Properties

Label 1470.2.m.f.1273.7
Level $1470$
Weight $2$
Character 1470.1273
Analytic conductor $11.738$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1470,2,Mod(97,1470)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1470.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1470, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1470.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,8,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7380090971\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 32 x^{13} + 2 x^{12} + 352 x^{10} - 288 x^{9} + 2 x^{8} - 1440 x^{7} + 8800 x^{6} + \cdots + 390625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1273.7
Root \(-1.12594 + 1.93191i\) of defining polynomial
Character \(\chi\) \(=\) 1470.1273
Dual form 1470.2.m.f.97.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(-0.707107 + 0.707107i) q^{3} -1.00000i q^{4} +(1.35397 + 1.77954i) q^{5} +1.00000i q^{6} +(-0.707107 - 0.707107i) q^{8} -1.00000i q^{9} +(2.21573 + 0.300921i) q^{10} +2.44960 q^{11} +(0.707107 + 0.707107i) q^{12} +(1.28575 - 1.28575i) q^{13} +(-2.21573 - 0.300921i) q^{15} -1.00000 q^{16} +(5.33117 + 5.33117i) q^{17} +(-0.707107 - 0.707107i) q^{18} -0.690213 q^{19} +(1.77954 - 1.35397i) q^{20} +(1.73213 - 1.73213i) q^{22} +(-5.65016 - 5.65016i) q^{23} +1.00000 q^{24} +(-1.33352 + 4.81889i) q^{25} -1.81833i q^{26} +(0.707107 + 0.707107i) q^{27} +5.08030i q^{29} +(-1.77954 + 1.35397i) q^{30} +1.26497i q^{31} +(-0.707107 + 0.707107i) q^{32} +(-1.73213 + 1.73213i) q^{33} +7.53941 q^{34} -1.00000 q^{36} +(7.16021 - 7.16021i) q^{37} +(-0.488054 + 0.488054i) q^{38} +1.81833i q^{39} +(0.300921 - 2.21573i) q^{40} +1.15796i q^{41} +(0.893060 + 0.893060i) q^{43} -2.44960i q^{44} +(1.77954 - 1.35397i) q^{45} -7.99053 q^{46} +(4.95521 + 4.95521i) q^{47} +(0.707107 - 0.707107i) q^{48} +(2.46453 + 4.35041i) q^{50} -7.53941 q^{51} +(-1.28575 - 1.28575i) q^{52} +(6.74356 + 6.74356i) q^{53} +1.00000 q^{54} +(3.31669 + 4.35916i) q^{55} +(0.488054 - 0.488054i) q^{57} +(3.59232 + 3.59232i) q^{58} +8.06376 q^{59} +(-0.300921 + 2.21573i) q^{60} +1.09779i q^{61} +(0.894469 + 0.894469i) q^{62} +1.00000i q^{64} +(4.02892 + 0.547173i) q^{65} +2.44960i q^{66} +(-7.41414 + 7.41414i) q^{67} +(5.33117 - 5.33117i) q^{68} +7.99053 q^{69} +4.24084 q^{71} +(-0.707107 + 0.707107i) q^{72} +(4.58803 - 4.58803i) q^{73} -10.1261i q^{74} +(-2.46453 - 4.35041i) q^{75} +0.690213i q^{76} +(1.28575 + 1.28575i) q^{78} +2.31721i q^{79} +(-1.35397 - 1.77954i) q^{80} -1.00000 q^{81} +(0.818802 + 0.818802i) q^{82} +(7.39632 - 7.39632i) q^{83} +(-2.26877 + 16.7053i) q^{85} +1.26298 q^{86} +(-3.59232 - 3.59232i) q^{87} +(-1.73213 - 1.73213i) q^{88} -16.8162 q^{89} +(0.300921 - 2.21573i) q^{90} +(-5.65016 + 5.65016i) q^{92} +(-0.894469 - 0.894469i) q^{93} +7.00773 q^{94} +(-0.934530 - 1.22826i) q^{95} -1.00000i q^{96} +(4.74063 + 4.74063i) q^{97} -2.44960i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{5} + 8 q^{13} - 16 q^{16} - 8 q^{17} - 48 q^{19} - 8 q^{22} - 8 q^{23} + 16 q^{24} + 8 q^{25} + 8 q^{33} - 16 q^{36} + 8 q^{37} - 8 q^{38} + 16 q^{47} - 8 q^{52} + 8 q^{53} + 16 q^{54} + 8 q^{57}+ \cdots - 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1470\mathbb{Z}\right)^\times\).

\(n\) \(491\) \(1081\) \(1177\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) −0.707107 + 0.707107i −0.408248 + 0.408248i
\(4\) 1.00000i 0.500000i
\(5\) 1.35397 + 1.77954i 0.605515 + 0.795834i
\(6\) 1.00000i 0.408248i
\(7\) 0 0
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 1.00000i 0.333333i
\(10\) 2.21573 + 0.300921i 0.700674 + 0.0951596i
\(11\) 2.44960 0.738583 0.369291 0.929314i \(-0.379600\pi\)
0.369291 + 0.929314i \(0.379600\pi\)
\(12\) 0.707107 + 0.707107i 0.204124 + 0.204124i
\(13\) 1.28575 1.28575i 0.356604 0.356604i −0.505956 0.862559i \(-0.668860\pi\)
0.862559 + 0.505956i \(0.168860\pi\)
\(14\) 0 0
\(15\) −2.21573 0.300921i −0.572098 0.0776975i
\(16\) −1.00000 −0.250000
\(17\) 5.33117 + 5.33117i 1.29300 + 1.29300i 0.932923 + 0.360075i \(0.117249\pi\)
0.360075 + 0.932923i \(0.382751\pi\)
\(18\) −0.707107 0.707107i −0.166667 0.166667i
\(19\) −0.690213 −0.158346 −0.0791729 0.996861i \(-0.525228\pi\)
−0.0791729 + 0.996861i \(0.525228\pi\)
\(20\) 1.77954 1.35397i 0.397917 0.302757i
\(21\) 0 0
\(22\) 1.73213 1.73213i 0.369291 0.369291i
\(23\) −5.65016 5.65016i −1.17814 1.17814i −0.980218 0.197922i \(-0.936581\pi\)
−0.197922 0.980218i \(-0.563419\pi\)
\(24\) 1.00000 0.204124
\(25\) −1.33352 + 4.81889i −0.266704 + 0.963779i
\(26\) 1.81833i 0.356604i
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) 0 0
\(29\) 5.08030i 0.943388i 0.881762 + 0.471694i \(0.156357\pi\)
−0.881762 + 0.471694i \(0.843643\pi\)
\(30\) −1.77954 + 1.35397i −0.324898 + 0.247200i
\(31\) 1.26497i 0.227195i 0.993527 + 0.113598i \(0.0362375\pi\)
−0.993527 + 0.113598i \(0.963762\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) −1.73213 + 1.73213i −0.301525 + 0.301525i
\(34\) 7.53941 1.29300
\(35\) 0 0
\(36\) −1.00000 −0.166667
\(37\) 7.16021 7.16021i 1.17713 1.17713i 0.196659 0.980472i \(-0.436991\pi\)
0.980472 0.196659i \(-0.0630093\pi\)
\(38\) −0.488054 + 0.488054i −0.0791729 + 0.0791729i
\(39\) 1.81833i 0.291166i
\(40\) 0.300921 2.21573i 0.0475798 0.350337i
\(41\) 1.15796i 0.180843i 0.995904 + 0.0904216i \(0.0288215\pi\)
−0.995904 + 0.0904216i \(0.971179\pi\)
\(42\) 0 0
\(43\) 0.893060 + 0.893060i 0.136190 + 0.136190i 0.771915 0.635725i \(-0.219299\pi\)
−0.635725 + 0.771915i \(0.719299\pi\)
\(44\) 2.44960i 0.369291i
\(45\) 1.77954 1.35397i 0.265278 0.201838i
\(46\) −7.99053 −1.17814
\(47\) 4.95521 + 4.95521i 0.722792 + 0.722792i 0.969173 0.246381i \(-0.0792414\pi\)
−0.246381 + 0.969173i \(0.579241\pi\)
\(48\) 0.707107 0.707107i 0.102062 0.102062i
\(49\) 0 0
\(50\) 2.46453 + 4.35041i 0.348538 + 0.615241i
\(51\) −7.53941 −1.05573
\(52\) −1.28575 1.28575i −0.178302 0.178302i
\(53\) 6.74356 + 6.74356i 0.926299 + 0.926299i 0.997465 0.0711657i \(-0.0226719\pi\)
−0.0711657 + 0.997465i \(0.522672\pi\)
\(54\) 1.00000 0.136083
\(55\) 3.31669 + 4.35916i 0.447223 + 0.587789i
\(56\) 0 0
\(57\) 0.488054 0.488054i 0.0646444 0.0646444i
\(58\) 3.59232 + 3.59232i 0.471694 + 0.471694i
\(59\) 8.06376 1.04981 0.524906 0.851160i \(-0.324101\pi\)
0.524906 + 0.851160i \(0.324101\pi\)
\(60\) −0.300921 + 2.21573i −0.0388487 + 0.286049i
\(61\) 1.09779i 0.140557i 0.997527 + 0.0702785i \(0.0223888\pi\)
−0.997527 + 0.0702785i \(0.977611\pi\)
\(62\) 0.894469 + 0.894469i 0.113598 + 0.113598i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 4.02892 + 0.547173i 0.499726 + 0.0678685i
\(66\) 2.44960i 0.301525i
\(67\) −7.41414 + 7.41414i −0.905782 + 0.905782i −0.995929 0.0901466i \(-0.971266\pi\)
0.0901466 + 0.995929i \(0.471266\pi\)
\(68\) 5.33117 5.33117i 0.646499 0.646499i
\(69\) 7.99053 0.961947
\(70\) 0 0
\(71\) 4.24084 0.503296 0.251648 0.967819i \(-0.419028\pi\)
0.251648 + 0.967819i \(0.419028\pi\)
\(72\) −0.707107 + 0.707107i −0.0833333 + 0.0833333i
\(73\) 4.58803 4.58803i 0.536989 0.536989i −0.385654 0.922643i \(-0.626024\pi\)
0.922643 + 0.385654i \(0.126024\pi\)
\(74\) 10.1261i 1.17713i
\(75\) −2.46453 4.35041i −0.284580 0.502342i
\(76\) 0.690213i 0.0791729i
\(77\) 0 0
\(78\) 1.28575 + 1.28575i 0.145583 + 0.145583i
\(79\) 2.31721i 0.260706i 0.991468 + 0.130353i \(0.0416111\pi\)
−0.991468 + 0.130353i \(0.958389\pi\)
\(80\) −1.35397 1.77954i −0.151379 0.198959i
\(81\) −1.00000 −0.111111
\(82\) 0.818802 + 0.818802i 0.0904216 + 0.0904216i
\(83\) 7.39632 7.39632i 0.811852 0.811852i −0.173060 0.984911i \(-0.555365\pi\)
0.984911 + 0.173060i \(0.0553653\pi\)
\(84\) 0 0
\(85\) −2.26877 + 16.7053i −0.246082 + 1.81194i
\(86\) 1.26298 0.136190
\(87\) −3.59232 3.59232i −0.385137 0.385137i
\(88\) −1.73213 1.73213i −0.184646 0.184646i
\(89\) −16.8162 −1.78251 −0.891255 0.453503i \(-0.850174\pi\)
−0.891255 + 0.453503i \(0.850174\pi\)
\(90\) 0.300921 2.21573i 0.0317199 0.233558i
\(91\) 0 0
\(92\) −5.65016 + 5.65016i −0.589070 + 0.589070i
\(93\) −0.894469 0.894469i −0.0927522 0.0927522i
\(94\) 7.00773 0.722792
\(95\) −0.934530 1.22826i −0.0958807 0.126017i
\(96\) 1.00000i 0.102062i
\(97\) 4.74063 + 4.74063i 0.481338 + 0.481338i 0.905559 0.424221i \(-0.139452\pi\)
−0.424221 + 0.905559i \(0.639452\pi\)
\(98\) 0 0
\(99\) 2.44960i 0.246194i
\(100\) 4.81889 + 1.33352i 0.481889 + 0.133352i
\(101\) 18.8914i 1.87977i 0.341494 + 0.939884i \(0.389067\pi\)
−0.341494 + 0.939884i \(0.610933\pi\)
\(102\) −5.33117 + 5.33117i −0.527864 + 0.527864i
\(103\) −6.84553 + 6.84553i −0.674510 + 0.674510i −0.958752 0.284242i \(-0.908258\pi\)
0.284242 + 0.958752i \(0.408258\pi\)
\(104\) −1.81833 −0.178302
\(105\) 0 0
\(106\) 9.53683 0.926299
\(107\) 10.7995 10.7995i 1.04402 1.04402i 0.0450393 0.998985i \(-0.485659\pi\)
0.998985 0.0450393i \(-0.0143413\pi\)
\(108\) 0.707107 0.707107i 0.0680414 0.0680414i
\(109\) 0.964378i 0.0923706i 0.998933 + 0.0461853i \(0.0147065\pi\)
−0.998933 + 0.0461853i \(0.985294\pi\)
\(110\) 5.42765 + 0.737137i 0.517506 + 0.0702832i
\(111\) 10.1261i 0.961124i
\(112\) 0 0
\(113\) −10.0903 10.0903i −0.949215 0.949215i 0.0495565 0.998771i \(-0.484219\pi\)
−0.998771 + 0.0495565i \(0.984219\pi\)
\(114\) 0.690213i 0.0646444i
\(115\) 2.40452 17.7048i 0.224223 1.65098i
\(116\) 5.08030 0.471694
\(117\) −1.28575 1.28575i −0.118868 0.118868i
\(118\) 5.70194 5.70194i 0.524906 0.524906i
\(119\) 0 0
\(120\) 1.35397 + 1.77954i 0.123600 + 0.162449i
\(121\) −4.99945 −0.454496
\(122\) 0.776251 + 0.776251i 0.0702785 + 0.0702785i
\(123\) −0.818802 0.818802i −0.0738289 0.0738289i
\(124\) 1.26497 0.113598
\(125\) −10.3810 + 4.15160i −0.928501 + 0.371330i
\(126\) 0 0
\(127\) 5.47457 5.47457i 0.485790 0.485790i −0.421185 0.906975i \(-0.638386\pi\)
0.906975 + 0.421185i \(0.138386\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) −1.26298 −0.111199
\(130\) 3.23579 2.46197i 0.283797 0.215929i
\(131\) 5.14115i 0.449185i −0.974453 0.224592i \(-0.927895\pi\)
0.974453 0.224592i \(-0.0721050\pi\)
\(132\) 1.73213 + 1.73213i 0.150763 + 0.150763i
\(133\) 0 0
\(134\) 10.4852i 0.905782i
\(135\) −0.300921 + 2.21573i −0.0258992 + 0.190699i
\(136\) 7.53941i 0.646499i
\(137\) 16.2051 16.2051i 1.38450 1.38450i 0.548058 0.836440i \(-0.315367\pi\)
0.836440 0.548058i \(-0.184633\pi\)
\(138\) 5.65016 5.65016i 0.480974 0.480974i
\(139\) −5.66867 −0.480810 −0.240405 0.970673i \(-0.577280\pi\)
−0.240405 + 0.970673i \(0.577280\pi\)
\(140\) 0 0
\(141\) −7.00773 −0.590157
\(142\) 2.99873 2.99873i 0.251648 0.251648i
\(143\) 3.14958 3.14958i 0.263381 0.263381i
\(144\) 1.00000i 0.0833333i
\(145\) −9.04059 + 6.87859i −0.750780 + 0.571236i
\(146\) 6.48846i 0.536989i
\(147\) 0 0
\(148\) −7.16021 7.16021i −0.588566 0.588566i
\(149\) 11.6944i 0.958045i −0.877803 0.479022i \(-0.840991\pi\)
0.877803 0.479022i \(-0.159009\pi\)
\(150\) −4.81889 1.33352i −0.393461 0.108881i
\(151\) 16.6297 1.35331 0.676654 0.736302i \(-0.263430\pi\)
0.676654 + 0.736302i \(0.263430\pi\)
\(152\) 0.488054 + 0.488054i 0.0395864 + 0.0395864i
\(153\) 5.33117 5.33117i 0.431000 0.431000i
\(154\) 0 0
\(155\) −2.25106 + 1.71274i −0.180810 + 0.137570i
\(156\) 1.81833 0.145583
\(157\) −5.17869 5.17869i −0.413304 0.413304i 0.469584 0.882888i \(-0.344404\pi\)
−0.882888 + 0.469584i \(0.844404\pi\)
\(158\) 1.63851 + 1.63851i 0.130353 + 0.130353i
\(159\) −9.53683 −0.756320
\(160\) −2.21573 0.300921i −0.175169 0.0237899i
\(161\) 0 0
\(162\) −0.707107 + 0.707107i −0.0555556 + 0.0555556i
\(163\) −7.70934 7.70934i −0.603842 0.603842i 0.337488 0.941330i \(-0.390423\pi\)
−0.941330 + 0.337488i \(0.890423\pi\)
\(164\) 1.15796 0.0904216
\(165\) −5.42765 0.737137i −0.422542 0.0573860i
\(166\) 10.4600i 0.811852i
\(167\) −10.3891 10.3891i −0.803931 0.803931i 0.179777 0.983707i \(-0.442463\pi\)
−0.983707 + 0.179777i \(0.942463\pi\)
\(168\) 0 0
\(169\) 9.69368i 0.745668i
\(170\) 10.2082 + 13.4167i 0.782930 + 1.02901i
\(171\) 0.690213i 0.0527819i
\(172\) 0.893060 0.893060i 0.0680952 0.0680952i
\(173\) −1.60887 + 1.60887i −0.122320 + 0.122320i −0.765617 0.643297i \(-0.777566\pi\)
0.643297 + 0.765617i \(0.277566\pi\)
\(174\) −5.08030 −0.385137
\(175\) 0 0
\(176\) −2.44960 −0.184646
\(177\) −5.70194 + 5.70194i −0.428584 + 0.428584i
\(178\) −11.8908 + 11.8908i −0.891255 + 0.891255i
\(179\) 9.60469i 0.717888i −0.933359 0.358944i \(-0.883137\pi\)
0.933359 0.358944i \(-0.116863\pi\)
\(180\) −1.35397 1.77954i −0.100919 0.132639i
\(181\) 6.19591i 0.460539i 0.973127 + 0.230269i \(0.0739607\pi\)
−0.973127 + 0.230269i \(0.926039\pi\)
\(182\) 0 0
\(183\) −0.776251 0.776251i −0.0573821 0.0573821i
\(184\) 7.99053i 0.589070i
\(185\) 22.4366 + 3.04715i 1.64957 + 0.224031i
\(186\) −1.26497 −0.0927522
\(187\) 13.0592 + 13.0592i 0.954986 + 0.954986i
\(188\) 4.95521 4.95521i 0.361396 0.361396i
\(189\) 0 0
\(190\) −1.52932 0.207700i −0.110949 0.0150681i
\(191\) −6.57026 −0.475408 −0.237704 0.971338i \(-0.576395\pi\)
−0.237704 + 0.971338i \(0.576395\pi\)
\(192\) −0.707107 0.707107i −0.0510310 0.0510310i
\(193\) 0.214493 + 0.214493i 0.0154395 + 0.0154395i 0.714784 0.699345i \(-0.246525\pi\)
−0.699345 + 0.714784i \(0.746525\pi\)
\(194\) 6.70426 0.481338
\(195\) −3.23579 + 2.46197i −0.231719 + 0.176305i
\(196\) 0 0
\(197\) 1.65688 1.65688i 0.118048 0.118048i −0.645615 0.763663i \(-0.723399\pi\)
0.763663 + 0.645615i \(0.223399\pi\)
\(198\) −1.73213 1.73213i −0.123097 0.123097i
\(199\) −19.6397 −1.39222 −0.696110 0.717935i \(-0.745087\pi\)
−0.696110 + 0.717935i \(0.745087\pi\)
\(200\) 4.35041 2.46453i 0.307621 0.174269i
\(201\) 10.4852i 0.739568i
\(202\) 13.3583 + 13.3583i 0.939884 + 0.939884i
\(203\) 0 0
\(204\) 7.53941i 0.527864i
\(205\) −2.06064 + 1.56785i −0.143921 + 0.109503i
\(206\) 9.68104i 0.674510i
\(207\) −5.65016 + 5.65016i −0.392713 + 0.392713i
\(208\) −1.28575 + 1.28575i −0.0891509 + 0.0891509i
\(209\) −1.69075 −0.116951
\(210\) 0 0
\(211\) −1.71203 −0.117861 −0.0589306 0.998262i \(-0.518769\pi\)
−0.0589306 + 0.998262i \(0.518769\pi\)
\(212\) 6.74356 6.74356i 0.463149 0.463149i
\(213\) −2.99873 + 2.99873i −0.205470 + 0.205470i
\(214\) 15.2728i 1.04402i
\(215\) −0.380057 + 2.79841i −0.0259196 + 0.190850i
\(216\) 1.00000i 0.0680414i
\(217\) 0 0
\(218\) 0.681918 + 0.681918i 0.0461853 + 0.0461853i
\(219\) 6.48846i 0.438450i
\(220\) 4.35916 3.31669i 0.293895 0.223611i
\(221\) 13.7091 0.922176
\(222\) 7.16021 + 7.16021i 0.480562 + 0.480562i
\(223\) −19.7204 + 19.7204i −1.32058 + 1.32058i −0.407270 + 0.913308i \(0.633519\pi\)
−0.913308 + 0.407270i \(0.866481\pi\)
\(224\) 0 0
\(225\) 4.81889 + 1.33352i 0.321260 + 0.0889012i
\(226\) −14.2698 −0.949215
\(227\) −19.7598 19.7598i −1.31150 1.31150i −0.920308 0.391195i \(-0.872062\pi\)
−0.391195 0.920308i \(-0.627938\pi\)
\(228\) −0.488054 0.488054i −0.0323222 0.0323222i
\(229\) −2.04335 −0.135029 −0.0675143 0.997718i \(-0.521507\pi\)
−0.0675143 + 0.997718i \(0.521507\pi\)
\(230\) −10.8190 14.2195i −0.713381 0.937604i
\(231\) 0 0
\(232\) 3.59232 3.59232i 0.235847 0.235847i
\(233\) −2.26245 2.26245i −0.148218 0.148218i 0.629104 0.777321i \(-0.283422\pi\)
−0.777321 + 0.629104i \(0.783422\pi\)
\(234\) −1.81833 −0.118868
\(235\) −2.10877 + 15.5272i −0.137561 + 1.01288i
\(236\) 8.06376i 0.524906i
\(237\) −1.63851 1.63851i −0.106433 0.106433i
\(238\) 0 0
\(239\) 19.7009i 1.27434i −0.770721 0.637172i \(-0.780104\pi\)
0.770721 0.637172i \(-0.219896\pi\)
\(240\) 2.21573 + 0.300921i 0.143025 + 0.0194244i
\(241\) 6.04502i 0.389394i −0.980863 0.194697i \(-0.937628\pi\)
0.980863 0.194697i \(-0.0623723\pi\)
\(242\) −3.53515 + 3.53515i −0.227248 + 0.227248i
\(243\) 0.707107 0.707107i 0.0453609 0.0453609i
\(244\) 1.09779 0.0702785
\(245\) 0 0
\(246\) −1.15796 −0.0738289
\(247\) −0.887443 + 0.887443i −0.0564667 + 0.0564667i
\(248\) 0.894469 0.894469i 0.0567989 0.0567989i
\(249\) 10.4600i 0.662874i
\(250\) −4.40482 + 10.2761i −0.278585 + 0.649916i
\(251\) 12.7796i 0.806644i −0.915058 0.403322i \(-0.867855\pi\)
0.915058 0.403322i \(-0.132145\pi\)
\(252\) 0 0
\(253\) −13.8406 13.8406i −0.870153 0.870153i
\(254\) 7.74221i 0.485790i
\(255\) −10.2082 13.4167i −0.639260 0.840185i
\(256\) 1.00000 0.0625000
\(257\) 13.3999 + 13.3999i 0.835861 + 0.835861i 0.988311 0.152450i \(-0.0487163\pi\)
−0.152450 + 0.988311i \(0.548716\pi\)
\(258\) −0.893060 + 0.893060i −0.0555995 + 0.0555995i
\(259\) 0 0
\(260\) 0.547173 4.02892i 0.0339342 0.249863i
\(261\) 5.08030 0.314463
\(262\) −3.63534 3.63534i −0.224592 0.224592i
\(263\) −12.2716 12.2716i −0.756697 0.756697i 0.219023 0.975720i \(-0.429713\pi\)
−0.975720 + 0.219023i \(0.929713\pi\)
\(264\) 2.44960 0.150763
\(265\) −2.86983 + 21.1310i −0.176292 + 1.29807i
\(266\) 0 0
\(267\) 11.8908 11.8908i 0.727706 0.727706i
\(268\) 7.41414 + 7.41414i 0.452891 + 0.452891i
\(269\) −16.3231 −0.995235 −0.497617 0.867397i \(-0.665792\pi\)
−0.497617 + 0.867397i \(0.665792\pi\)
\(270\) 1.35397 + 1.77954i 0.0824001 + 0.108299i
\(271\) 17.1242i 1.04022i −0.854098 0.520112i \(-0.825890\pi\)
0.854098 0.520112i \(-0.174110\pi\)
\(272\) −5.33117 5.33117i −0.323250 0.323250i
\(273\) 0 0
\(274\) 22.9175i 1.38450i
\(275\) −3.26659 + 11.8044i −0.196983 + 0.711830i
\(276\) 7.99053i 0.480974i
\(277\) −19.7015 + 19.7015i −1.18375 + 1.18375i −0.204985 + 0.978765i \(0.565714\pi\)
−0.978765 + 0.204985i \(0.934286\pi\)
\(278\) −4.00836 + 4.00836i −0.240405 + 0.240405i
\(279\) 1.26497 0.0757318
\(280\) 0 0
\(281\) −11.2741 −0.672559 −0.336279 0.941762i \(-0.609169\pi\)
−0.336279 + 0.941762i \(0.609169\pi\)
\(282\) −4.95521 + 4.95521i −0.295079 + 0.295079i
\(283\) −18.4416 + 18.4416i −1.09624 + 1.09624i −0.101395 + 0.994846i \(0.532330\pi\)
−0.994846 + 0.101395i \(0.967670\pi\)
\(284\) 4.24084i 0.251648i
\(285\) 1.52932 + 0.207700i 0.0905893 + 0.0123031i
\(286\) 4.45418i 0.263381i
\(287\) 0 0
\(288\) 0.707107 + 0.707107i 0.0416667 + 0.0416667i
\(289\) 39.8427i 2.34369i
\(290\) −1.52877 + 11.2566i −0.0897724 + 0.661008i
\(291\) −6.70426 −0.393011
\(292\) −4.58803 4.58803i −0.268494 0.268494i
\(293\) 1.48873 1.48873i 0.0869726 0.0869726i −0.662282 0.749255i \(-0.730412\pi\)
0.749255 + 0.662282i \(0.230412\pi\)
\(294\) 0 0
\(295\) 10.9181 + 14.3498i 0.635676 + 0.835476i
\(296\) −10.1261 −0.588566
\(297\) 1.73213 + 1.73213i 0.100508 + 0.100508i
\(298\) −8.26921 8.26921i −0.479022 0.479022i
\(299\) −14.5294 −0.840257
\(300\) −4.35041 + 2.46453i −0.251171 + 0.142290i
\(301\) 0 0
\(302\) 11.7590 11.7590i 0.676654 0.676654i
\(303\) −13.3583 13.3583i −0.767412 0.767412i
\(304\) 0.690213 0.0395864
\(305\) −1.95355 + 1.48637i −0.111860 + 0.0851093i
\(306\) 7.53941i 0.431000i
\(307\) −22.1348 22.1348i −1.26330 1.26330i −0.949483 0.313818i \(-0.898392\pi\)
−0.313818 0.949483i \(-0.601608\pi\)
\(308\) 0 0
\(309\) 9.68104i 0.550735i
\(310\) −0.380656 + 2.80283i −0.0216198 + 0.159190i
\(311\) 29.4930i 1.67239i 0.548429 + 0.836197i \(0.315226\pi\)
−0.548429 + 0.836197i \(0.684774\pi\)
\(312\) 1.28575 1.28575i 0.0727914 0.0727914i
\(313\) 22.8714 22.8714i 1.29277 1.29277i 0.359701 0.933068i \(-0.382879\pi\)
0.933068 0.359701i \(-0.117121\pi\)
\(314\) −7.32377 −0.413304
\(315\) 0 0
\(316\) 2.31721 0.130353
\(317\) 16.8344 16.8344i 0.945514 0.945514i −0.0530763 0.998590i \(-0.516903\pi\)
0.998590 + 0.0530763i \(0.0169026\pi\)
\(318\) −6.74356 + 6.74356i −0.378160 + 0.378160i
\(319\) 12.4447i 0.696770i
\(320\) −1.77954 + 1.35397i −0.0994793 + 0.0756894i
\(321\) 15.2728i 0.852442i
\(322\) 0 0
\(323\) −3.67964 3.67964i −0.204741 0.204741i
\(324\) 1.00000i 0.0555556i
\(325\) 4.48133 + 7.91048i 0.248579 + 0.438794i
\(326\) −10.9027 −0.603842
\(327\) −0.681918 0.681918i −0.0377101 0.0377101i
\(328\) 0.818802 0.818802i 0.0452108 0.0452108i
\(329\) 0 0
\(330\) −4.35916 + 3.31669i −0.239964 + 0.182578i
\(331\) −29.1019 −1.59958 −0.799792 0.600277i \(-0.795057\pi\)
−0.799792 + 0.600277i \(0.795057\pi\)
\(332\) −7.39632 7.39632i −0.405926 0.405926i
\(333\) −7.16021 7.16021i −0.392377 0.392377i
\(334\) −14.6924 −0.803931
\(335\) −23.2323 3.15521i −1.26932 0.172388i
\(336\) 0 0
\(337\) −5.11616 + 5.11616i −0.278695 + 0.278695i −0.832588 0.553893i \(-0.813142\pi\)
0.553893 + 0.832588i \(0.313142\pi\)
\(338\) 6.85447 + 6.85447i 0.372834 + 0.372834i
\(339\) 14.2698 0.775031
\(340\) 16.7053 + 2.26877i 0.905971 + 0.123041i
\(341\) 3.09867i 0.167803i
\(342\) 0.488054 + 0.488054i 0.0263910 + 0.0263910i
\(343\) 0 0
\(344\) 1.26298i 0.0680952i
\(345\) 10.8190 + 14.2195i 0.582473 + 0.765550i
\(346\) 2.27529i 0.122320i
\(347\) 25.1758 25.1758i 1.35151 1.35151i 0.467530 0.883977i \(-0.345144\pi\)
0.883977 0.467530i \(-0.154856\pi\)
\(348\) −3.59232 + 3.59232i −0.192568 + 0.192568i
\(349\) −8.57090 −0.458790 −0.229395 0.973333i \(-0.573675\pi\)
−0.229395 + 0.973333i \(0.573675\pi\)
\(350\) 0 0
\(351\) 1.81833 0.0970552
\(352\) −1.73213 + 1.73213i −0.0923228 + 0.0923228i
\(353\) 11.7033 11.7033i 0.622903 0.622903i −0.323370 0.946273i \(-0.604816\pi\)
0.946273 + 0.323370i \(0.104816\pi\)
\(354\) 8.06376i 0.428584i
\(355\) 5.74199 + 7.54675i 0.304753 + 0.400540i
\(356\) 16.8162i 0.891255i
\(357\) 0 0
\(358\) −6.79154 6.79154i −0.358944 0.358944i
\(359\) 34.1296i 1.80129i 0.434553 + 0.900646i \(0.356906\pi\)
−0.434553 + 0.900646i \(0.643094\pi\)
\(360\) −2.21573 0.300921i −0.116779 0.0158599i
\(361\) −18.5236 −0.974927
\(362\) 4.38117 + 4.38117i 0.230269 + 0.230269i
\(363\) 3.53515 3.53515i 0.185547 0.185547i
\(364\) 0 0
\(365\) 14.3767 + 1.95251i 0.752509 + 0.102199i
\(366\) −1.09779 −0.0573821
\(367\) −4.69129 4.69129i −0.244883 0.244883i 0.573983 0.818867i \(-0.305397\pi\)
−0.818867 + 0.573983i \(0.805397\pi\)
\(368\) 5.65016 + 5.65016i 0.294535 + 0.294535i
\(369\) 1.15796 0.0602811
\(370\) 18.0197 13.7104i 0.936801 0.712770i
\(371\) 0 0
\(372\) −0.894469 + 0.894469i −0.0463761 + 0.0463761i
\(373\) −14.9324 14.9324i −0.773169 0.773169i 0.205490 0.978659i \(-0.434121\pi\)
−0.978659 + 0.205490i \(0.934121\pi\)
\(374\) 18.4686 0.954986
\(375\) 4.40482 10.2761i 0.227464 0.530654i
\(376\) 7.00773i 0.361396i
\(377\) 6.53201 + 6.53201i 0.336416 + 0.336416i
\(378\) 0 0
\(379\) 18.2436i 0.937112i −0.883434 0.468556i \(-0.844774\pi\)
0.883434 0.468556i \(-0.155226\pi\)
\(380\) −1.22826 + 0.934530i −0.0630085 + 0.0479404i
\(381\) 7.74221i 0.396646i
\(382\) −4.64588 + 4.64588i −0.237704 + 0.237704i
\(383\) 20.2850 20.2850i 1.03652 1.03652i 0.0372095 0.999307i \(-0.488153\pi\)
0.999307 0.0372095i \(-0.0118469\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) 0.303338 0.0154395
\(387\) 0.893060 0.893060i 0.0453968 0.0453968i
\(388\) 4.74063 4.74063i 0.240669 0.240669i
\(389\) 1.87927i 0.0952830i −0.998864 0.0476415i \(-0.984829\pi\)
0.998864 0.0476415i \(-0.0151705\pi\)
\(390\) −0.547173 + 4.02892i −0.0277072 + 0.204012i
\(391\) 60.2439i 3.04667i
\(392\) 0 0
\(393\) 3.63534 + 3.63534i 0.183379 + 0.183379i
\(394\) 2.34319i 0.118048i
\(395\) −4.12356 + 3.13743i −0.207479 + 0.157861i
\(396\) −2.44960 −0.123097
\(397\) 9.50826 + 9.50826i 0.477206 + 0.477206i 0.904237 0.427031i \(-0.140441\pi\)
−0.427031 + 0.904237i \(0.640441\pi\)
\(398\) −13.8873 + 13.8873i −0.696110 + 0.696110i
\(399\) 0 0
\(400\) 1.33352 4.81889i 0.0666759 0.240945i
\(401\) 23.5306 1.17506 0.587531 0.809202i \(-0.300100\pi\)
0.587531 + 0.809202i \(0.300100\pi\)
\(402\) −7.41414 7.41414i −0.369784 0.369784i
\(403\) 1.62644 + 1.62644i 0.0810187 + 0.0810187i
\(404\) 18.8914 0.939884
\(405\) −1.35397 1.77954i −0.0672794 0.0884260i
\(406\) 0 0
\(407\) 17.5397 17.5397i 0.869409 0.869409i
\(408\) 5.33117 + 5.33117i 0.263932 + 0.263932i
\(409\) 10.3255 0.510561 0.255281 0.966867i \(-0.417832\pi\)
0.255281 + 0.966867i \(0.417832\pi\)
\(410\) −0.348455 + 2.56573i −0.0172090 + 0.126712i
\(411\) 22.9175i 1.13044i
\(412\) 6.84553 + 6.84553i 0.337255 + 0.337255i
\(413\) 0 0
\(414\) 7.99053i 0.392713i
\(415\) 23.1765 + 3.14763i 1.13769 + 0.154511i
\(416\) 1.81833i 0.0891509i
\(417\) 4.00836 4.00836i 0.196290 0.196290i
\(418\) −1.19554 + 1.19554i −0.0584757 + 0.0584757i
\(419\) −13.4099 −0.655115 −0.327557 0.944831i \(-0.606225\pi\)
−0.327557 + 0.944831i \(0.606225\pi\)
\(420\) 0 0
\(421\) 20.8227 1.01484 0.507419 0.861699i \(-0.330600\pi\)
0.507419 + 0.861699i \(0.330600\pi\)
\(422\) −1.21059 + 1.21059i −0.0589306 + 0.0589306i
\(423\) 4.95521 4.95521i 0.240931 0.240931i
\(424\) 9.53683i 0.463149i
\(425\) −32.7995 + 18.5811i −1.59101 + 0.901317i
\(426\) 4.24084i 0.205470i
\(427\) 0 0
\(428\) −10.7995 10.7995i −0.522012 0.522012i
\(429\) 4.45418i 0.215050i
\(430\) 1.71004 + 2.24752i 0.0824653 + 0.108385i
\(431\) 6.90210 0.332462 0.166231 0.986087i \(-0.446840\pi\)
0.166231 + 0.986087i \(0.446840\pi\)
\(432\) −0.707107 0.707107i −0.0340207 0.0340207i
\(433\) −8.92851 + 8.92851i −0.429077 + 0.429077i −0.888314 0.459237i \(-0.848123\pi\)
0.459237 + 0.888314i \(0.348123\pi\)
\(434\) 0 0
\(435\) 1.52877 11.2566i 0.0732989 0.539711i
\(436\) 0.964378 0.0461853
\(437\) 3.89981 + 3.89981i 0.186553 + 0.186553i
\(438\) 4.58803 + 4.58803i 0.219225 + 0.219225i
\(439\) 25.3064 1.20781 0.603903 0.797058i \(-0.293611\pi\)
0.603903 + 0.797058i \(0.293611\pi\)
\(440\) 0.737137 5.42765i 0.0351416 0.258753i
\(441\) 0 0
\(442\) 9.69382 9.69382i 0.461088 0.461088i
\(443\) 6.31933 + 6.31933i 0.300241 + 0.300241i 0.841108 0.540867i \(-0.181904\pi\)
−0.540867 + 0.841108i \(0.681904\pi\)
\(444\) 10.1261 0.480562
\(445\) −22.7686 29.9250i −1.07934 1.41858i
\(446\) 27.8889i 1.32058i
\(447\) 8.26921 + 8.26921i 0.391120 + 0.391120i
\(448\) 0 0
\(449\) 15.5429i 0.733514i 0.930317 + 0.366757i \(0.119532\pi\)
−0.930317 + 0.366757i \(0.880468\pi\)
\(450\) 4.35041 2.46453i 0.205080 0.116179i
\(451\) 2.83654i 0.133568i
\(452\) −10.0903 + 10.0903i −0.474607 + 0.474607i
\(453\) −11.7590 + 11.7590i −0.552485 + 0.552485i
\(454\) −27.9446 −1.31150
\(455\) 0 0
\(456\) −0.690213 −0.0323222
\(457\) 22.6684 22.6684i 1.06039 1.06039i 0.0623294 0.998056i \(-0.480147\pi\)
0.998056 0.0623294i \(-0.0198529\pi\)
\(458\) −1.44487 + 1.44487i −0.0675143 + 0.0675143i
\(459\) 7.53941i 0.351910i
\(460\) −17.7048 2.40452i −0.825492 0.112111i
\(461\) 11.0867i 0.516361i 0.966097 + 0.258181i \(0.0831229\pi\)
−0.966097 + 0.258181i \(0.916877\pi\)
\(462\) 0 0
\(463\) 7.15110 + 7.15110i 0.332340 + 0.332340i 0.853474 0.521135i \(-0.174491\pi\)
−0.521135 + 0.853474i \(0.674491\pi\)
\(464\) 5.08030i 0.235847i
\(465\) 0.380656 2.80283i 0.0176525 0.129978i
\(466\) −3.19959 −0.148218
\(467\) 1.01418 + 1.01418i 0.0469309 + 0.0469309i 0.730183 0.683252i \(-0.239435\pi\)
−0.683252 + 0.730183i \(0.739435\pi\)
\(468\) −1.28575 + 1.28575i −0.0594339 + 0.0594339i
\(469\) 0 0
\(470\) 9.48827 + 12.4705i 0.437661 + 0.575223i
\(471\) 7.32377 0.337462
\(472\) −5.70194 5.70194i −0.262453 0.262453i
\(473\) 2.18764 + 2.18764i 0.100588 + 0.100588i
\(474\) −2.31721 −0.106433
\(475\) 0.920412 3.32606i 0.0422314 0.152610i
\(476\) 0 0
\(477\) 6.74356 6.74356i 0.308766 0.308766i
\(478\) −13.9306 13.9306i −0.637172 0.637172i
\(479\) −5.61498 −0.256555 −0.128277 0.991738i \(-0.540945\pi\)
−0.128277 + 0.991738i \(0.540945\pi\)
\(480\) 1.77954 1.35397i 0.0812245 0.0618001i
\(481\) 18.4125i 0.839538i
\(482\) −4.27447 4.27447i −0.194697 0.194697i
\(483\) 0 0
\(484\) 4.99945i 0.227248i
\(485\) −2.01745 + 14.8548i −0.0916078 + 0.674522i
\(486\) 1.00000i 0.0453609i
\(487\) 19.7480 19.7480i 0.894867 0.894867i −0.100110 0.994976i \(-0.531919\pi\)
0.994976 + 0.100110i \(0.0319193\pi\)
\(488\) 0.776251 0.776251i 0.0351392 0.0351392i
\(489\) 10.9027 0.493035
\(490\) 0 0
\(491\) −13.7125 −0.618838 −0.309419 0.950926i \(-0.600135\pi\)
−0.309419 + 0.950926i \(0.600135\pi\)
\(492\) −0.818802 + 0.818802i −0.0369145 + 0.0369145i
\(493\) −27.0839 + 27.0839i −1.21980 + 1.21980i
\(494\) 1.25503i 0.0564667i
\(495\) 4.35916 3.31669i 0.195930 0.149074i
\(496\) 1.26497i 0.0567989i
\(497\) 0 0
\(498\) 7.39632 + 7.39632i 0.331437 + 0.331437i
\(499\) 32.2153i 1.44215i 0.692855 + 0.721077i \(0.256352\pi\)
−0.692855 + 0.721077i \(0.743648\pi\)
\(500\) 4.15160 + 10.3810i 0.185665 + 0.464250i
\(501\) 14.6924 0.656407
\(502\) −9.03657 9.03657i −0.403322 0.403322i
\(503\) 10.2179 10.2179i 0.455593 0.455593i −0.441613 0.897206i \(-0.645594\pi\)
0.897206 + 0.441613i \(0.145594\pi\)
\(504\) 0 0
\(505\) −33.6180 + 25.5785i −1.49598 + 1.13823i
\(506\) −19.5736 −0.870153
\(507\) −6.85447 6.85447i −0.304418 0.304418i
\(508\) −5.47457 5.47457i −0.242895 0.242895i
\(509\) −5.73735 −0.254304 −0.127152 0.991883i \(-0.540584\pi\)
−0.127152 + 0.991883i \(0.540584\pi\)
\(510\) −16.7053 2.26877i −0.739722 0.100463i
\(511\) 0 0
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) −0.488054 0.488054i −0.0215481 0.0215481i
\(514\) 18.9503 0.835861
\(515\) −21.4505 2.91323i −0.945224 0.128372i
\(516\) 1.26298i 0.0555995i
\(517\) 12.1383 + 12.1383i 0.533842 + 0.533842i
\(518\) 0 0
\(519\) 2.27529i 0.0998741i
\(520\) −2.46197 3.23579i −0.107964 0.141899i
\(521\) 4.35849i 0.190949i −0.995432 0.0954745i \(-0.969563\pi\)
0.995432 0.0954745i \(-0.0304368\pi\)
\(522\) 3.59232 3.59232i 0.157231 0.157231i
\(523\) −13.8496 + 13.8496i −0.605601 + 0.605601i −0.941793 0.336192i \(-0.890861\pi\)
0.336192 + 0.941793i \(0.390861\pi\)
\(524\) −5.14115 −0.224592
\(525\) 0 0
\(526\) −17.3546 −0.756697
\(527\) −6.74377 + 6.74377i −0.293763 + 0.293763i
\(528\) 1.73213 1.73213i 0.0753813 0.0753813i
\(529\) 40.8486i 1.77603i
\(530\) 12.9126 + 16.9712i 0.560888 + 0.737180i
\(531\) 8.06376i 0.349937i
\(532\) 0 0
\(533\) 1.48885 + 1.48885i 0.0644893 + 0.0644893i
\(534\) 16.8162i 0.727706i
\(535\) 33.8403 + 4.59590i 1.46304 + 0.198698i
\(536\) 10.4852 0.452891
\(537\) 6.79154 + 6.79154i 0.293077 + 0.293077i
\(538\) −11.5422 + 11.5422i −0.497617 + 0.497617i
\(539\) 0 0
\(540\) 2.21573 + 0.300921i 0.0953497 + 0.0129496i
\(541\) −12.1108 −0.520684 −0.260342 0.965516i \(-0.583835\pi\)
−0.260342 + 0.965516i \(0.583835\pi\)
\(542\) −12.1087 12.1087i −0.520112 0.520112i
\(543\) −4.38117 4.38117i −0.188014 0.188014i
\(544\) −7.53941 −0.323250
\(545\) −1.71615 + 1.30574i −0.0735117 + 0.0559318i
\(546\) 0 0
\(547\) −2.16237 + 2.16237i −0.0924565 + 0.0924565i −0.751822 0.659366i \(-0.770825\pi\)
0.659366 + 0.751822i \(0.270825\pi\)
\(548\) −16.2051 16.2051i −0.692249 0.692249i
\(549\) 1.09779 0.0468523
\(550\) 6.03712 + 10.6568i 0.257424 + 0.454406i
\(551\) 3.50649i 0.149382i
\(552\) −5.65016 5.65016i −0.240487 0.240487i
\(553\) 0 0
\(554\) 27.8622i 1.18375i
\(555\) −18.0197 + 13.7104i −0.764895 + 0.581975i
\(556\) 5.66867i 0.240405i
\(557\) −10.0772 + 10.0772i −0.426985 + 0.426985i −0.887600 0.460615i \(-0.847629\pi\)
0.460615 + 0.887600i \(0.347629\pi\)
\(558\) 0.894469 0.894469i 0.0378659 0.0378659i
\(559\) 2.29651 0.0971319
\(560\) 0 0
\(561\) −18.4686 −0.779743
\(562\) −7.97202 + 7.97202i −0.336279 + 0.336279i
\(563\) 20.9737 20.9737i 0.883938 0.883938i −0.109994 0.993932i \(-0.535083\pi\)
0.993932 + 0.109994i \(0.0350832\pi\)
\(564\) 7.00773i 0.295079i
\(565\) 4.29409 31.6180i 0.180654 1.33018i
\(566\) 26.0804i 1.09624i
\(567\) 0 0
\(568\) −2.99873 2.99873i −0.125824 0.125824i
\(569\) 16.7597i 0.702603i −0.936262 0.351301i \(-0.885739\pi\)
0.936262 0.351301i \(-0.114261\pi\)
\(570\) 1.22826 0.934530i 0.0514462 0.0391431i
\(571\) 36.4781 1.52656 0.763280 0.646068i \(-0.223588\pi\)
0.763280 + 0.646068i \(0.223588\pi\)
\(572\) −3.14958 3.14958i −0.131691 0.131691i
\(573\) 4.64588 4.64588i 0.194084 0.194084i
\(574\) 0 0
\(575\) 34.7621 19.6929i 1.44968 0.821252i
\(576\) 1.00000 0.0416667
\(577\) 16.1203 + 16.1203i 0.671098 + 0.671098i 0.957969 0.286871i \(-0.0926152\pi\)
−0.286871 + 0.957969i \(0.592615\pi\)
\(578\) 28.1731 + 28.1731i 1.17185 + 1.17185i
\(579\) −0.303338 −0.0126063
\(580\) 6.87859 + 9.04059i 0.285618 + 0.375390i
\(581\) 0 0
\(582\) −4.74063 + 4.74063i −0.196505 + 0.196505i
\(583\) 16.5190 + 16.5190i 0.684148 + 0.684148i
\(584\) −6.48846 −0.268494
\(585\) 0.547173 4.02892i 0.0226228 0.166575i
\(586\) 2.10538i 0.0869726i
\(587\) 7.12788 + 7.12788i 0.294199 + 0.294199i 0.838737 0.544537i \(-0.183295\pi\)
−0.544537 + 0.838737i \(0.683295\pi\)
\(588\) 0 0
\(589\) 0.873100i 0.0359754i
\(590\) 17.8671 + 2.42655i 0.735576 + 0.0998996i
\(591\) 2.34319i 0.0963859i
\(592\) −7.16021 + 7.16021i −0.294283 + 0.294283i
\(593\) 24.3485 24.3485i 0.999874 0.999874i −0.000126141 1.00000i \(-0.500040\pi\)
1.00000 0.000126141i \(4.01518e-5\pi\)
\(594\) 2.44960 0.100508
\(595\) 0 0
\(596\) −11.6944 −0.479022
\(597\) 13.8873 13.8873i 0.568371 0.568371i
\(598\) −10.2738 + 10.2738i −0.420129 + 0.420129i
\(599\) 10.8206i 0.442117i 0.975261 + 0.221058i \(0.0709511\pi\)
−0.975261 + 0.221058i \(0.929049\pi\)
\(600\) −1.33352 + 4.81889i −0.0544406 + 0.196730i
\(601\) 4.06861i 0.165962i −0.996551 0.0829811i \(-0.973556\pi\)
0.996551 0.0829811i \(-0.0264441\pi\)
\(602\) 0 0
\(603\) 7.41414 + 7.41414i 0.301927 + 0.301927i
\(604\) 16.6297i 0.676654i
\(605\) −6.76912 8.89672i −0.275204 0.361703i
\(606\) −18.8914 −0.767412
\(607\) −12.9641 12.9641i −0.526197 0.526197i 0.393239 0.919436i \(-0.371355\pi\)
−0.919436 + 0.393239i \(0.871355\pi\)
\(608\) 0.488054 0.488054i 0.0197932 0.0197932i
\(609\) 0 0
\(610\) −0.330347 + 2.43239i −0.0133753 + 0.0984847i
\(611\) 12.7424 0.515500
\(612\) −5.33117 5.33117i −0.215500 0.215500i
\(613\) −26.7072 26.7072i −1.07870 1.07870i −0.996627 0.0820683i \(-0.973847\pi\)
−0.0820683 0.996627i \(-0.526153\pi\)
\(614\) −31.3034 −1.26330
\(615\) 0.348455 2.56573i 0.0140511 0.103460i
\(616\) 0 0
\(617\) −10.0471 + 10.0471i −0.404479 + 0.404479i −0.879808 0.475329i \(-0.842329\pi\)
0.475329 + 0.879808i \(0.342329\pi\)
\(618\) −6.84553 6.84553i −0.275368 0.275368i
\(619\) −18.1838 −0.730869 −0.365434 0.930837i \(-0.619079\pi\)
−0.365434 + 0.930837i \(0.619079\pi\)
\(620\) 1.71274 + 2.25106i 0.0687851 + 0.0904049i
\(621\) 7.99053i 0.320649i
\(622\) 20.8547 + 20.8547i 0.836197 + 0.836197i
\(623\) 0 0
\(624\) 1.81833i 0.0727914i
\(625\) −21.4435 12.8522i −0.857738 0.514086i
\(626\) 32.3451i 1.29277i
\(627\) 1.19554 1.19554i 0.0477452 0.0477452i
\(628\) −5.17869 + 5.17869i −0.206652 + 0.206652i
\(629\) 76.3446 3.04406
\(630\) 0 0
\(631\) −27.7104 −1.10314 −0.551568 0.834130i \(-0.685970\pi\)
−0.551568 + 0.834130i \(0.685970\pi\)
\(632\) 1.63851 1.63851i 0.0651765 0.0651765i
\(633\) 1.21059 1.21059i 0.0481166 0.0481166i
\(634\) 23.8074i 0.945514i
\(635\) 17.1546 + 2.32980i 0.680761 + 0.0924551i
\(636\) 9.53683i 0.378160i
\(637\) 0 0
\(638\) 8.79974 + 8.79974i 0.348385 + 0.348385i
\(639\) 4.24084i 0.167765i
\(640\) −0.300921 + 2.21573i −0.0118949 + 0.0875843i
\(641\) −5.23987 −0.206962 −0.103481 0.994631i \(-0.532998\pi\)
−0.103481 + 0.994631i \(0.532998\pi\)
\(642\) 10.7995 + 10.7995i 0.426221 + 0.426221i
\(643\) 12.9239 12.9239i 0.509669 0.509669i −0.404756 0.914425i \(-0.632643\pi\)
0.914425 + 0.404756i \(0.132643\pi\)
\(644\) 0 0
\(645\) −1.71004 2.24752i −0.0673326 0.0884959i
\(646\) −5.20380 −0.204741
\(647\) −30.7971 30.7971i −1.21076 1.21076i −0.970778 0.239979i \(-0.922859\pi\)
−0.239979 0.970778i \(-0.577141\pi\)
\(648\) 0.707107 + 0.707107i 0.0277778 + 0.0277778i
\(649\) 19.7530 0.775372
\(650\) 8.76233 + 2.42477i 0.343687 + 0.0951074i
\(651\) 0 0
\(652\) −7.70934 + 7.70934i −0.301921 + 0.301921i
\(653\) −20.7989 20.7989i −0.813925 0.813925i 0.171295 0.985220i \(-0.445205\pi\)
−0.985220 + 0.171295i \(0.945205\pi\)
\(654\) −0.964378 −0.0377101
\(655\) 9.14888 6.96098i 0.357476 0.271988i
\(656\) 1.15796i 0.0452108i
\(657\) −4.58803 4.58803i −0.178996 0.178996i
\(658\) 0 0
\(659\) 43.4005i 1.69064i 0.534258 + 0.845321i \(0.320591\pi\)
−0.534258 + 0.845321i \(0.679409\pi\)
\(660\) −0.737137 + 5.42765i −0.0286930 + 0.211271i
\(661\) 30.7709i 1.19685i −0.801179 0.598425i \(-0.795793\pi\)
0.801179 0.598425i \(-0.204207\pi\)
\(662\) −20.5781 + 20.5781i −0.799792 + 0.799792i
\(663\) −9.69382 + 9.69382i −0.376477 + 0.376477i
\(664\) −10.4600 −0.405926
\(665\) 0 0
\(666\) −10.1261 −0.392377
\(667\) 28.7045 28.7045i 1.11144 1.11144i
\(668\) −10.3891 + 10.3891i −0.401965 + 0.401965i
\(669\) 27.8889i 1.07825i
\(670\) −18.6588 + 14.1966i −0.720852 + 0.548464i
\(671\) 2.68914i 0.103813i
\(672\) 0 0
\(673\) 10.5593 + 10.5593i 0.407032 + 0.407032i 0.880702 0.473670i \(-0.157071\pi\)
−0.473670 + 0.880702i \(0.657071\pi\)
\(674\) 7.23534i 0.278695i
\(675\) −4.35041 + 2.46453i −0.167447 + 0.0948599i
\(676\) 9.69368 0.372834
\(677\) −10.3276 10.3276i −0.396922 0.396922i 0.480224 0.877146i \(-0.340555\pi\)
−0.877146 + 0.480224i \(0.840555\pi\)
\(678\) 10.0903 10.0903i 0.387515 0.387515i
\(679\) 0 0
\(680\) 13.4167 10.2082i 0.514506 0.391465i
\(681\) 27.9446 1.07084
\(682\) 2.19109 + 2.19109i 0.0839013 + 0.0839013i
\(683\) −1.17090 1.17090i −0.0448034 0.0448034i 0.684350 0.729154i \(-0.260086\pi\)
−0.729154 + 0.684350i \(0.760086\pi\)
\(684\) 0.690213 0.0263910
\(685\) 50.7790 + 6.89637i 1.94017 + 0.263497i
\(686\) 0 0
\(687\) 1.44487 1.44487i 0.0551252 0.0551252i
\(688\) −0.893060 0.893060i −0.0340476 0.0340476i
\(689\) 17.3411 0.660643
\(690\) 17.7048 + 2.40452i 0.674012 + 0.0915385i
\(691\) 7.91595i 0.301137i 0.988600 + 0.150569i \(0.0481104\pi\)
−0.988600 + 0.150569i \(0.951890\pi\)
\(692\) 1.60887 + 1.60887i 0.0611602 + 0.0611602i
\(693\) 0 0
\(694\) 35.6039i 1.35151i
\(695\) −7.67522 10.0876i −0.291138 0.382645i
\(696\) 5.08030i 0.192568i
\(697\) −6.17329 + 6.17329i −0.233830 + 0.233830i
\(698\) −6.06054 + 6.06054i −0.229395 + 0.229395i
\(699\) 3.19959 0.121019
\(700\) 0 0
\(701\) −32.9545 −1.24467 −0.622337 0.782750i \(-0.713816\pi\)
−0.622337 + 0.782750i \(0.713816\pi\)
\(702\) 1.28575 1.28575i 0.0485276 0.0485276i
\(703\) −4.94207 + 4.94207i −0.186394 + 0.186394i
\(704\) 2.44960i 0.0923228i
\(705\) −9.48827 12.4705i −0.357349 0.469667i
\(706\) 16.5509i 0.622903i
\(707\) 0 0
\(708\) 5.70194 + 5.70194i 0.214292 + 0.214292i
\(709\) 21.6205i 0.811974i −0.913879 0.405987i \(-0.866928\pi\)
0.913879 0.405987i \(-0.133072\pi\)
\(710\) 9.39655 + 1.27616i 0.352646 + 0.0478934i
\(711\) 2.31721 0.0869020
\(712\) 11.8908 + 11.8908i 0.445627 + 0.445627i
\(713\) 7.14729 7.14729i 0.267668 0.267668i
\(714\) 0 0
\(715\) 9.86925 + 1.34036i 0.369089 + 0.0501265i
\(716\) −9.60469 −0.358944
\(717\) 13.9306 + 13.9306i 0.520249 + 0.520249i
\(718\) 24.1333 + 24.1333i 0.900646 + 0.900646i
\(719\) −9.49541 −0.354119 −0.177060 0.984200i \(-0.556659\pi\)
−0.177060 + 0.984200i \(0.556659\pi\)
\(720\) −1.77954 + 1.35397i −0.0663195 + 0.0504596i
\(721\) 0 0
\(722\) −13.0982 + 13.0982i −0.487463 + 0.487463i
\(723\) 4.27447 + 4.27447i 0.158969 + 0.158969i
\(724\) 6.19591 0.230269
\(725\) −24.4814 6.77467i −0.909217 0.251605i
\(726\) 4.99945i 0.185547i
\(727\) 3.23075 + 3.23075i 0.119822 + 0.119822i 0.764475 0.644653i \(-0.222998\pi\)
−0.644653 + 0.764475i \(0.722998\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 11.5465 8.78520i 0.427354 0.325155i
\(731\) 9.52211i 0.352188i
\(732\) −0.776251 + 0.776251i −0.0286911 + 0.0286911i
\(733\) 15.1024 15.1024i 0.557820 0.557820i −0.370866 0.928686i \(-0.620939\pi\)
0.928686 + 0.370866i \(0.120939\pi\)
\(734\) −6.63449 −0.244883
\(735\) 0 0
\(736\) 7.99053 0.294535
\(737\) −18.1617 + 18.1617i −0.668995 + 0.668995i
\(738\) 0.818802 0.818802i 0.0301405 0.0301405i
\(739\) 7.42649i 0.273188i −0.990627 0.136594i \(-0.956384\pi\)
0.990627 0.136594i \(-0.0436155\pi\)
\(740\) 3.04715 22.4366i 0.112015 0.824786i
\(741\) 1.25503i 0.0461048i
\(742\) 0 0
\(743\) 14.3245 + 14.3245i 0.525515 + 0.525515i 0.919232 0.393717i \(-0.128811\pi\)
−0.393717 + 0.919232i \(0.628811\pi\)
\(744\) 1.26497i 0.0463761i
\(745\) 20.8107 15.8339i 0.762444 0.580110i
\(746\) −21.1176 −0.773169
\(747\) −7.39632 7.39632i −0.270617 0.270617i
\(748\) 13.0592 13.0592i 0.477493 0.477493i
\(749\) 0 0
\(750\) −4.15160 10.3810i −0.151595 0.379059i
\(751\) −35.9783 −1.31287 −0.656433 0.754384i \(-0.727936\pi\)
−0.656433 + 0.754384i \(0.727936\pi\)
\(752\) −4.95521 4.95521i −0.180698 0.180698i
\(753\) 9.03657 + 9.03657i 0.329311 + 0.329311i
\(754\) 9.23765 0.336416
\(755\) 22.5162 + 29.5932i 0.819447 + 1.07701i
\(756\) 0 0
\(757\) −10.7626 + 10.7626i −0.391172 + 0.391172i −0.875105 0.483933i \(-0.839208\pi\)
0.483933 + 0.875105i \(0.339208\pi\)
\(758\) −12.9002 12.9002i −0.468556 0.468556i
\(759\) 19.5736 0.710477
\(760\) −0.207700 + 1.52932i −0.00753406 + 0.0554744i
\(761\) 23.9419i 0.867891i −0.900939 0.433946i \(-0.857121\pi\)
0.900939 0.433946i \(-0.142879\pi\)
\(762\) 5.47457 + 5.47457i 0.198323 + 0.198323i
\(763\) 0 0
\(764\) 6.57026i 0.237704i
\(765\) 16.7053 + 2.26877i 0.603981 + 0.0820275i
\(766\) 28.6874i 1.03652i
\(767\) 10.3680 10.3680i 0.374366 0.374366i
\(768\) −0.707107 + 0.707107i −0.0255155 + 0.0255155i
\(769\) −4.82317 −0.173928 −0.0869639 0.996211i \(-0.527716\pi\)
−0.0869639 + 0.996211i \(0.527716\pi\)
\(770\) 0 0
\(771\) −18.9503 −0.682478
\(772\) 0.214493 0.214493i 0.00771976 0.00771976i
\(773\) −26.8007 + 26.8007i −0.963953 + 0.963953i −0.999373 0.0354198i \(-0.988723\pi\)
0.0354198 + 0.999373i \(0.488723\pi\)
\(774\) 1.26298i 0.0453968i
\(775\) −6.09576 1.68686i −0.218966 0.0605938i
\(776\) 6.70426i 0.240669i
\(777\) 0 0
\(778\) −1.32885 1.32885i −0.0476415 0.0476415i
\(779\) 0.799240i 0.0286358i
\(780\) 2.46197 + 3.23579i 0.0881525 + 0.115860i
\(781\) 10.3884 0.371725
\(782\) −42.5989 42.5989i −1.52333 1.52333i
\(783\) −3.59232 + 3.59232i −0.128379 + 0.128379i
\(784\) 0 0
\(785\) 2.20388 16.2275i 0.0786598 0.579184i
\(786\) 5.14115 0.183379
\(787\) 10.8448 + 10.8448i 0.386574 + 0.386574i 0.873463 0.486890i \(-0.161869\pi\)
−0.486890 + 0.873463i \(0.661869\pi\)
\(788\) −1.65688 1.65688i −0.0590240 0.0590240i
\(789\) 17.3546 0.617840
\(790\) −0.697296 + 5.13429i −0.0248087 + 0.182670i
\(791\) 0 0
\(792\) −1.73213 + 1.73213i −0.0615485 + 0.0615485i
\(793\) 1.41148 + 1.41148i 0.0501231 + 0.0501231i
\(794\) 13.4467 0.477206
\(795\) −12.9126 16.9712i −0.457963 0.601905i
\(796\) 19.6397i 0.696110i
\(797\) 16.6466 + 16.6466i 0.589653 + 0.589653i 0.937538 0.347884i \(-0.113100\pi\)
−0.347884 + 0.937538i \(0.613100\pi\)
\(798\) 0 0
\(799\) 52.8342i 1.86914i
\(800\) −2.46453 4.35041i −0.0871344 0.153810i
\(801\) 16.8162i 0.594170i
\(802\) 16.6386 16.6386i 0.587531 0.587531i
\(803\) 11.2389 11.2389i 0.396611 0.396611i
\(804\) −10.4852 −0.369784
\(805\) 0 0
\(806\) 2.30013 0.0810187
\(807\) 11.5422 11.5422i 0.406303 0.406303i
\(808\) 13.3583 13.3583i 0.469942 0.469942i
\(809\) 46.0937i 1.62057i 0.586036 + 0.810285i \(0.300688\pi\)
−0.586036 + 0.810285i \(0.699312\pi\)
\(810\) −2.21573 0.300921i −0.0778527 0.0105733i
\(811\) 51.4810i 1.80774i −0.427805 0.903871i \(-0.640713\pi\)
0.427805 0.903871i \(-0.359287\pi\)
\(812\) 0 0
\(813\) 12.1087 + 12.1087i 0.424670 + 0.424670i
\(814\) 24.8048i 0.869409i
\(815\) 3.28084 24.1573i 0.114923 0.846193i
\(816\) 7.53941 0.263932
\(817\) −0.616402 0.616402i −0.0215652 0.0215652i
\(818\) 7.30120 7.30120i 0.255281 0.255281i
\(819\) 0 0
\(820\) 1.56785 + 2.06064i 0.0547516 + 0.0719606i
\(821\) 35.1335 1.22617 0.613083 0.790018i \(-0.289929\pi\)
0.613083 + 0.790018i \(0.289929\pi\)
\(822\) 16.2051 + 16.2051i 0.565219 + 0.565219i
\(823\) 21.7533 + 21.7533i 0.758272 + 0.758272i 0.976008 0.217736i \(-0.0698671\pi\)
−0.217736 + 0.976008i \(0.569867\pi\)
\(824\) 9.68104 0.337255
\(825\) −6.03712 10.6568i −0.210186 0.371021i
\(826\) 0 0
\(827\) −1.51688 + 1.51688i −0.0527471 + 0.0527471i −0.732988 0.680241i \(-0.761875\pi\)
0.680241 + 0.732988i \(0.261875\pi\)
\(828\) 5.65016 + 5.65016i 0.196357 + 0.196357i
\(829\) −16.8789 −0.586227 −0.293114 0.956078i \(-0.594691\pi\)
−0.293114 + 0.956078i \(0.594691\pi\)
\(830\) 18.6139 14.1625i 0.646099 0.491588i
\(831\) 27.8622i 0.966528i
\(832\) 1.28575 + 1.28575i 0.0445754 + 0.0445754i
\(833\) 0 0
\(834\) 5.66867i 0.196290i
\(835\) 4.42125 32.5543i 0.153003 1.12659i
\(836\) 1.69075i 0.0584757i
\(837\) −0.894469 + 0.894469i −0.0309174 + 0.0309174i
\(838\) −9.48221 + 9.48221i −0.327557 + 0.327557i
\(839\) 21.1069 0.728691 0.364346 0.931264i \(-0.381293\pi\)
0.364346 + 0.931264i \(0.381293\pi\)
\(840\) 0 0
\(841\) 3.19054 0.110019
\(842\) 14.7239 14.7239i 0.507419 0.507419i
\(843\) 7.97202 7.97202i 0.274571 0.274571i
\(844\) 1.71203i 0.0589306i
\(845\) −17.2503 + 13.1250i −0.593428 + 0.451513i
\(846\) 7.00773i 0.240931i
\(847\) 0 0
\(848\) −6.74356 6.74356i −0.231575 0.231575i
\(849\) 26.0804i 0.895077i
\(850\) −10.0539 + 36.3316i −0.344847 + 1.24616i
\(851\) −80.9127 −2.77365
\(852\) 2.99873 + 2.99873i 0.102735 + 0.102735i
\(853\) −35.4946 + 35.4946i −1.21531 + 1.21531i −0.246058 + 0.969255i \(0.579135\pi\)
−0.969255 + 0.246058i \(0.920865\pi\)
\(854\) 0 0
\(855\) −1.22826 + 0.934530i −0.0420057 + 0.0319602i
\(856\) −15.2728 −0.522012
\(857\) 15.1895 + 15.1895i 0.518863 + 0.518863i 0.917227 0.398364i \(-0.130422\pi\)
−0.398364 + 0.917227i \(0.630422\pi\)
\(858\) 3.14958 + 3.14958i 0.107525 + 0.107525i
\(859\) 9.24777 0.315530 0.157765 0.987477i \(-0.449571\pi\)
0.157765 + 0.987477i \(0.449571\pi\)
\(860\) 2.79841 + 0.380057i 0.0954251 + 0.0129598i
\(861\) 0 0
\(862\) 4.88052 4.88052i 0.166231 0.166231i
\(863\) −1.12455 1.12455i −0.0382801 0.0382801i 0.687708 0.725988i \(-0.258617\pi\)
−0.725988 + 0.687708i \(0.758617\pi\)
\(864\) −1.00000 −0.0340207
\(865\) −5.04142 0.684682i −0.171413 0.0232799i
\(866\) 12.6268i 0.429077i
\(867\) −28.1731 28.1731i −0.956808 0.956808i
\(868\) 0 0
\(869\) 5.67623i 0.192553i
\(870\) −6.87859 9.04059i −0.233206 0.306505i
\(871\) 19.0655i 0.646010i
\(872\) 0.681918 0.681918i 0.0230927 0.0230927i
\(873\) 4.74063 4.74063i 0.160446 0.160446i
\(874\) 5.51517 0.186553
\(875\) 0 0
\(876\) 6.48846 0.219225
\(877\) 18.4475 18.4475i 0.622928 0.622928i −0.323351 0.946279i \(-0.604809\pi\)
0.946279 + 0.323351i \(0.104809\pi\)
\(878\) 17.8943 17.8943i 0.603903 0.603903i
\(879\) 2.10538i 0.0710129i
\(880\) −3.31669 4.35916i −0.111806 0.146947i
\(881\) 3.50861i 0.118208i −0.998252 0.0591040i \(-0.981176\pi\)
0.998252 0.0591040i \(-0.0188244\pi\)
\(882\) 0 0
\(883\) −16.4167 16.4167i −0.552465 0.552465i 0.374687 0.927152i \(-0.377750\pi\)
−0.927152 + 0.374687i \(0.877750\pi\)
\(884\) 13.7091i 0.461088i
\(885\) −17.8671 2.42655i −0.600595 0.0815677i
\(886\) 8.93689 0.300241
\(887\) 4.94287 + 4.94287i 0.165965 + 0.165965i 0.785203 0.619238i \(-0.212558\pi\)
−0.619238 + 0.785203i \(0.712558\pi\)
\(888\) 7.16021 7.16021i 0.240281 0.240281i
\(889\) 0 0
\(890\) −37.2600 5.06034i −1.24896 0.169623i
\(891\) −2.44960 −0.0820647
\(892\) 19.7204 + 19.7204i 0.660289 + 0.660289i
\(893\) −3.42015 3.42015i −0.114451 0.114451i
\(894\) 11.6944 0.391120
\(895\) 17.0919 13.0045i 0.571320 0.434692i
\(896\) 0 0
\(897\) 10.2738 10.2738i 0.343034 0.343034i
\(898\) 10.9905 + 10.9905i 0.366757 + 0.366757i
\(899\) −6.42643 −0.214334
\(900\) 1.33352 4.81889i 0.0444506 0.160630i
\(901\) 71.9021i 2.39541i
\(902\) 2.00574 + 2.00574i 0.0667838 + 0.0667838i
\(903\) 0 0
\(904\) 14.2698i 0.474607i
\(905\) −11.0259 + 8.38909i −0.366512 + 0.278863i
\(906\) 16.6297i 0.552485i
\(907\) 27.5421 27.5421i 0.914521 0.914521i −0.0821024 0.996624i \(-0.526163\pi\)
0.996624 + 0.0821024i \(0.0261635\pi\)
\(908\) −19.7598 + 19.7598i −0.655751 + 0.655751i
\(909\) 18.8914 0.626589
\(910\) 0 0
\(911\) 47.0579 1.55910 0.779549 0.626342i \(-0.215449\pi\)
0.779549 + 0.626342i \(0.215449\pi\)
\(912\) −0.488054 + 0.488054i −0.0161611 + 0.0161611i
\(913\) 18.1180 18.1180i 0.599620 0.599620i
\(914\) 32.0580i 1.06039i
\(915\) 0.330347 2.43239i 0.0109209 0.0804124i
\(916\) 2.04335i 0.0675143i
\(917\) 0 0
\(918\) 5.33117 + 5.33117i 0.175955 + 0.175955i
\(919\) 19.0621i 0.628802i 0.949290 + 0.314401i \(0.101804\pi\)
−0.949290 + 0.314401i \(0.898196\pi\)
\(920\) −14.2195 + 10.8190i −0.468802 + 0.356691i
\(921\) 31.3034 1.03148
\(922\) 7.83951 + 7.83951i 0.258181 + 0.258181i
\(923\) 5.45268 5.45268i 0.179477 0.179477i
\(924\) 0 0
\(925\) 24.9560 + 44.0526i 0.820549 + 1.44844i
\(926\) 10.1132 0.332340
\(927\) 6.84553 + 6.84553i 0.224837 + 0.224837i
\(928\) −3.59232 3.59232i −0.117924 0.117924i
\(929\) 44.4638 1.45881 0.729405 0.684082i \(-0.239797\pi\)
0.729405 + 0.684082i \(0.239797\pi\)
\(930\) −1.71274 2.25106i −0.0561628 0.0738153i
\(931\) 0 0
\(932\) −2.26245 + 2.26245i −0.0741090 + 0.0741090i
\(933\) −20.8547 20.8547i −0.682752 0.682752i
\(934\) 1.43427 0.0469309
\(935\) −5.55758 + 40.9213i −0.181752 + 1.33827i
\(936\) 1.81833i 0.0594339i
\(937\) 13.5674 + 13.5674i 0.443228 + 0.443228i 0.893095 0.449867i \(-0.148529\pi\)
−0.449867 + 0.893095i \(0.648529\pi\)
\(938\) 0 0
\(939\) 32.3451i 1.05554i
\(940\) 15.5272 + 2.10877i 0.506442 + 0.0687806i
\(941\) 11.3958i 0.371492i 0.982598 + 0.185746i \(0.0594702\pi\)
−0.982598 + 0.185746i \(0.940530\pi\)
\(942\) 5.17869 5.17869i 0.168731 0.168731i
\(943\) 6.54267 6.54267i 0.213059 0.213059i
\(944\) −8.06376 −0.262453
\(945\) 0 0
\(946\) 3.09379 0.100588
\(947\) −25.1853 + 25.1853i −0.818412 + 0.818412i −0.985878 0.167466i \(-0.946442\pi\)
0.167466 + 0.985878i \(0.446442\pi\)
\(948\) −1.63851 + 1.63851i −0.0532164 + 0.0532164i
\(949\) 11.7982i 0.382984i
\(950\) −1.70105 3.00271i −0.0551894 0.0974208i
\(951\) 23.8074i 0.772009i
\(952\) 0 0
\(953\) −8.47549 8.47549i −0.274548 0.274548i 0.556380 0.830928i \(-0.312190\pi\)
−0.830928 + 0.556380i \(0.812190\pi\)
\(954\) 9.53683i 0.308766i
\(955\) −8.89596 11.6920i −0.287866 0.378346i
\(956\) −19.7009 −0.637172
\(957\) −8.79974 8.79974i −0.284455 0.284455i
\(958\) −3.97039 + 3.97039i −0.128277 + 0.128277i
\(959\) 0 0
\(960\) 0.300921 2.21573i 0.00971219 0.0715123i
\(961\) 29.3998 0.948382
\(962\) −13.0196 13.0196i −0.419769 0.419769i
\(963\) −10.7995 10.7995i −0.348008 0.348008i
\(964\) −6.04502 −0.194697
\(965\) −0.0912809 + 0.672115i −0.00293844 + 0.0216361i
\(966\) 0 0
\(967\) −26.7576 + 26.7576i −0.860467 + 0.860467i −0.991392 0.130925i \(-0.958205\pi\)
0.130925 + 0.991392i \(0.458205\pi\)
\(968\) 3.53515 + 3.53515i 0.113624 + 0.113624i
\(969\) 5.20380 0.167170
\(970\) 9.07738 + 11.9305i 0.291457 + 0.383065i
\(971\) 30.2895i 0.972037i −0.873949 0.486018i \(-0.838449\pi\)
0.873949 0.486018i \(-0.161551\pi\)
\(972\) −0.707107 0.707107i −0.0226805 0.0226805i
\(973\) 0 0
\(974\) 27.9279i 0.894867i
\(975\) −8.76233 2.42477i −0.280619 0.0776549i
\(976\) 1.09779i 0.0351392i
\(977\) 9.93182 9.93182i 0.317747 0.317747i −0.530154 0.847901i \(-0.677866\pi\)
0.847901 + 0.530154i \(0.177866\pi\)
\(978\) 7.70934 7.70934i 0.246517 0.246517i
\(979\) −41.1929 −1.31653
\(980\) 0 0
\(981\) 0.964378 0.0307902
\(982\) −9.69623 + 9.69623i −0.309419 + 0.309419i
\(983\) 36.9236 36.9236i 1.17768 1.17768i 0.197347 0.980334i \(-0.436767\pi\)
0.980334 0.197347i \(-0.0632326\pi\)
\(984\) 1.15796i 0.0369145i
\(985\) 5.19186 + 0.705115i 0.165427 + 0.0224668i
\(986\) 38.3025i 1.21980i
\(987\) 0 0
\(988\) 0.887443 + 0.887443i 0.0282333 + 0.0282333i
\(989\) 10.0919i 0.320903i
\(990\) 0.737137 5.42765i 0.0234277 0.172502i
\(991\) −11.1384 −0.353822 −0.176911 0.984227i \(-0.556611\pi\)
−0.176911 + 0.984227i \(0.556611\pi\)
\(992\) −0.894469 0.894469i −0.0283994 0.0283994i
\(993\) 20.5781 20.5781i 0.653027 0.653027i
\(994\) 0 0
\(995\) −26.5916 34.9496i −0.843010 1.10798i
\(996\) 10.4600 0.331437
\(997\) 29.8135 + 29.8135i 0.944202 + 0.944202i 0.998524 0.0543212i \(-0.0172995\pi\)
−0.0543212 + 0.998524i \(0.517299\pi\)
\(998\) 22.7796 + 22.7796i 0.721077 + 0.721077i
\(999\) 10.1261 0.320375
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1470.2.m.f.1273.7 yes 16
5.2 odd 4 1470.2.m.c.97.6 16
7.6 odd 2 1470.2.m.c.1273.6 yes 16
35.27 even 4 inner 1470.2.m.f.97.7 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1470.2.m.c.97.6 16 5.2 odd 4
1470.2.m.c.1273.6 yes 16 7.6 odd 2
1470.2.m.f.97.7 yes 16 35.27 even 4 inner
1470.2.m.f.1273.7 yes 16 1.1 even 1 trivial