Properties

Label 1488.1.dc.b
Level $1488$
Weight $1$
Character orbit 1488.dc
Analytic conductor $0.743$
Analytic rank $0$
Dimension $8$
Projective image $D_{30}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1488,1,Mod(239,1488)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1488, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([15, 0, 15, 17])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1488.239"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1488 = 2^{4} \cdot 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1488.dc (of order \(30\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.742608738798\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{15})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{30}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{30} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{30}^{14} q^{3} + ( - \zeta_{30}^{11} - \zeta_{30}^{8}) q^{7} - \zeta_{30}^{13} q^{9} + (\zeta_{30}^{6} - \zeta_{30}^{2}) q^{13} + ( - \zeta_{30}^{4} - \zeta_{30}^{3}) q^{19} + (\zeta_{30}^{10} + \zeta_{30}^{7}) q^{21} + \cdots + ( - \zeta_{30}^{14} - \zeta_{30}^{10}) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{3} + q^{9} - 3 q^{13} - 3 q^{19} - 5 q^{21} - 4 q^{25} - 2 q^{27} + 2 q^{31} - 3 q^{37} - 5 q^{39} + 6 q^{43} + q^{49} + 3 q^{57} + 3 q^{73} + q^{75} + 3 q^{79} + q^{81} - 5 q^{91} - q^{93}+ \cdots + 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1488\mathbb{Z}\right)^\times\).

\(n\) \(373\) \(497\) \(559\) \(1057\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(\zeta_{30}^{13}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
239.1
−0.978148 + 0.207912i
0.669131 0.743145i
0.669131 + 0.743145i
−0.104528 0.994522i
0.913545 0.406737i
−0.104528 + 0.994522i
−0.978148 0.207912i
0.913545 + 0.406737i
0 −0.978148 0.207912i 0 0 0 0.773659 + 1.73767i 0 0.913545 + 0.406737i 0
383.1 0 0.669131 + 0.743145i 0 0 0 −1.89169 + 0.198825i 0 −0.104528 + 0.994522i 0
575.1 0 0.669131 0.743145i 0 0 0 −1.89169 0.198825i 0 −0.104528 0.994522i 0
623.1 0 −0.104528 + 0.994522i 0 0 0 0.244415 + 1.14988i 0 −0.978148 0.207912i 0
911.1 0 0.913545 + 0.406737i 0 0 0 0.873619 + 0.786610i 0 0.669131 + 0.743145i 0
1199.1 0 −0.104528 0.994522i 0 0 0 0.244415 1.14988i 0 −0.978148 + 0.207912i 0
1295.1 0 −0.978148 + 0.207912i 0 0 0 0.773659 1.73767i 0 0.913545 0.406737i 0
1439.1 0 0.913545 0.406737i 0 0 0 0.873619 0.786610i 0 0.669131 0.743145i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 239.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
124.p even 30 1 inner
372.bc odd 30 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1488.1.dc.b yes 8
3.b odd 2 1 CM 1488.1.dc.b yes 8
4.b odd 2 1 1488.1.dc.a 8
12.b even 2 1 1488.1.dc.a 8
31.h odd 30 1 1488.1.dc.a 8
93.p even 30 1 1488.1.dc.a 8
124.p even 30 1 inner 1488.1.dc.b yes 8
372.bc odd 30 1 inner 1488.1.dc.b yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1488.1.dc.a 8 4.b odd 2 1
1488.1.dc.a 8 12.b even 2 1
1488.1.dc.a 8 31.h odd 30 1
1488.1.dc.a 8 93.p even 30 1
1488.1.dc.b yes 8 1.a even 1 1 trivial
1488.1.dc.b yes 8 3.b odd 2 1 CM
1488.1.dc.b yes 8 124.p even 30 1 inner
1488.1.dc.b yes 8 372.bc odd 30 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{8} + 10T_{7}^{5} - 5T_{7}^{4} + 25T_{7}^{2} - 25T_{7} + 25 \) acting on \(S_{1}^{\mathrm{new}}(1488, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} - T^{7} + T^{5} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} + 10 T^{5} + \cdots + 25 \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( T^{8} + 3 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( T^{8} + 3 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} + 3 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( T^{8} - 6 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( (T^{4} + 5 T^{2} + 5)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} - 5 T^{6} + \cdots + 25 \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( T^{8} - 3 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( T^{8} - 3 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$83$ \( T^{8} \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( T^{8} - 3 T^{7} + \cdots + 1 \) Copy content Toggle raw display
show more
show less