(688\) −1.05950e12 −0.180282
\(689\) −3.14758e12 −0.532096
\(690\) 0 0
\(691\) −2.34206e12 −0.390793 −0.195397 0.980724i \(-0.562599\pi\)
−0.195397 + 0.980724i \(0.562599\pi\)
\(692\) 3.69159e12 0.611978
\(693\) 2.01531e11 0.0331927
\(694\) 7.97641e12 1.30524
\(695\) 0 0
\(696\) 1.45243e12 0.234614
\(697\) 7.90870e11 0.126928
\(698\) −2.37061e11 −0.0378017
\(699\) −4.60984e12 −0.730363
\(700\) 0 0
\(701\) −1.50522e12 −0.235434 −0.117717 0.993047i \(-0.537557\pi\)
−0.117717 + 0.993047i \(0.537557\pi\)
\(702\) −9.68372e11 −0.150496
\(703\) 6.56859e12 1.01432
\(704\) 6.26626e10 0.00961461
\(705\) 0 0
\(706\) 2.64508e12 0.400698
\(707\) −1.69376e13 −2.54956
\(708\) −2.51806e12 −0.376632
\(709\) 1.14340e13 1.69937 0.849687 0.527288i \(-0.176791\pi\)
0.849687 + 0.527288i \(0.176791\pi\)
\(710\) 0 0
\(711\) 1.17116e12 0.171872
\(712\) 5.30607e11 0.0773773
\(713\) −7.81615e12 −1.13264
\(714\) 1.00552e12 0.144793
\(715\) 0 0
\(716\) 5.16522e12 0.734480
\(717\) 5.14566e11 0.0727118
\(718\) 3.89418e12 0.546835
\(719\) 3.25896e12 0.454777 0.227388 0.973804i \(-0.426981\pi\)
0.227388 + 0.973804i \(0.426981\pi\)
\(720\) 0 0
\(721\) −1.59091e13 −2.19248
\(722\) 2.56336e12 0.351069
\(723\) −1.17971e11 −0.0160566
\(724\) −5.36617e11 −0.0725840
\(725\) 0 0
\(726\) −3.03782e12 −0.405833
\(727\) 4.92968e12 0.654506 0.327253 0.944937i \(-0.393877\pi\)
0.327253 + 0.944937i \(0.393877\pi\)
\(728\) 3.83629e12 0.506197
\(729\) 2.82430e11 0.0370370
\(730\) 0 0
\(731\) −1.52518e12 −0.197557
\(732\) 1.28630e12 0.165593
\(733\) 1.41175e13 1.80629 0.903147 0.429331i \(-0.141251\pi\)
0.903147 + 0.429331i \(0.141251\pi\)
\(734\) −7.51870e12 −0.956116
\(735\) 0 0
\(736\) 1.47845e12 0.185719
\(737\) −8.79390e11 −0.109794
\(738\) −8.80021e11 −0.109204
\(739\) 8.11730e12 1.00118 0.500589 0.865685i \(-0.333117\pi\)
0.500589 + 0.865685i \(0.333117\pi\)
\(740\) 0 0
\(741\) −3.71834e12 −0.453071
\(742\) −3.63675e12 −0.440449
\(743\) 1.28296e13 1.54441 0.772204 0.635375i \(-0.219155\pi\)
0.772204 + 0.635375i \(0.219155\pi\)
\(744\) 1.83921e12 0.220066
\(745\) 0 0
\(746\) 1.10115e13 1.30173
\(747\) −4.34376e12 −0.510415
\(748\) 9.02049e10 0.0105359
\(749\) −3.95656e11 −0.0459356
\(750\) 0 0
\(751\) 5.54959e12 0.636621 0.318310 0.947987i \(-0.396885\pi\)
0.318310 + 0.947987i \(0.396885\pi\)
\(752\) 2.41340e12 0.275200
\(753\) −2.03590e12 −0.230770
\(754\) 7.97695e12 0.898805
\(755\) 0 0
\(756\) −1.11887e12 −0.124575
\(757\) −1.19519e12 −0.132283 −0.0661416 0.997810i \(-0.521069\pi\)
−0.0661416 + 0.997810i \(0.521069\pi\)
\(758\) 6.59200e12 0.725281
\(759\) 4.26559e11 0.0466543
\(760\) 0 0
\(761\) 3.31600e12 0.358413 0.179206 0.983812i \(-0.442647\pi\)
0.179206 + 0.983812i \(0.442647\pi\)
\(762\) −3.61999e12 −0.388964
\(763\) 1.68091e13 1.79550
\(764\) −3.90792e11 −0.0414978
\(765\) 0 0
\(766\) 7.65623e12 0.803500
\(767\) −1.38296e13 −1.44288
\(768\) −3.47892e11 −0.0360844
\(769\) −5.79888e12 −0.597965 −0.298982 0.954259i \(-0.596647\pi\)
−0.298982 + 0.954259i \(0.596647\pi\)
\(770\) 0 0
\(771\) 7.20133e12 0.733953
\(772\) −9.20380e11 −0.0932587
\(773\) −1.11447e13 −1.12269 −0.561344 0.827582i \(-0.689716\pi\)
−0.561344 + 0.827582i \(0.689716\pi\)
\(774\) 1.69711e12 0.169971
\(775\) 0 0
\(776\) −1.49395e12 −0.147896
\(777\) 1.08554e13 1.06844
\(778\) −3.66722e12 −0.358863
\(779\) −3.37909e12 −0.328762
\(780\) 0 0
\(781\) −2.34663e11 −0.0225691
\(782\) 2.12827e12 0.203515
\(783\) −2.32651e12 −0.221196
\(784\) 1.78788e12 0.169011
\(785\) 0 0
\(786\) −2.48649e12 −0.232372
\(787\) −1.05424e13 −0.979606 −0.489803 0.871833i \(-0.662931\pi\)
−0.489803 + 0.871833i \(0.662931\pi\)
\(788\) 1.63519e12 0.151078
\(789\) −8.72310e12 −0.801354
\(790\) 0 0
\(791\) −1.96891e13 −1.78827
\(792\) −1.00373e11 −0.00906474
\(793\) 7.06452e12 0.634386
\(794\) −1.29739e13 −1.15845
\(795\) 0 0
\(796\) −5.94765e12 −0.525094
\(797\) −2.96440e12 −0.260240 −0.130120 0.991498i \(-0.541536\pi\)
−0.130120 + 0.991498i \(0.541536\pi\)
\(798\) −4.29621e12 −0.375036
\(799\) 3.47417e12 0.301571
\(800\) 0 0
\(801\) −8.49931e11 −0.0729520
\(802\) 1.19415e13 1.01923
\(803\) 9.55613e11 0.0811077
\(804\) 4.88223e12 0.412065
\(805\) 0 0
\(806\) 1.01012e13 0.843075
\(807\) 8.10704e12 0.672870
\(808\) 8.43585e12 0.696270
\(809\) −1.20187e13 −0.986485 −0.493243 0.869892i \(-0.664189\pi\)
−0.493243 + 0.869892i \(0.664189\pi\)
\(810\) 0 0
\(811\) 1.67172e13 1.35697 0.678484 0.734615i \(-0.262637\pi\)
0.678484 + 0.734615i \(0.262637\pi\)
\(812\) 9.21666e12 0.743998
\(813\) 9.01679e12 0.723843
\(814\) 9.73833e11 0.0777454
\(815\) 0 0
\(816\) −5.00803e11 −0.0395422
\(817\) 6.51653e12 0.511702
\(818\) 8.79642e11 0.0686935
\(819\) −6.14499e12 −0.477247
\(820\) 0 0
\(821\) 8.93150e12 0.686089 0.343044 0.939319i \(-0.388542\pi\)
0.343044 + 0.939319i \(0.388542\pi\)
\(822\) 6.95151e12 0.531075
\(823\) 6.33020e12 0.480970 0.240485 0.970653i \(-0.422693\pi\)
0.240485 + 0.970653i \(0.422693\pi\)
\(824\) 7.92357e12 0.598754
\(825\) 0 0
\(826\) −1.59788e13 −1.19436
\(827\) 6.72193e12 0.499711 0.249856 0.968283i \(-0.419617\pi\)
0.249856 + 0.968283i \(0.419617\pi\)
\(828\) −2.36819e12 −0.175097
\(829\) −2.56009e13 −1.88261 −0.941303 0.337563i \(-0.890397\pi\)
−0.941303 + 0.337563i \(0.890397\pi\)
\(830\) 0 0
\(831\) 9.13128e12 0.664243
\(832\) −1.91068e12 −0.138239
\(833\) 2.57371e12 0.185207
\(834\) −9.08049e12 −0.649923
\(835\) 0 0
\(836\) −3.85412e11 −0.0272896
\(837\) −2.94606e12 −0.207481
\(838\) −1.92292e13 −1.34698
\(839\) −1.79495e13 −1.25061 −0.625306 0.780379i \(-0.715026\pi\)
−0.625306 + 0.780379i \(0.715026\pi\)
\(840\) 0 0
\(841\) 4.65744e12 0.321044
\(842\) 1.00859e12 0.0691526
\(843\) 1.16879e13 0.797102
\(844\) −5.88095e12 −0.398939
\(845\) 0 0
\(846\) −3.86579e12 −0.259461
\(847\) −1.92771e13 −1.28696
\(848\) 1.81130e12 0.120284
\(849\) 1.50991e12 0.0997394
\(850\) 0 0
\(851\) 2.29764e13 1.50175
\(852\) 1.30281e12 0.0847038
\(853\) −1.47770e13 −0.955688 −0.477844 0.878445i \(-0.658582\pi\)
−0.477844 + 0.878445i \(0.658582\pi\)
\(854\) 8.16244e12 0.525121
\(855\) 0 0
\(856\) 1.97058e11 0.0125447
\(857\) 2.96640e13 1.87852 0.939261 0.343204i \(-0.111512\pi\)
0.939261 + 0.343204i \(0.111512\pi\)
\(858\) −5.51265e11 −0.0347270
\(859\) 2.71397e12 0.170073 0.0850366 0.996378i \(-0.472899\pi\)
0.0850366 + 0.996378i \(0.472899\pi\)
\(860\) 0 0
\(861\) −5.58434e12 −0.346304
\(862\) −1.57828e13 −0.973644
\(863\) −4.43572e12 −0.272217 −0.136109 0.990694i \(-0.543460\pi\)
−0.136109 + 0.990694i \(0.543460\pi\)
\(864\) 5.57256e11 0.0340207
\(865\) 0 0
\(866\) 1.10093e13 0.665167
\(867\) 8.88470e12 0.534019
\(868\) 1.16711e13 0.697866
\(869\) 6.66708e11 0.0396595
\(870\) 0 0
\(871\) 2.68139e13 1.57862
\(872\) −8.37183e12 −0.490339
\(873\) 2.39301e12 0.139438
\(874\) −9.09332e12 −0.527134
\(875\) 0 0
\(876\) −5.30540e12 −0.304404
\(877\) 1.78251e13 1.01750 0.508749 0.860915i \(-0.330108\pi\)
0.508749 + 0.860915i \(0.330108\pi\)
\(878\) 2.32188e13 1.31861
\(879\) 1.38817e13 0.784321
\(880\) 0 0
\(881\) −1.12118e13 −0.627021 −0.313511 0.949585i \(-0.601505\pi\)
−0.313511 + 0.949585i \(0.601505\pi\)
\(882\) −2.86384e12 −0.159345
\(883\) 1.69399e13 0.937754 0.468877 0.883263i \(-0.344659\pi\)
0.468877 + 0.883263i \(0.344659\pi\)
\(884\) −2.75048e12 −0.151486
\(885\) 0 0
\(886\) 2.02842e13 1.10587
\(887\) 1.38745e13 0.752595 0.376297 0.926499i \(-0.377197\pi\)
0.376297 + 0.926499i \(0.377197\pi\)
\(888\) −5.40656e12 −0.291785
\(889\) −2.29713e13 −1.23347
\(890\) 0 0
\(891\) 1.60779e11 0.00854632
\(892\) 1.40358e13 0.742329
\(893\) −1.48438e13 −0.781113
\(894\) 4.40166e12 0.230461
\(895\) 0 0
\(896\) −2.20762e12 −0.114429
\(897\) −1.30064e13 −0.670798
\(898\) −4.08460e12 −0.209607
\(899\) 2.42682e13 1.23913
\(900\) 0 0
\(901\) 2.60742e12 0.131810
\(902\) −5.00970e11 −0.0251989
\(903\) 1.07693e13 0.539006
\(904\) 9.80624e12 0.488365
\(905\) 0 0
\(906\) 3.90413e12 0.192507
\(907\) 2.71558e13 1.33239 0.666193 0.745779i \(-0.267923\pi\)
0.666193 + 0.745779i \(0.267923\pi\)
\(908\) 8.76163e12 0.427758
\(909\) −1.35126e13 −0.656449
\(910\) 0 0
\(911\) −2.46750e13 −1.18693 −0.593464 0.804861i \(-0.702240\pi\)
−0.593464 + 0.804861i \(0.702240\pi\)
\(912\) 2.13974e12 0.102420
\(913\) −2.47278e12 −0.117779
\(914\) −1.64610e13 −0.780184
\(915\) 0 0
\(916\) −1.96108e13 −0.920379
\(917\) −1.57785e13 −0.736891
\(918\) 8.02189e11 0.0372808
\(919\) 3.20842e13 1.48379 0.741894 0.670518i \(-0.233928\pi\)
0.741894 + 0.670518i \(0.233928\pi\)
\(920\) 0 0
\(921\) −1.70664e12 −0.0781580
\(922\) −3.57191e12 −0.162784
\(923\) 7.15522e12 0.324501
\(924\) −6.36939e11 −0.0287458
\(925\) 0 0
\(926\) −3.04212e13 −1.35965
\(927\) −1.26920e13 −0.564511
\(928\) −4.59039e12 −0.203181
\(929\) 3.59157e11 0.0158203 0.00791014 0.999969i \(-0.497482\pi\)
0.00791014 + 0.999969i \(0.497482\pi\)
\(930\) 0 0
\(931\) −1.09965e13 −0.479712
\(932\) 1.45694e13 0.632513
\(933\) −1.24946e13 −0.539826
\(934\) −2.32169e13 −0.998259
\(935\) 0 0
\(936\) 3.06053e12 0.130333
\(937\) −2.54992e12 −0.108068 −0.0540342 0.998539i \(-0.517208\pi\)
−0.0540342 + 0.998539i \(0.517208\pi\)
\(938\) 3.09811e13 1.30673
\(939\) 8.83564e12 0.370888
\(940\) 0 0
\(941\) −5.31550e12 −0.220999 −0.110500 0.993876i \(-0.535245\pi\)
−0.110500 + 0.993876i \(0.535245\pi\)
\(942\) −1.48555e13 −0.614695
\(943\) −1.18198e13 −0.486750
\(944\) 7.95832e12 0.326172
\(945\) 0 0
\(946\) 9.66114e11 0.0392210
\(947\) −1.17412e13 −0.474394 −0.237197 0.971462i \(-0.576229\pi\)
−0.237197 + 0.971462i \(0.576229\pi\)
\(948\) −3.70145e12 −0.148845
\(949\) −2.91381e13 −1.16617
\(950\) 0 0
\(951\) 2.02143e13 0.801394
\(952\) −3.17794e12 −0.125395
\(953\) −4.31292e13 −1.69377 −0.846884 0.531778i \(-0.821524\pi\)
−0.846884 + 0.531778i \(0.821524\pi\)
\(954\) −2.90135e12 −0.113405
\(955\) 0 0
\(956\) −1.62628e12 −0.0629703
\(957\) −1.32441e12 −0.0510410
\(958\) −8.56910e12 −0.328693
\(959\) 4.41122e13 1.68413
\(960\) 0 0
\(961\) 4.29119e12 0.162302
\(962\) −2.96936e13 −1.11783
\(963\) −3.15648e11 −0.0118273
\(964\) 3.72848e11 0.0139054
\(965\) 0 0
\(966\) −1.50278e13 −0.555262
\(967\) 1.62737e13 0.598505 0.299252 0.954174i \(-0.403263\pi\)
0.299252 + 0.954174i \(0.403263\pi\)
\(968\) 9.60101e12 0.351462
\(969\) 3.08023e12 0.112234
\(970\) 0 0
\(971\) 2.35398e13 0.849799 0.424900 0.905241i \(-0.360309\pi\)
0.424900 + 0.905241i \(0.360309\pi\)
\(972\) −8.92617e11 −0.0320750
\(973\) −5.76220e13 −2.06101
\(974\) −1.00947e13 −0.359398
\(975\) 0 0
\(976\) −4.06533e12 −0.143407
\(977\) 1.49259e13 0.524103 0.262051 0.965054i \(-0.415601\pi\)
0.262051 + 0.965054i \(0.415601\pi\)
\(978\) −2.14717e12 −0.0750486
\(979\) −4.83840e11 −0.0168337
\(980\) 0 0
\(981\) 1.34101e13 0.462296
\(982\) −1.18825e13 −0.407760
\(983\) 7.14011e12 0.243901 0.121951 0.992536i \(-0.461085\pi\)
0.121951 + 0.992536i \(0.461085\pi\)
\(984\) 2.78130e12 0.0945736
\(985\) 0 0
\(986\) −6.60802e12 −0.222651
\(987\) −2.45311e13 −0.822793
\(988\) 1.17518e13 0.392371
\(989\) 2.27943e13 0.757604
\(990\) 0 0
\(991\) −3.31522e13 −1.09189 −0.545947 0.837819i \(-0.683830\pi\)
−0.545947 + 0.837819i \(0.683830\pi\)
\(992\) −5.81282e12 −0.190583
\(993\) 4.95496e12 0.161722
\(994\) 8.26723e12 0.268609
\(995\) 0 0
\(996\) 1.37284e13 0.442032
\(997\) 5.60870e12 0.179777 0.0898884 0.995952i \(-0.471349\pi\)
0.0898884 + 0.995952i \(0.471349\pi\)
\(998\) −2.36025e13 −0.753131
\(999\) 8.66026e12 0.275097
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.10.a.l.1.2 2
5.2 odd 4 150.10.c.k.49.2 4
5.3 odd 4 150.10.c.k.49.3 4
5.4 even 2 150.10.a.q.1.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.10.a.l.1.2 2 1.1 even 1 trivial
150.10.a.q.1.1 yes 2 5.4 even 2
150.10.c.k.49.2 4 5.2 odd 4
150.10.c.k.49.3 4 5.3 odd 4