Properties

Label 1470.2.m.e.1273.4
Level $1470$
Weight $2$
Character 1470.1273
Analytic conductor $11.738$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1470,2,Mod(97,1470)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1470, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1470.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1470.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7380090971\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 12 x^{14} - 48 x^{13} + 67 x^{12} - 24 x^{11} + 118 x^{10} - 176 x^{9} + 351 x^{8} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1273.4
Root \(-0.709944 + 0.925217i\) of defining polynomial
Character \(\chi\) \(=\) 1470.1273
Dual form 1470.2.m.e.97.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +(-0.707107 + 0.707107i) q^{3} -1.00000i q^{4} +(2.17041 - 0.537883i) q^{5} -1.00000i q^{6} +(0.707107 + 0.707107i) q^{8} -1.00000i q^{9} +(-1.15437 + 1.91505i) q^{10} -1.16579 q^{11} +(0.707107 + 0.707107i) q^{12} +(1.92501 - 1.92501i) q^{13} +(-1.15437 + 1.91505i) q^{15} -1.00000 q^{16} +(-0.0153229 - 0.0153229i) q^{17} +(0.707107 + 0.707107i) q^{18} -1.97873 q^{19} +(-0.537883 - 2.17041i) q^{20} +(0.824341 - 0.824341i) q^{22} +(5.07695 + 5.07695i) q^{23} -1.00000 q^{24} +(4.42136 - 2.33485i) q^{25} +2.72238i q^{26} +(0.707107 + 0.707107i) q^{27} -5.60604i q^{29} +(-0.537883 - 2.17041i) q^{30} +7.93107i q^{31} +(0.707107 - 0.707107i) q^{32} +(0.824341 - 0.824341i) q^{33} +0.0216699 q^{34} -1.00000 q^{36} +(7.51026 - 7.51026i) q^{37} +(1.39917 - 1.39917i) q^{38} +2.72238i q^{39} +(1.91505 + 1.15437i) q^{40} -2.48977i q^{41} +(-7.87756 - 7.87756i) q^{43} +1.16579i q^{44} +(-0.537883 - 2.17041i) q^{45} -7.17989 q^{46} +(2.88977 + 2.88977i) q^{47} +(0.707107 - 0.707107i) q^{48} +(-1.47539 + 4.77737i) q^{50} +0.0216699 q^{51} +(-1.92501 - 1.92501i) q^{52} +(-2.06984 - 2.06984i) q^{53} -1.00000 q^{54} +(-2.53025 + 0.627061i) q^{55} +(1.39917 - 1.39917i) q^{57} +(3.96407 + 3.96407i) q^{58} +10.6925 q^{59} +(1.91505 + 1.15437i) q^{60} +3.64649i q^{61} +(-5.60811 - 5.60811i) q^{62} +1.00000i q^{64} +(3.14264 - 5.21350i) q^{65} +1.16579i q^{66} +(10.2942 - 10.2942i) q^{67} +(-0.0153229 + 0.0153229i) q^{68} -7.17989 q^{69} +7.51848 q^{71} +(0.707107 - 0.707107i) q^{72} +(-2.64838 + 2.64838i) q^{73} +10.6211i q^{74} +(-1.47539 + 4.77737i) q^{75} +1.97873i q^{76} +(-1.92501 - 1.92501i) q^{78} -1.61039i q^{79} +(-2.17041 + 0.537883i) q^{80} -1.00000 q^{81} +(1.76053 + 1.76053i) q^{82} +(9.74815 - 9.74815i) q^{83} +(-0.0414990 - 0.0250151i) q^{85} +11.1406 q^{86} +(3.96407 + 3.96407i) q^{87} +(-0.824341 - 0.824341i) q^{88} +3.60510 q^{89} +(1.91505 + 1.15437i) q^{90} +(5.07695 - 5.07695i) q^{92} +(-5.60811 - 5.60811i) q^{93} -4.08675 q^{94} +(-4.29465 + 1.06432i) q^{95} +1.00000i q^{96} +(0.265501 + 0.265501i) q^{97} +1.16579i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{10} - 8 q^{11} + 16 q^{13} + 4 q^{15} - 16 q^{16} - 24 q^{17} - 16 q^{19} + 8 q^{20} + 4 q^{22} + 8 q^{23} - 16 q^{24} + 16 q^{25} + 8 q^{30} + 4 q^{33} - 16 q^{34} - 16 q^{36} + 16 q^{37} - 8 q^{38}+ \cdots - 44 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1470\mathbb{Z}\right)^\times\).

\(n\) \(491\) \(1081\) \(1177\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) −0.707107 + 0.707107i −0.408248 + 0.408248i
\(4\) 1.00000i 0.500000i
\(5\) 2.17041 0.537883i 0.970637 0.240548i
\(6\) 1.00000i 0.408248i
\(7\) 0 0
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 1.00000i 0.333333i
\(10\) −1.15437 + 1.91505i −0.365044 + 0.605593i
\(11\) −1.16579 −0.351500 −0.175750 0.984435i \(-0.556235\pi\)
−0.175750 + 0.984435i \(0.556235\pi\)
\(12\) 0.707107 + 0.707107i 0.204124 + 0.204124i
\(13\) 1.92501 1.92501i 0.533903 0.533903i −0.387829 0.921731i \(-0.626775\pi\)
0.921731 + 0.387829i \(0.126775\pi\)
\(14\) 0 0
\(15\) −1.15437 + 1.91505i −0.298057 + 0.494464i
\(16\) −1.00000 −0.250000
\(17\) −0.0153229 0.0153229i −0.00371636 0.00371636i 0.705246 0.708963i \(-0.250836\pi\)
−0.708963 + 0.705246i \(0.750836\pi\)
\(18\) 0.707107 + 0.707107i 0.166667 + 0.166667i
\(19\) −1.97873 −0.453951 −0.226976 0.973900i \(-0.572884\pi\)
−0.226976 + 0.973900i \(0.572884\pi\)
\(20\) −0.537883 2.17041i −0.120274 0.485319i
\(21\) 0 0
\(22\) 0.824341 0.824341i 0.175750 0.175750i
\(23\) 5.07695 + 5.07695i 1.05862 + 1.05862i 0.998171 + 0.0604462i \(0.0192524\pi\)
0.0604462 + 0.998171i \(0.480748\pi\)
\(24\) −1.00000 −0.204124
\(25\) 4.42136 2.33485i 0.884273 0.466971i
\(26\) 2.72238i 0.533903i
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) 0 0
\(29\) 5.60604i 1.04102i −0.853857 0.520508i \(-0.825743\pi\)
0.853857 0.520508i \(-0.174257\pi\)
\(30\) −0.537883 2.17041i −0.0982035 0.396261i
\(31\) 7.93107i 1.42446i 0.701945 + 0.712231i \(0.252315\pi\)
−0.701945 + 0.712231i \(0.747685\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0.824341 0.824341i 0.143499 0.143499i
\(34\) 0.0216699 0.00371636
\(35\) 0 0
\(36\) −1.00000 −0.166667
\(37\) 7.51026 7.51026i 1.23468 1.23468i 0.272532 0.962147i \(-0.412139\pi\)
0.962147 0.272532i \(-0.0878610\pi\)
\(38\) 1.39917 1.39917i 0.226976 0.226976i
\(39\) 2.72238i 0.435930i
\(40\) 1.91505 + 1.15437i 0.302796 + 0.182522i
\(41\) 2.48977i 0.388837i −0.980919 0.194418i \(-0.937718\pi\)
0.980919 0.194418i \(-0.0622819\pi\)
\(42\) 0 0
\(43\) −7.87756 7.87756i −1.20132 1.20132i −0.973766 0.227550i \(-0.926928\pi\)
−0.227550 0.973766i \(-0.573072\pi\)
\(44\) 1.16579i 0.175750i
\(45\) −0.537883 2.17041i −0.0801828 0.323546i
\(46\) −7.17989 −1.05862
\(47\) 2.88977 + 2.88977i 0.421516 + 0.421516i 0.885726 0.464209i \(-0.153661\pi\)
−0.464209 + 0.885726i \(0.653661\pi\)
\(48\) 0.707107 0.707107i 0.102062 0.102062i
\(49\) 0 0
\(50\) −1.47539 + 4.77737i −0.208651 + 0.675622i
\(51\) 0.0216699 0.00303439
\(52\) −1.92501 1.92501i −0.266951 0.266951i
\(53\) −2.06984 2.06984i −0.284314 0.284314i 0.550513 0.834827i \(-0.314432\pi\)
−0.834827 + 0.550513i \(0.814432\pi\)
\(54\) −1.00000 −0.136083
\(55\) −2.53025 + 0.627061i −0.341179 + 0.0845529i
\(56\) 0 0
\(57\) 1.39917 1.39917i 0.185325 0.185325i
\(58\) 3.96407 + 3.96407i 0.520508 + 0.520508i
\(59\) 10.6925 1.39204 0.696020 0.718022i \(-0.254952\pi\)
0.696020 + 0.718022i \(0.254952\pi\)
\(60\) 1.91505 + 1.15437i 0.247232 + 0.149029i
\(61\) 3.64649i 0.466885i 0.972371 + 0.233442i \(0.0749991\pi\)
−0.972371 + 0.233442i \(0.925001\pi\)
\(62\) −5.60811 5.60811i −0.712231 0.712231i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 3.14264 5.21350i 0.389796 0.646655i
\(66\) 1.16579i 0.143499i
\(67\) 10.2942 10.2942i 1.25764 1.25764i 0.305420 0.952218i \(-0.401203\pi\)
0.952218 0.305420i \(-0.0987968\pi\)
\(68\) −0.0153229 + 0.0153229i −0.00185818 + 0.00185818i
\(69\) −7.17989 −0.864358
\(70\) 0 0
\(71\) 7.51848 0.892280 0.446140 0.894963i \(-0.352798\pi\)
0.446140 + 0.894963i \(0.352798\pi\)
\(72\) 0.707107 0.707107i 0.0833333 0.0833333i
\(73\) −2.64838 + 2.64838i −0.309970 + 0.309970i −0.844898 0.534928i \(-0.820339\pi\)
0.534928 + 0.844898i \(0.320339\pi\)
\(74\) 10.6211i 1.23468i
\(75\) −1.47539 + 4.77737i −0.170363 + 0.551643i
\(76\) 1.97873i 0.226976i
\(77\) 0 0
\(78\) −1.92501 1.92501i −0.217965 0.217965i
\(79\) 1.61039i 0.181184i −0.995888 0.0905918i \(-0.971124\pi\)
0.995888 0.0905918i \(-0.0288759\pi\)
\(80\) −2.17041 + 0.537883i −0.242659 + 0.0601371i
\(81\) −1.00000 −0.111111
\(82\) 1.76053 + 1.76053i 0.194418 + 0.194418i
\(83\) 9.74815 9.74815i 1.07000 1.07000i 0.0726405 0.997358i \(-0.476857\pi\)
0.997358 0.0726405i \(-0.0231426\pi\)
\(84\) 0 0
\(85\) −0.0414990 0.0250151i −0.00450120 0.00271327i
\(86\) 11.1406 1.20132
\(87\) 3.96407 + 3.96407i 0.424993 + 0.424993i
\(88\) −0.824341 0.824341i −0.0878751 0.0878751i
\(89\) 3.60510 0.382140 0.191070 0.981576i \(-0.438804\pi\)
0.191070 + 0.981576i \(0.438804\pi\)
\(90\) 1.91505 + 1.15437i 0.201864 + 0.121681i
\(91\) 0 0
\(92\) 5.07695 5.07695i 0.529309 0.529309i
\(93\) −5.60811 5.60811i −0.581534 0.581534i
\(94\) −4.08675 −0.421516
\(95\) −4.29465 + 1.06432i −0.440622 + 0.109197i
\(96\) 1.00000i 0.102062i
\(97\) 0.265501 + 0.265501i 0.0269575 + 0.0269575i 0.720457 0.693500i \(-0.243932\pi\)
−0.693500 + 0.720457i \(0.743932\pi\)
\(98\) 0 0
\(99\) 1.16579i 0.117167i
\(100\) −2.33485 4.42136i −0.233485 0.442136i
\(101\) 13.9159i 1.38469i 0.721569 + 0.692343i \(0.243421\pi\)
−0.721569 + 0.692343i \(0.756579\pi\)
\(102\) −0.0153229 + 0.0153229i −0.00151720 + 0.00151720i
\(103\) −8.47403 + 8.47403i −0.834971 + 0.834971i −0.988192 0.153221i \(-0.951035\pi\)
0.153221 + 0.988192i \(0.451035\pi\)
\(104\) 2.72238 0.266951
\(105\) 0 0
\(106\) 2.92719 0.284314
\(107\) 4.88300 4.88300i 0.472058 0.472058i −0.430522 0.902580i \(-0.641671\pi\)
0.902580 + 0.430522i \(0.141671\pi\)
\(108\) 0.707107 0.707107i 0.0680414 0.0680414i
\(109\) 0.577314i 0.0552967i 0.999618 + 0.0276483i \(0.00880186\pi\)
−0.999618 + 0.0276483i \(0.991198\pi\)
\(110\) 1.34576 2.23256i 0.128313 0.212866i
\(111\) 10.6211i 1.00811i
\(112\) 0 0
\(113\) 13.2689 + 13.2689i 1.24823 + 1.24823i 0.956501 + 0.291728i \(0.0942301\pi\)
0.291728 + 0.956501i \(0.405770\pi\)
\(114\) 1.97873i 0.185325i
\(115\) 13.7499 + 8.28827i 1.28218 + 0.772885i
\(116\) −5.60604 −0.520508
\(117\) −1.92501 1.92501i −0.177968 0.177968i
\(118\) −7.56072 + 7.56072i −0.696020 + 0.696020i
\(119\) 0 0
\(120\) −2.17041 + 0.537883i −0.198130 + 0.0491018i
\(121\) −9.64092 −0.876447
\(122\) −2.57846 2.57846i −0.233442 0.233442i
\(123\) 1.76053 + 1.76053i 0.158742 + 0.158742i
\(124\) 7.93107 0.712231
\(125\) 8.34030 7.44577i 0.745979 0.665969i
\(126\) 0 0
\(127\) 1.36110 1.36110i 0.120778 0.120778i −0.644134 0.764912i \(-0.722782\pi\)
0.764912 + 0.644134i \(0.222782\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 11.1406 0.980871
\(130\) 1.46432 + 5.90868i 0.128429 + 0.518226i
\(131\) 17.1498i 1.49838i 0.662353 + 0.749192i \(0.269558\pi\)
−0.662353 + 0.749192i \(0.730442\pi\)
\(132\) −0.824341 0.824341i −0.0717497 0.0717497i
\(133\) 0 0
\(134\) 14.5582i 1.25764i
\(135\) 1.91505 + 1.15437i 0.164821 + 0.0993525i
\(136\) 0.0216699i 0.00185818i
\(137\) 7.23778 7.23778i 0.618365 0.618365i −0.326747 0.945112i \(-0.605952\pi\)
0.945112 + 0.326747i \(0.105952\pi\)
\(138\) 5.07695 5.07695i 0.432179 0.432179i
\(139\) −5.65119 −0.479327 −0.239664 0.970856i \(-0.577037\pi\)
−0.239664 + 0.970856i \(0.577037\pi\)
\(140\) 0 0
\(141\) −4.08675 −0.344166
\(142\) −5.31637 + 5.31637i −0.446140 + 0.446140i
\(143\) −2.24417 + 2.24417i −0.187667 + 0.187667i
\(144\) 1.00000i 0.0833333i
\(145\) −3.01539 12.1674i −0.250415 1.01045i
\(146\) 3.74538i 0.309970i
\(147\) 0 0
\(148\) −7.51026 7.51026i −0.617339 0.617339i
\(149\) 0.220803i 0.0180889i 0.999959 + 0.00904446i \(0.00287898\pi\)
−0.999959 + 0.00904446i \(0.997121\pi\)
\(150\) −2.33485 4.42136i −0.190640 0.361003i
\(151\) −6.36885 −0.518290 −0.259145 0.965838i \(-0.583441\pi\)
−0.259145 + 0.965838i \(0.583441\pi\)
\(152\) −1.39917 1.39917i −0.113488 0.113488i
\(153\) −0.0153229 + 0.0153229i −0.00123879 + 0.00123879i
\(154\) 0 0
\(155\) 4.26598 + 17.2137i 0.342652 + 1.38264i
\(156\) 2.72238 0.217965
\(157\) −10.2363 10.2363i −0.816943 0.816943i 0.168721 0.985664i \(-0.446036\pi\)
−0.985664 + 0.168721i \(0.946036\pi\)
\(158\) 1.13872 + 1.13872i 0.0905918 + 0.0905918i
\(159\) 2.92719 0.232141
\(160\) 1.15437 1.91505i 0.0912611 0.151398i
\(161\) 0 0
\(162\) 0.707107 0.707107i 0.0555556 0.0555556i
\(163\) 15.4896 + 15.4896i 1.21324 + 1.21324i 0.969954 + 0.243289i \(0.0782263\pi\)
0.243289 + 0.969954i \(0.421774\pi\)
\(164\) −2.48977 −0.194418
\(165\) 1.34576 2.23256i 0.104767 0.173804i
\(166\) 13.7860i 1.07000i
\(167\) 11.3917 + 11.3917i 0.881515 + 0.881515i 0.993689 0.112174i \(-0.0357814\pi\)
−0.112174 + 0.993689i \(0.535781\pi\)
\(168\) 0 0
\(169\) 5.58865i 0.429896i
\(170\) 0.0470326 0.0116559i 0.00360723 0.000893964i
\(171\) 1.97873i 0.151317i
\(172\) −7.87756 + 7.87756i −0.600658 + 0.600658i
\(173\) 7.38450 7.38450i 0.561433 0.561433i −0.368281 0.929714i \(-0.620054\pi\)
0.929714 + 0.368281i \(0.120054\pi\)
\(174\) −5.60604 −0.424993
\(175\) 0 0
\(176\) 1.16579 0.0878751
\(177\) −7.56072 + 7.56072i −0.568298 + 0.568298i
\(178\) −2.54919 + 2.54919i −0.191070 + 0.191070i
\(179\) 1.50703i 0.112641i −0.998413 0.0563204i \(-0.982063\pi\)
0.998413 0.0563204i \(-0.0179368\pi\)
\(180\) −2.17041 + 0.537883i −0.161773 + 0.0400914i
\(181\) 21.3457i 1.58662i 0.608821 + 0.793308i \(0.291643\pi\)
−0.608821 + 0.793308i \(0.708357\pi\)
\(182\) 0 0
\(183\) −2.57846 2.57846i −0.190605 0.190605i
\(184\) 7.17989i 0.529309i
\(185\) 12.2607 20.3400i 0.901425 1.49542i
\(186\) 7.93107 0.581534
\(187\) 0.0178634 + 0.0178634i 0.00130630 + 0.00130630i
\(188\) 2.88977 2.88977i 0.210758 0.210758i
\(189\) 0 0
\(190\) 2.28419 3.78937i 0.165712 0.274909i
\(191\) 6.45086 0.466768 0.233384 0.972385i \(-0.425020\pi\)
0.233384 + 0.972385i \(0.425020\pi\)
\(192\) −0.707107 0.707107i −0.0510310 0.0510310i
\(193\) −3.63352 3.63352i −0.261547 0.261547i 0.564135 0.825682i \(-0.309210\pi\)
−0.825682 + 0.564135i \(0.809210\pi\)
\(194\) −0.375475 −0.0269575
\(195\) 1.46432 + 5.90868i 0.104862 + 0.423129i
\(196\) 0 0
\(197\) 17.8347 17.8347i 1.27067 1.27067i 0.324931 0.945738i \(-0.394659\pi\)
0.945738 0.324931i \(-0.105341\pi\)
\(198\) −0.824341 0.824341i −0.0585834 0.0585834i
\(199\) −4.94197 −0.350327 −0.175163 0.984539i \(-0.556045\pi\)
−0.175163 + 0.984539i \(0.556045\pi\)
\(200\) 4.77737 + 1.47539i 0.337811 + 0.104326i
\(201\) 14.5582i 1.02686i
\(202\) −9.84004 9.84004i −0.692343 0.692343i
\(203\) 0 0
\(204\) 0.0216699i 0.00151720i
\(205\) −1.33920 5.40382i −0.0935340 0.377419i
\(206\) 11.9841i 0.834971i
\(207\) 5.07695 5.07695i 0.352873 0.352873i
\(208\) −1.92501 + 1.92501i −0.133476 + 0.133476i
\(209\) 2.30679 0.159564
\(210\) 0 0
\(211\) −19.0455 −1.31115 −0.655574 0.755131i \(-0.727573\pi\)
−0.655574 + 0.755131i \(0.727573\pi\)
\(212\) −2.06984 + 2.06984i −0.142157 + 0.142157i
\(213\) −5.31637 + 5.31637i −0.364272 + 0.364272i
\(214\) 6.90561i 0.472058i
\(215\) −21.3347 12.8603i −1.45502 0.877068i
\(216\) 1.00000i 0.0680414i
\(217\) 0 0
\(218\) −0.408223 0.408223i −0.0276483 0.0276483i
\(219\) 3.74538i 0.253089i
\(220\) 0.627061 + 2.53025i 0.0422764 + 0.170590i
\(221\) −0.0589937 −0.00396834
\(222\) −7.51026 7.51026i −0.504055 0.504055i
\(223\) −2.94490 + 2.94490i −0.197205 + 0.197205i −0.798801 0.601596i \(-0.794532\pi\)
0.601596 + 0.798801i \(0.294532\pi\)
\(224\) 0 0
\(225\) −2.33485 4.42136i −0.155657 0.294758i
\(226\) −18.7650 −1.24823
\(227\) −13.0383 13.0383i −0.865381 0.865381i 0.126576 0.991957i \(-0.459601\pi\)
−0.991957 + 0.126576i \(0.959601\pi\)
\(228\) −1.39917 1.39917i −0.0926624 0.0926624i
\(229\) −5.91011 −0.390551 −0.195276 0.980748i \(-0.562560\pi\)
−0.195276 + 0.980748i \(0.562560\pi\)
\(230\) −15.5833 + 3.86194i −1.02753 + 0.254649i
\(231\) 0 0
\(232\) 3.96407 3.96407i 0.260254 0.260254i
\(233\) 5.11615 + 5.11615i 0.335170 + 0.335170i 0.854546 0.519376i \(-0.173835\pi\)
−0.519376 + 0.854546i \(0.673835\pi\)
\(234\) 2.72238 0.177968
\(235\) 7.82634 + 4.71763i 0.510534 + 0.307744i
\(236\) 10.6925i 0.696020i
\(237\) 1.13872 + 1.13872i 0.0739679 + 0.0739679i
\(238\) 0 0
\(239\) 4.20172i 0.271787i 0.990723 + 0.135893i \(0.0433904\pi\)
−0.990723 + 0.135893i \(0.956610\pi\)
\(240\) 1.15437 1.91505i 0.0745144 0.123616i
\(241\) 21.9359i 1.41301i −0.707706 0.706507i \(-0.750270\pi\)
0.707706 0.706507i \(-0.249730\pi\)
\(242\) 6.81716 6.81716i 0.438224 0.438224i
\(243\) 0.707107 0.707107i 0.0453609 0.0453609i
\(244\) 3.64649 0.233442
\(245\) 0 0
\(246\) −2.48977 −0.158742
\(247\) −3.80907 + 3.80907i −0.242366 + 0.242366i
\(248\) −5.60811 + 5.60811i −0.356115 + 0.356115i
\(249\) 13.7860i 0.873650i
\(250\) −0.632531 + 11.1624i −0.0400048 + 0.705974i
\(251\) 15.1293i 0.954952i −0.878645 0.477476i \(-0.841552\pi\)
0.878645 0.477476i \(-0.158448\pi\)
\(252\) 0 0
\(253\) −5.91868 5.91868i −0.372105 0.372105i
\(254\) 1.92488i 0.120778i
\(255\) 0.0470326 0.0116559i 0.00294529 0.000729918i
\(256\) 1.00000 0.0625000
\(257\) −16.2735 16.2735i −1.01512 1.01512i −0.999884 0.0152320i \(-0.995151\pi\)
−0.0152320 0.999884i \(-0.504849\pi\)
\(258\) −7.87756 + 7.87756i −0.490435 + 0.490435i
\(259\) 0 0
\(260\) −5.21350 3.14264i −0.323328 0.194898i
\(261\) −5.60604 −0.347005
\(262\) −12.1267 12.1267i −0.749192 0.749192i
\(263\) −14.2273 14.2273i −0.877294 0.877294i 0.115960 0.993254i \(-0.463006\pi\)
−0.993254 + 0.115960i \(0.963006\pi\)
\(264\) 1.16579 0.0717497
\(265\) −5.60573 3.37907i −0.344357 0.207574i
\(266\) 0 0
\(267\) −2.54919 + 2.54919i −0.156008 + 0.156008i
\(268\) −10.2942 10.2942i −0.628819 0.628819i
\(269\) 9.26959 0.565177 0.282588 0.959241i \(-0.408807\pi\)
0.282588 + 0.959241i \(0.408807\pi\)
\(270\) −2.17041 + 0.537883i −0.132087 + 0.0327345i
\(271\) 26.2298i 1.59335i −0.604410 0.796673i \(-0.706591\pi\)
0.604410 0.796673i \(-0.293409\pi\)
\(272\) 0.0153229 + 0.0153229i 0.000929089 + 0.000929089i
\(273\) 0 0
\(274\) 10.2358i 0.618365i
\(275\) −5.15440 + 2.72196i −0.310822 + 0.164140i
\(276\) 7.17989i 0.432179i
\(277\) 9.40415 9.40415i 0.565040 0.565040i −0.365695 0.930735i \(-0.619169\pi\)
0.930735 + 0.365695i \(0.119169\pi\)
\(278\) 3.99599 3.99599i 0.239664 0.239664i
\(279\) 7.93107 0.474821
\(280\) 0 0
\(281\) −13.5101 −0.805944 −0.402972 0.915212i \(-0.632023\pi\)
−0.402972 + 0.915212i \(0.632023\pi\)
\(282\) 2.88977 2.88977i 0.172083 0.172083i
\(283\) −14.0651 + 14.0651i −0.836085 + 0.836085i −0.988341 0.152256i \(-0.951346\pi\)
0.152256 + 0.988341i \(0.451346\pi\)
\(284\) 7.51848i 0.446140i
\(285\) 2.28419 3.78937i 0.135303 0.224463i
\(286\) 3.17374i 0.187667i
\(287\) 0 0
\(288\) −0.707107 0.707107i −0.0416667 0.0416667i
\(289\) 16.9995i 0.999972i
\(290\) 10.7359 + 6.47146i 0.630432 + 0.380017i
\(291\) −0.375475 −0.0220107
\(292\) 2.64838 + 2.64838i 0.154985 + 0.154985i
\(293\) −17.4044 + 17.4044i −1.01677 + 1.01677i −0.0169176 + 0.999857i \(0.505385\pi\)
−0.999857 + 0.0169176i \(0.994615\pi\)
\(294\) 0 0
\(295\) 23.2070 5.75129i 1.35117 0.334853i
\(296\) 10.6211 0.617339
\(297\) −0.824341 0.824341i −0.0478331 0.0478331i
\(298\) −0.156132 0.156132i −0.00904446 0.00904446i
\(299\) 19.5464 1.13040
\(300\) 4.77737 + 1.47539i 0.275821 + 0.0851815i
\(301\) 0 0
\(302\) 4.50346 4.50346i 0.259145 0.259145i
\(303\) −9.84004 9.84004i −0.565296 0.565296i
\(304\) 1.97873 0.113488
\(305\) 1.96138 + 7.91438i 0.112308 + 0.453176i
\(306\) 0.0216699i 0.00123879i
\(307\) 0.566349 + 0.566349i 0.0323232 + 0.0323232i 0.723084 0.690760i \(-0.242724\pi\)
−0.690760 + 0.723084i \(0.742724\pi\)
\(308\) 0 0
\(309\) 11.9841i 0.681751i
\(310\) −15.1884 9.15540i −0.862644 0.519992i
\(311\) 13.3972i 0.759687i 0.925051 + 0.379844i \(0.124022\pi\)
−0.925051 + 0.379844i \(0.875978\pi\)
\(312\) −1.92501 + 1.92501i −0.108982 + 0.108982i
\(313\) 20.3350 20.3350i 1.14940 1.14940i 0.162730 0.986671i \(-0.447970\pi\)
0.986671 0.162730i \(-0.0520299\pi\)
\(314\) 14.4763 0.816943
\(315\) 0 0
\(316\) −1.61039 −0.0905918
\(317\) −23.8542 + 23.8542i −1.33979 + 1.33979i −0.443521 + 0.896264i \(0.646271\pi\)
−0.896264 + 0.443521i \(0.853729\pi\)
\(318\) −2.06984 + 2.06984i −0.116071 + 0.116071i
\(319\) 6.53550i 0.365918i
\(320\) 0.537883 + 2.17041i 0.0300686 + 0.121330i
\(321\) 6.90561i 0.385434i
\(322\) 0 0
\(323\) 0.0303199 + 0.0303199i 0.00168704 + 0.00168704i
\(324\) 1.00000i 0.0555556i
\(325\) 4.01656 13.0058i 0.222799 0.721432i
\(326\) −21.9057 −1.21324
\(327\) −0.408223 0.408223i −0.0225748 0.0225748i
\(328\) 1.76053 1.76053i 0.0972091 0.0972091i
\(329\) 0 0
\(330\) 0.627061 + 2.53025i 0.0345186 + 0.139286i
\(331\) −10.9356 −0.601076 −0.300538 0.953770i \(-0.597166\pi\)
−0.300538 + 0.953770i \(0.597166\pi\)
\(332\) −9.74815 9.74815i −0.534999 0.534999i
\(333\) −7.51026 7.51026i −0.411560 0.411560i
\(334\) −16.1103 −0.881515
\(335\) 16.8056 27.8797i 0.918187 1.52323i
\(336\) 0 0
\(337\) −10.2916 + 10.2916i −0.560617 + 0.560617i −0.929483 0.368866i \(-0.879746\pi\)
0.368866 + 0.929483i \(0.379746\pi\)
\(338\) −3.95177 3.95177i −0.214948 0.214948i
\(339\) −18.7650 −1.01917
\(340\) −0.0250151 + 0.0414990i −0.00135663 + 0.00225060i
\(341\) 9.24600i 0.500699i
\(342\) −1.39917 1.39917i −0.0756585 0.0756585i
\(343\) 0 0
\(344\) 11.1406i 0.600658i
\(345\) −15.5833 + 3.86194i −0.838978 + 0.207920i
\(346\) 10.4433i 0.561433i
\(347\) −1.80636 + 1.80636i −0.0969703 + 0.0969703i −0.753928 0.656957i \(-0.771843\pi\)
0.656957 + 0.753928i \(0.271843\pi\)
\(348\) 3.96407 3.96407i 0.212497 0.212497i
\(349\) 18.6079 0.996058 0.498029 0.867160i \(-0.334057\pi\)
0.498029 + 0.867160i \(0.334057\pi\)
\(350\) 0 0
\(351\) 2.72238 0.145310
\(352\) −0.824341 + 0.824341i −0.0439375 + 0.0439375i
\(353\) 11.1944 11.1944i 0.595816 0.595816i −0.343381 0.939196i \(-0.611572\pi\)
0.939196 + 0.343381i \(0.111572\pi\)
\(354\) 10.6925i 0.568298i
\(355\) 16.3182 4.04406i 0.866080 0.214637i
\(356\) 3.60510i 0.191070i
\(357\) 0 0
\(358\) 1.06563 + 1.06563i 0.0563204 + 0.0563204i
\(359\) 7.50618i 0.396161i 0.980186 + 0.198081i \(0.0634708\pi\)
−0.980186 + 0.198081i \(0.936529\pi\)
\(360\) 1.15437 1.91505i 0.0608407 0.100932i
\(361\) −15.0846 −0.793928
\(362\) −15.0937 15.0937i −0.793308 0.793308i
\(363\) 6.81716 6.81716i 0.357808 0.357808i
\(364\) 0 0
\(365\) −4.32356 + 7.17260i −0.226306 + 0.375431i
\(366\) 3.64649 0.190605
\(367\) 2.79163 + 2.79163i 0.145722 + 0.145722i 0.776204 0.630482i \(-0.217143\pi\)
−0.630482 + 0.776204i \(0.717143\pi\)
\(368\) −5.07695 5.07695i −0.264654 0.264654i
\(369\) −2.48977 −0.129612
\(370\) 5.71291 + 23.0522i 0.297000 + 1.19842i
\(371\) 0 0
\(372\) −5.60811 + 5.60811i −0.290767 + 0.290767i
\(373\) 3.81421 + 3.81421i 0.197492 + 0.197492i 0.798924 0.601432i \(-0.205403\pi\)
−0.601432 + 0.798924i \(0.705403\pi\)
\(374\) −0.0252626 −0.00130630
\(375\) −0.632531 + 11.1624i −0.0326637 + 0.576426i
\(376\) 4.08675i 0.210758i
\(377\) −10.7917 10.7917i −0.555801 0.555801i
\(378\) 0 0
\(379\) 2.47403i 0.127082i 0.997979 + 0.0635411i \(0.0202394\pi\)
−0.997979 + 0.0635411i \(0.979761\pi\)
\(380\) 1.06432 + 4.29465i 0.0545986 + 0.220311i
\(381\) 1.92488i 0.0986148i
\(382\) −4.56144 + 4.56144i −0.233384 + 0.233384i
\(383\) −17.0474 + 17.0474i −0.871083 + 0.871083i −0.992591 0.121507i \(-0.961227\pi\)
0.121507 + 0.992591i \(0.461227\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 5.13858 0.261547
\(387\) −7.87756 + 7.87756i −0.400439 + 0.400439i
\(388\) 0.265501 0.265501i 0.0134788 0.0134788i
\(389\) 6.45060i 0.327058i −0.986539 0.163529i \(-0.947712\pi\)
0.986539 0.163529i \(-0.0522878\pi\)
\(390\) −5.21350 3.14264i −0.263996 0.159134i
\(391\) 0.155588i 0.00786840i
\(392\) 0 0
\(393\) −12.1267 12.1267i −0.611713 0.611713i
\(394\) 25.2221i 1.27067i
\(395\) −0.866204 3.49522i −0.0435834 0.175864i
\(396\) 1.16579 0.0585834
\(397\) −13.2347 13.2347i −0.664230 0.664230i 0.292145 0.956374i \(-0.405631\pi\)
−0.956374 + 0.292145i \(0.905631\pi\)
\(398\) 3.49450 3.49450i 0.175163 0.175163i
\(399\) 0 0
\(400\) −4.42136 + 2.33485i −0.221068 + 0.116743i
\(401\) −18.7394 −0.935799 −0.467900 0.883782i \(-0.654989\pi\)
−0.467900 + 0.883782i \(0.654989\pi\)
\(402\) −10.2942 10.2942i −0.513428 0.513428i
\(403\) 15.2674 + 15.2674i 0.760524 + 0.760524i
\(404\) 13.9159 0.692343
\(405\) −2.17041 + 0.537883i −0.107849 + 0.0267276i
\(406\) 0 0
\(407\) −8.75542 + 8.75542i −0.433990 + 0.433990i
\(408\) 0.0153229 + 0.0153229i 0.000758598 + 0.000758598i
\(409\) 23.3536 1.15476 0.577381 0.816475i \(-0.304075\pi\)
0.577381 + 0.816475i \(0.304075\pi\)
\(410\) 4.76804 + 2.87412i 0.235477 + 0.141943i
\(411\) 10.2358i 0.504893i
\(412\) 8.47403 + 8.47403i 0.417485 + 0.417485i
\(413\) 0 0
\(414\) 7.17989i 0.352873i
\(415\) 15.9141 26.4009i 0.781194 1.29597i
\(416\) 2.72238i 0.133476i
\(417\) 3.99599 3.99599i 0.195685 0.195685i
\(418\) −1.63115 + 1.63115i −0.0797820 + 0.0797820i
\(419\) −8.27092 −0.404061 −0.202030 0.979379i \(-0.564754\pi\)
−0.202030 + 0.979379i \(0.564754\pi\)
\(420\) 0 0
\(421\) −33.3728 −1.62649 −0.813246 0.581920i \(-0.802302\pi\)
−0.813246 + 0.581920i \(0.802302\pi\)
\(422\) 13.4672 13.4672i 0.655574 0.655574i
\(423\) 2.88977 2.88977i 0.140505 0.140505i
\(424\) 2.92719i 0.142157i
\(425\) −0.103525 0.0319715i −0.00502170 0.00155084i
\(426\) 7.51848i 0.364272i
\(427\) 0 0
\(428\) −4.88300 4.88300i −0.236029 0.236029i
\(429\) 3.17374i 0.153229i
\(430\) 24.1796 5.99231i 1.16604 0.288975i
\(431\) −24.3467 −1.17274 −0.586369 0.810044i \(-0.699443\pi\)
−0.586369 + 0.810044i \(0.699443\pi\)
\(432\) −0.707107 0.707107i −0.0340207 0.0340207i
\(433\) 18.0803 18.0803i 0.868885 0.868885i −0.123464 0.992349i \(-0.539400\pi\)
0.992349 + 0.123464i \(0.0394002\pi\)
\(434\) 0 0
\(435\) 10.7359 + 6.47146i 0.514746 + 0.310283i
\(436\) 0.577314 0.0276483
\(437\) −10.0459 10.0459i −0.480561 0.480561i
\(438\) 2.64838 + 2.64838i 0.126545 + 0.126545i
\(439\) −16.2202 −0.774150 −0.387075 0.922048i \(-0.626514\pi\)
−0.387075 + 0.922048i \(0.626514\pi\)
\(440\) −2.23256 1.34576i −0.106433 0.0641566i
\(441\) 0 0
\(442\) 0.0417148 0.0417148i 0.00198417 0.00198417i
\(443\) 15.4050 + 15.4050i 0.731911 + 0.731911i 0.970998 0.239087i \(-0.0768480\pi\)
−0.239087 + 0.970998i \(0.576848\pi\)
\(444\) 10.6211 0.504055
\(445\) 7.82455 1.93912i 0.370919 0.0919231i
\(446\) 4.16472i 0.197205i
\(447\) −0.156132 0.156132i −0.00738477 0.00738477i
\(448\) 0 0
\(449\) 10.1648i 0.479708i −0.970809 0.239854i \(-0.922900\pi\)
0.970809 0.239854i \(-0.0770996\pi\)
\(450\) 4.77737 + 1.47539i 0.225207 + 0.0695504i
\(451\) 2.90256i 0.136676i
\(452\) 13.2689 13.2689i 0.624115 0.624115i
\(453\) 4.50346 4.50346i 0.211591 0.211591i
\(454\) 18.4389 0.865381
\(455\) 0 0
\(456\) 1.97873 0.0926624
\(457\) −20.1699 + 20.1699i −0.943509 + 0.943509i −0.998488 0.0549784i \(-0.982491\pi\)
0.0549784 + 0.998488i \(0.482491\pi\)
\(458\) 4.17908 4.17908i 0.195276 0.195276i
\(459\) 0.0216699i 0.00101146i
\(460\) 8.28827 13.7499i 0.386442 0.641091i
\(461\) 20.0972i 0.936022i 0.883723 + 0.468011i \(0.155029\pi\)
−0.883723 + 0.468011i \(0.844971\pi\)
\(462\) 0 0
\(463\) −7.34462 7.34462i −0.341334 0.341334i 0.515535 0.856869i \(-0.327593\pi\)
−0.856869 + 0.515535i \(0.827593\pi\)
\(464\) 5.60604i 0.260254i
\(465\) −15.1884 9.15540i −0.704346 0.424571i
\(466\) −7.23533 −0.335170
\(467\) 16.6908 + 16.6908i 0.772359 + 0.772359i 0.978518 0.206160i \(-0.0660966\pi\)
−0.206160 + 0.978518i \(0.566097\pi\)
\(468\) −1.92501 + 1.92501i −0.0889838 + 0.0889838i
\(469\) 0 0
\(470\) −8.86993 + 2.19819i −0.409139 + 0.101395i
\(471\) 14.4763 0.667031
\(472\) 7.56072 + 7.56072i 0.348010 + 0.348010i
\(473\) 9.18362 + 9.18362i 0.422263 + 0.422263i
\(474\) −1.61039 −0.0739679
\(475\) −8.74867 + 4.62004i −0.401417 + 0.211982i
\(476\) 0 0
\(477\) −2.06984 + 2.06984i −0.0947714 + 0.0947714i
\(478\) −2.97106 2.97106i −0.135893 0.135893i
\(479\) −24.7785 −1.13216 −0.566079 0.824351i \(-0.691540\pi\)
−0.566079 + 0.824351i \(0.691540\pi\)
\(480\) 0.537883 + 2.17041i 0.0245509 + 0.0990652i
\(481\) 28.9147i 1.31840i
\(482\) 15.5110 + 15.5110i 0.706507 + 0.706507i
\(483\) 0 0
\(484\) 9.64092i 0.438224i
\(485\) 0.719054 + 0.433437i 0.0326506 + 0.0196814i
\(486\) 1.00000i 0.0453609i
\(487\) 16.8056 16.8056i 0.761536 0.761536i −0.215064 0.976600i \(-0.568996\pi\)
0.976600 + 0.215064i \(0.0689960\pi\)
\(488\) −2.57846 + 2.57846i −0.116721 + 0.116721i
\(489\) −21.9057 −0.990608
\(490\) 0 0
\(491\) −0.386093 −0.0174242 −0.00871208 0.999962i \(-0.502773\pi\)
−0.00871208 + 0.999962i \(0.502773\pi\)
\(492\) 1.76053 1.76053i 0.0793709 0.0793709i
\(493\) −0.0859010 + 0.0859010i −0.00386879 + 0.00386879i
\(494\) 5.38685i 0.242366i
\(495\) 0.627061 + 2.53025i 0.0281843 + 0.113726i
\(496\) 7.93107i 0.356115i
\(497\) 0 0
\(498\) −9.74815 9.74815i −0.436825 0.436825i
\(499\) 8.02507i 0.359252i −0.983735 0.179626i \(-0.942511\pi\)
0.983735 0.179626i \(-0.0574887\pi\)
\(500\) −7.44577 8.34030i −0.332985 0.372989i
\(501\) −16.1103 −0.719754
\(502\) 10.6980 + 10.6980i 0.477476 + 0.477476i
\(503\) −11.5901 + 11.5901i −0.516775 + 0.516775i −0.916594 0.399819i \(-0.869073\pi\)
0.399819 + 0.916594i \(0.369073\pi\)
\(504\) 0 0
\(505\) 7.48513 + 30.2033i 0.333084 + 1.34403i
\(506\) 8.37028 0.372105
\(507\) −3.95177 3.95177i −0.175504 0.175504i
\(508\) −1.36110 1.36110i −0.0603890 0.0603890i
\(509\) 15.5484 0.689173 0.344586 0.938755i \(-0.388019\pi\)
0.344586 + 0.938755i \(0.388019\pi\)
\(510\) −0.0250151 + 0.0414990i −0.00110769 + 0.00183761i
\(511\) 0 0
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) −1.39917 1.39917i −0.0617749 0.0617749i
\(514\) 23.0143 1.01512
\(515\) −13.8341 + 22.9502i −0.609603 + 1.01130i
\(516\) 11.1406i 0.490435i
\(517\) −3.36888 3.36888i −0.148163 0.148163i
\(518\) 0 0
\(519\) 10.4433i 0.458408i
\(520\) 5.90868 1.46432i 0.259113 0.0642147i
\(521\) 26.3933i 1.15631i 0.815926 + 0.578156i \(0.196228\pi\)
−0.815926 + 0.578156i \(0.803772\pi\)
\(522\) 3.96407 3.96407i 0.173503 0.173503i
\(523\) −27.9009 + 27.9009i −1.22002 + 1.22002i −0.252400 + 0.967623i \(0.581220\pi\)
−0.967623 + 0.252400i \(0.918780\pi\)
\(524\) 17.1498 0.749192
\(525\) 0 0
\(526\) 20.1205 0.877294
\(527\) 0.121527 0.121527i 0.00529381 0.00529381i
\(528\) −0.824341 + 0.824341i −0.0358749 + 0.0358749i
\(529\) 28.5509i 1.24134i
\(530\) 6.35321 1.57449i 0.275966 0.0683913i
\(531\) 10.6925i 0.464014i
\(532\) 0 0
\(533\) −4.79284 4.79284i −0.207601 0.207601i
\(534\) 3.60510i 0.156008i
\(535\) 7.97164 13.2246i 0.344644 0.571750i
\(536\) 14.5582 0.628819
\(537\) 1.06563 + 1.06563i 0.0459854 + 0.0459854i
\(538\) −6.55459 + 6.55459i −0.282588 + 0.282588i
\(539\) 0 0
\(540\) 1.15437 1.91505i 0.0496762 0.0824107i
\(541\) 8.13698 0.349836 0.174918 0.984583i \(-0.444034\pi\)
0.174918 + 0.984583i \(0.444034\pi\)
\(542\) 18.5473 + 18.5473i 0.796673 + 0.796673i
\(543\) −15.0937 15.0937i −0.647733 0.647733i
\(544\) −0.0216699 −0.000929089
\(545\) 0.310527 + 1.25301i 0.0133015 + 0.0536730i
\(546\) 0 0
\(547\) 12.5204 12.5204i 0.535335 0.535335i −0.386820 0.922155i \(-0.626427\pi\)
0.922155 + 0.386820i \(0.126427\pi\)
\(548\) −7.23778 7.23778i −0.309182 0.309182i
\(549\) 3.64649 0.155628
\(550\) 1.72000 5.56943i 0.0733410 0.237481i
\(551\) 11.0928i 0.472570i
\(552\) −5.07695 5.07695i −0.216089 0.216089i
\(553\) 0 0
\(554\) 13.2995i 0.565040i
\(555\) 5.71291 + 23.0522i 0.242500 + 0.978510i
\(556\) 5.65119i 0.239664i
\(557\) −11.4507 + 11.4507i −0.485180 + 0.485180i −0.906781 0.421601i \(-0.861468\pi\)
0.421601 + 0.906781i \(0.361468\pi\)
\(558\) −5.60811 + 5.60811i −0.237410 + 0.237410i
\(559\) −30.3288 −1.28277
\(560\) 0 0
\(561\) −0.0252626 −0.00106659
\(562\) 9.55307 9.55307i 0.402972 0.402972i
\(563\) −6.19009 + 6.19009i −0.260881 + 0.260881i −0.825412 0.564531i \(-0.809057\pi\)
0.564531 + 0.825412i \(0.309057\pi\)
\(564\) 4.08675i 0.172083i
\(565\) 35.9360 + 21.6618i 1.51184 + 0.911318i
\(566\) 19.8911i 0.836085i
\(567\) 0 0
\(568\) 5.31637 + 5.31637i 0.223070 + 0.223070i
\(569\) 41.5454i 1.74168i −0.491571 0.870838i \(-0.663577\pi\)
0.491571 0.870838i \(-0.336423\pi\)
\(570\) 1.06432 + 4.29465i 0.0445796 + 0.179883i
\(571\) 13.1852 0.551782 0.275891 0.961189i \(-0.411027\pi\)
0.275891 + 0.961189i \(0.411027\pi\)
\(572\) 2.24417 + 2.24417i 0.0938335 + 0.0938335i
\(573\) −4.56144 + 4.56144i −0.190557 + 0.190557i
\(574\) 0 0
\(575\) 34.3010 + 10.5931i 1.43045 + 0.441764i
\(576\) 1.00000 0.0416667
\(577\) 12.6878 + 12.6878i 0.528201 + 0.528201i 0.920036 0.391835i \(-0.128160\pi\)
−0.391835 + 0.920036i \(0.628160\pi\)
\(578\) 12.0205 + 12.0205i 0.499986 + 0.499986i
\(579\) 5.13858 0.213552
\(580\) −12.1674 + 3.01539i −0.505225 + 0.125207i
\(581\) 0 0
\(582\) 0.265501 0.265501i 0.0110054 0.0110054i
\(583\) 2.41301 + 2.41301i 0.0999365 + 0.0999365i
\(584\) −3.74538 −0.154985
\(585\) −5.21350 3.14264i −0.215552 0.129932i
\(586\) 24.6135i 1.01677i
\(587\) −7.68342 7.68342i −0.317129 0.317129i 0.530535 0.847663i \(-0.321991\pi\)
−0.847663 + 0.530535i \(0.821991\pi\)
\(588\) 0 0
\(589\) 15.6934i 0.646636i
\(590\) −12.3431 + 20.4766i −0.508157 + 0.843010i
\(591\) 25.2221i 1.03750i
\(592\) −7.51026 + 7.51026i −0.308670 + 0.308670i
\(593\) −5.55504 + 5.55504i −0.228118 + 0.228118i −0.811906 0.583788i \(-0.801570\pi\)
0.583788 + 0.811906i \(0.301570\pi\)
\(594\) 1.16579 0.0478331
\(595\) 0 0
\(596\) 0.220803 0.00904446
\(597\) 3.49450 3.49450i 0.143020 0.143020i
\(598\) −13.8214 + 13.8214i −0.565199 + 0.565199i
\(599\) 23.7314i 0.969638i 0.874615 + 0.484819i \(0.161114\pi\)
−0.874615 + 0.484819i \(0.838886\pi\)
\(600\) −4.42136 + 2.33485i −0.180501 + 0.0953200i
\(601\) 14.4348i 0.588806i 0.955681 + 0.294403i \(0.0951208\pi\)
−0.955681 + 0.294403i \(0.904879\pi\)
\(602\) 0 0
\(603\) −10.2942 10.2942i −0.419213 0.419213i
\(604\) 6.36885i 0.259145i
\(605\) −20.9248 + 5.18569i −0.850712 + 0.210828i
\(606\) 13.9159 0.565296
\(607\) −0.472022 0.472022i −0.0191588 0.0191588i 0.697462 0.716621i \(-0.254312\pi\)
−0.716621 + 0.697462i \(0.754312\pi\)
\(608\) −1.39917 + 1.39917i −0.0567439 + 0.0567439i
\(609\) 0 0
\(610\) −6.98322 4.20940i −0.282742 0.170434i
\(611\) 11.1257 0.450097
\(612\) 0.0153229 + 0.0153229i 0.000619393 + 0.000619393i
\(613\) −10.4369 10.4369i −0.421544 0.421544i 0.464191 0.885735i \(-0.346345\pi\)
−0.885735 + 0.464191i \(0.846345\pi\)
\(614\) −0.800938 −0.0323232
\(615\) 4.76804 + 2.87412i 0.192266 + 0.115896i
\(616\) 0 0
\(617\) −4.88322 + 4.88322i −0.196591 + 0.196591i −0.798537 0.601946i \(-0.794392\pi\)
0.601946 + 0.798537i \(0.294392\pi\)
\(618\) 8.47403 + 8.47403i 0.340875 + 0.340875i
\(619\) −27.7950 −1.11718 −0.558589 0.829445i \(-0.688657\pi\)
−0.558589 + 0.829445i \(0.688657\pi\)
\(620\) 17.2137 4.26598i 0.691318 0.171326i
\(621\) 7.17989i 0.288119i
\(622\) −9.47327 9.47327i −0.379844 0.379844i
\(623\) 0 0
\(624\) 2.72238i 0.108982i
\(625\) 14.0969 20.6465i 0.563877 0.825859i
\(626\) 28.7580i 1.14940i
\(627\) −1.63115 + 1.63115i −0.0651417 + 0.0651417i
\(628\) −10.2363 + 10.2363i −0.408471 + 0.408471i
\(629\) −0.230158 −0.00917701
\(630\) 0 0
\(631\) 6.30112 0.250844 0.125422 0.992104i \(-0.459972\pi\)
0.125422 + 0.992104i \(0.459972\pi\)
\(632\) 1.13872 1.13872i 0.0452959 0.0452959i
\(633\) 13.4672 13.4672i 0.535274 0.535274i
\(634\) 33.7349i 1.33979i
\(635\) 2.22203 3.68625i 0.0881786 0.146284i
\(636\) 2.92719i 0.116071i
\(637\) 0 0
\(638\) −4.62129 4.62129i −0.182959 0.182959i
\(639\) 7.51848i 0.297427i
\(640\) −1.91505 1.15437i −0.0756991 0.0456305i
\(641\) 5.27369 0.208298 0.104149 0.994562i \(-0.466788\pi\)
0.104149 + 0.994562i \(0.466788\pi\)
\(642\) −4.88300 4.88300i −0.192717 0.192717i
\(643\) 5.34948 5.34948i 0.210963 0.210963i −0.593714 0.804677i \(-0.702339\pi\)
0.804677 + 0.593714i \(0.202339\pi\)
\(644\) 0 0
\(645\) 24.1796 5.99231i 0.952070 0.235947i
\(646\) −0.0428788 −0.00168704
\(647\) −15.6685 15.6685i −0.615992 0.615992i 0.328509 0.944501i \(-0.393454\pi\)
−0.944501 + 0.328509i \(0.893454\pi\)
\(648\) −0.707107 0.707107i −0.0277778 0.0277778i
\(649\) −12.4652 −0.489303
\(650\) 6.35636 + 12.0366i 0.249317 + 0.472116i
\(651\) 0 0
\(652\) 15.4896 15.4896i 0.606621 0.606621i
\(653\) −31.3513 31.3513i −1.22687 1.22687i −0.965141 0.261729i \(-0.915707\pi\)
−0.261729 0.965141i \(-0.584293\pi\)
\(654\) 0.577314 0.0225748
\(655\) 9.22458 + 37.2221i 0.360434 + 1.45439i
\(656\) 2.48977i 0.0972091i
\(657\) 2.64838 + 2.64838i 0.103323 + 0.103323i
\(658\) 0 0
\(659\) 38.6387i 1.50515i −0.658507 0.752575i \(-0.728812\pi\)
0.658507 0.752575i \(-0.271188\pi\)
\(660\) −2.23256 1.34576i −0.0869022 0.0523837i
\(661\) 28.6063i 1.11265i −0.830963 0.556327i \(-0.812210\pi\)
0.830963 0.556327i \(-0.187790\pi\)
\(662\) 7.73266 7.73266i 0.300538 0.300538i
\(663\) 0.0417148 0.0417148i 0.00162007 0.00162007i
\(664\) 13.7860 0.534999
\(665\) 0 0
\(666\) 10.6211 0.411560
\(667\) 28.4616 28.4616i 1.10204 1.10204i
\(668\) 11.3917 11.3917i 0.440757 0.440757i
\(669\) 4.16472i 0.161018i
\(670\) 7.83061 + 31.5973i 0.302523 + 1.22071i
\(671\) 4.25106i 0.164110i
\(672\) 0 0
\(673\) 36.6126 + 36.6126i 1.41131 + 1.41131i 0.750932 + 0.660379i \(0.229604\pi\)
0.660379 + 0.750932i \(0.270396\pi\)
\(674\) 14.5545i 0.560617i
\(675\) 4.77737 + 1.47539i 0.183881 + 0.0567876i
\(676\) 5.58865 0.214948
\(677\) 18.9864 + 18.9864i 0.729707 + 0.729707i 0.970561 0.240854i \(-0.0774276\pi\)
−0.240854 + 0.970561i \(0.577428\pi\)
\(678\) 13.2689 13.2689i 0.509587 0.509587i
\(679\) 0 0
\(680\) −0.0116559 0.0470326i −0.000446982 0.00180362i
\(681\) 18.4389 0.706580
\(682\) 6.53791 + 6.53791i 0.250349 + 0.250349i
\(683\) −1.40553 1.40553i −0.0537811 0.0537811i 0.679705 0.733486i \(-0.262108\pi\)
−0.733486 + 0.679705i \(0.762108\pi\)
\(684\) 1.97873 0.0756585
\(685\) 11.8159 19.6020i 0.451461 0.748955i
\(686\) 0 0
\(687\) 4.17908 4.17908i 0.159442 0.159442i
\(688\) 7.87756 + 7.87756i 0.300329 + 0.300329i
\(689\) −7.96893 −0.303592
\(690\) 8.28827 13.7499i 0.315529 0.523449i
\(691\) 9.62525i 0.366162i 0.983098 + 0.183081i \(0.0586070\pi\)
−0.983098 + 0.183081i \(0.941393\pi\)
\(692\) −7.38450 7.38450i −0.280717 0.280717i
\(693\) 0 0
\(694\) 2.55458i 0.0969703i
\(695\) −12.2654 + 3.03968i −0.465253 + 0.115301i
\(696\) 5.60604i 0.212497i
\(697\) −0.0381505 + 0.0381505i −0.00144505 + 0.00144505i
\(698\) −13.1578 + 13.1578i −0.498029 + 0.498029i
\(699\) −7.23533 −0.273665
\(700\) 0 0
\(701\) −12.4958 −0.471959 −0.235980 0.971758i \(-0.575830\pi\)
−0.235980 + 0.971758i \(0.575830\pi\)
\(702\) −1.92501 + 1.92501i −0.0726549 + 0.0726549i
\(703\) −14.8607 + 14.8607i −0.560484 + 0.560484i
\(704\) 1.16579i 0.0439375i
\(705\) −8.86993 + 2.19819i −0.334061 + 0.0827887i
\(706\) 15.8312i 0.595816i
\(707\) 0 0
\(708\) 7.56072 + 7.56072i 0.284149 + 0.284149i
\(709\) 45.7462i 1.71804i 0.511946 + 0.859018i \(0.328925\pi\)
−0.511946 + 0.859018i \(0.671075\pi\)
\(710\) −8.67912 + 14.3983i −0.325722 + 0.540358i
\(711\) −1.61039 −0.0603945
\(712\) 2.54919 + 2.54919i 0.0955349 + 0.0955349i
\(713\) −40.2656 + 40.2656i −1.50796 + 1.50796i
\(714\) 0 0
\(715\) −3.66367 + 6.07787i −0.137014 + 0.227300i
\(716\) −1.50703 −0.0563204
\(717\) −2.97106 2.97106i −0.110956 0.110956i
\(718\) −5.30767 5.30767i −0.198081 0.198081i
\(719\) −16.1088 −0.600756 −0.300378 0.953820i \(-0.597113\pi\)
−0.300378 + 0.953820i \(0.597113\pi\)
\(720\) 0.537883 + 2.17041i 0.0200457 + 0.0808864i
\(721\) 0 0
\(722\) 10.6665 10.6665i 0.396964 0.396964i
\(723\) 15.5110 + 15.5110i 0.576861 + 0.576861i
\(724\) 21.3457 0.793308
\(725\) −13.0893 24.7864i −0.486124 0.920542i
\(726\) 9.64092i 0.357808i
\(727\) −26.7345 26.7345i −0.991528 0.991528i 0.00843633 0.999964i \(-0.497315\pi\)
−0.999964 + 0.00843633i \(0.997315\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) −2.01458 8.12901i −0.0745628 0.300868i
\(731\) 0.241415i 0.00892904i
\(732\) −2.57846 + 2.57846i −0.0953025 + 0.0953025i
\(733\) −7.18611 + 7.18611i −0.265425 + 0.265425i −0.827254 0.561829i \(-0.810098\pi\)
0.561829 + 0.827254i \(0.310098\pi\)
\(734\) −3.94796 −0.145722
\(735\) 0 0
\(736\) 7.17989 0.264654
\(737\) −12.0009 + 12.0009i −0.442060 + 0.442060i
\(738\) 1.76053 1.76053i 0.0648061 0.0648061i
\(739\) 1.74772i 0.0642908i −0.999483 0.0321454i \(-0.989766\pi\)
0.999483 0.0321454i \(-0.0102340\pi\)
\(740\) −20.3400 12.2607i −0.747712 0.450712i
\(741\) 5.38685i 0.197891i
\(742\) 0 0
\(743\) 4.26452 + 4.26452i 0.156450 + 0.156450i 0.780992 0.624542i \(-0.214714\pi\)
−0.624542 + 0.780992i \(0.714714\pi\)
\(744\) 7.93107i 0.290767i
\(745\) 0.118766 + 0.479234i 0.00435126 + 0.0175578i
\(746\) −5.39411 −0.197492
\(747\) −9.74815 9.74815i −0.356666 0.356666i
\(748\) 0.0178634 0.0178634i 0.000653150 0.000653150i
\(749\) 0 0
\(750\) −7.44577 8.34030i −0.271881 0.304545i
\(751\) 15.0871 0.550535 0.275268 0.961368i \(-0.411234\pi\)
0.275268 + 0.961368i \(0.411234\pi\)
\(752\) −2.88977 2.88977i −0.105379 0.105379i
\(753\) 10.6980 + 10.6980i 0.389858 + 0.389858i
\(754\) 15.2618 0.555801
\(755\) −13.8230 + 3.42569i −0.503071 + 0.124674i
\(756\) 0 0
\(757\) −7.26095 + 7.26095i −0.263904 + 0.263904i −0.826638 0.562734i \(-0.809749\pi\)
0.562734 + 0.826638i \(0.309749\pi\)
\(758\) −1.74940 1.74940i −0.0635411 0.0635411i
\(759\) 8.37028 0.303822
\(760\) −3.78937 2.28419i −0.137455 0.0828561i
\(761\) 12.3608i 0.448079i 0.974580 + 0.224040i \(0.0719245\pi\)
−0.974580 + 0.224040i \(0.928076\pi\)
\(762\) −1.36110 1.36110i −0.0493074 0.0493074i
\(763\) 0 0
\(764\) 6.45086i 0.233384i
\(765\) −0.0250151 + 0.0414990i −0.000904423 + 0.00150040i
\(766\) 24.1087i 0.871083i
\(767\) 20.5831 20.5831i 0.743214 0.743214i
\(768\) −0.707107 + 0.707107i −0.0255155 + 0.0255155i
\(769\) −17.1708 −0.619196 −0.309598 0.950867i \(-0.600195\pi\)
−0.309598 + 0.950867i \(0.600195\pi\)
\(770\) 0 0
\(771\) 23.0143 0.828839
\(772\) −3.63352 + 3.63352i −0.130773 + 0.130773i
\(773\) 0.895237 0.895237i 0.0321994 0.0321994i −0.690824 0.723023i \(-0.742752\pi\)
0.723023 + 0.690824i \(0.242752\pi\)
\(774\) 11.1406i 0.400439i
\(775\) 18.5179 + 35.0661i 0.665182 + 1.25961i
\(776\) 0.375475i 0.0134788i
\(777\) 0 0
\(778\) 4.56126 + 4.56126i 0.163529 + 0.163529i
\(779\) 4.92657i 0.176513i
\(780\) 5.90868 1.46432i 0.211565 0.0524311i
\(781\) −8.76501 −0.313637
\(782\) 0.110017 + 0.110017i 0.00393420 + 0.00393420i
\(783\) 3.96407 3.96407i 0.141664 0.141664i
\(784\) 0 0
\(785\) −27.7228 16.7110i −0.989469 0.596441i
\(786\) 17.1498 0.611713
\(787\) 10.8355 + 10.8355i 0.386243 + 0.386243i 0.873345 0.487102i \(-0.161946\pi\)
−0.487102 + 0.873345i \(0.661946\pi\)
\(788\) −17.8347 17.8347i −0.635334 0.635334i
\(789\) 20.1205 0.716308
\(790\) 3.08399 + 1.85899i 0.109723 + 0.0661400i
\(791\) 0 0
\(792\) −0.824341 + 0.824341i −0.0292917 + 0.0292917i
\(793\) 7.01954 + 7.01954i 0.249271 + 0.249271i
\(794\) 18.7167 0.664230
\(795\) 6.35321 1.57449i 0.225325 0.0558413i
\(796\) 4.94197i 0.175163i
\(797\) 36.4737 + 36.4737i 1.29197 + 1.29197i 0.933570 + 0.358396i \(0.116676\pi\)
0.358396 + 0.933570i \(0.383324\pi\)
\(798\) 0 0
\(799\) 0.0885594i 0.00313301i
\(800\) 1.47539 4.77737i 0.0521628 0.168905i
\(801\) 3.60510i 0.127380i
\(802\) 13.2507 13.2507i 0.467900 0.467900i
\(803\) 3.08747 3.08747i 0.108955 0.108955i
\(804\) 14.5582 0.513428
\(805\) 0 0
\(806\) −21.5914 −0.760524
\(807\) −6.55459 + 6.55459i −0.230732 + 0.230732i
\(808\) −9.84004 + 9.84004i −0.346171 + 0.346171i
\(809\) 13.8746i 0.487806i 0.969800 + 0.243903i \(0.0784278\pi\)
−0.969800 + 0.243903i \(0.921572\pi\)
\(810\) 1.15437 1.91505i 0.0405605 0.0672881i
\(811\) 18.4047i 0.646275i −0.946352 0.323137i \(-0.895262\pi\)
0.946352 0.323137i \(-0.104738\pi\)
\(812\) 0 0
\(813\) 18.5473 + 18.5473i 0.650481 + 0.650481i
\(814\) 12.3820i 0.433990i
\(815\) 41.9505 + 25.2873i 1.46946 + 0.885775i
\(816\) −0.0216699 −0.000758598
\(817\) 15.5875 + 15.5875i 0.545339 + 0.545339i
\(818\) −16.5135 + 16.5135i −0.577381 + 0.577381i
\(819\) 0 0
\(820\) −5.40382 + 1.33920i −0.188710 + 0.0467670i
\(821\) 32.8805 1.14754 0.573768 0.819018i \(-0.305481\pi\)
0.573768 + 0.819018i \(0.305481\pi\)
\(822\) −7.23778 7.23778i −0.252446 0.252446i
\(823\) −17.2643 17.2643i −0.601796 0.601796i 0.338993 0.940789i \(-0.389914\pi\)
−0.940789 + 0.338993i \(0.889914\pi\)
\(824\) −11.9841 −0.417485
\(825\) 1.72000 5.56943i 0.0598826 0.193903i
\(826\) 0 0
\(827\) 1.94367 1.94367i 0.0675881 0.0675881i −0.672505 0.740093i \(-0.734782\pi\)
0.740093 + 0.672505i \(0.234782\pi\)
\(828\) −5.07695 5.07695i −0.176436 0.176436i
\(829\) −17.9832 −0.624583 −0.312291 0.949986i \(-0.601097\pi\)
−0.312291 + 0.949986i \(0.601097\pi\)
\(830\) 7.41524 + 29.9212i 0.257387 + 1.03858i
\(831\) 13.2995i 0.461354i
\(832\) 1.92501 + 1.92501i 0.0667378 + 0.0667378i
\(833\) 0 0
\(834\) 5.65119i 0.195685i
\(835\) 30.8520 + 18.5972i 1.06768 + 0.643584i
\(836\) 2.30679i 0.0797820i
\(837\) −5.60811 + 5.60811i −0.193845 + 0.193845i
\(838\) 5.84842 5.84842i 0.202030 0.202030i
\(839\) 4.25819 0.147009 0.0735045 0.997295i \(-0.476582\pi\)
0.0735045 + 0.997295i \(0.476582\pi\)
\(840\) 0 0
\(841\) −2.42773 −0.0837148
\(842\) 23.5982 23.5982i 0.813246 0.813246i
\(843\) 9.55307 9.55307i 0.329025 0.329025i
\(844\) 19.0455i 0.655574i
\(845\) 3.00604 + 12.1297i 0.103411 + 0.417273i
\(846\) 4.08675i 0.140505i
\(847\) 0 0
\(848\) 2.06984 + 2.06984i 0.0710785 + 0.0710785i
\(849\) 19.8911i 0.682660i
\(850\) 0.0958105 0.0505960i 0.00328627 0.00173543i
\(851\) 76.2584 2.61411
\(852\) 5.31637 + 5.31637i 0.182136 + 0.182136i
\(853\) 36.5310 36.5310i 1.25080 1.25080i 0.295436 0.955362i \(-0.404535\pi\)
0.955362 0.295436i \(-0.0954650\pi\)
\(854\) 0 0
\(855\) 1.06432 + 4.29465i 0.0363991 + 0.146874i
\(856\) 6.90561 0.236029
\(857\) −2.24292 2.24292i −0.0766167 0.0766167i 0.667760 0.744377i \(-0.267253\pi\)
−0.744377 + 0.667760i \(0.767253\pi\)
\(858\) 2.24417 + 2.24417i 0.0766147 + 0.0766147i
\(859\) −29.8751 −1.01933 −0.509663 0.860374i \(-0.670230\pi\)
−0.509663 + 0.860374i \(0.670230\pi\)
\(860\) −12.8603 + 21.3347i −0.438534 + 0.727509i
\(861\) 0 0
\(862\) 17.2157 17.2157i 0.586369 0.586369i
\(863\) 22.8475 + 22.8475i 0.777738 + 0.777738i 0.979446 0.201708i \(-0.0646491\pi\)
−0.201708 + 0.979446i \(0.564649\pi\)
\(864\) 1.00000 0.0340207
\(865\) 12.0554 19.9994i 0.409896 0.680000i
\(866\) 25.5695i 0.868885i
\(867\) 12.0205 + 12.0205i 0.408237 + 0.408237i
\(868\) 0 0
\(869\) 1.87739i 0.0636861i
\(870\) −12.1674 + 3.01539i −0.412514 + 0.102231i
\(871\) 39.6330i 1.34291i
\(872\) −0.408223 + 0.408223i −0.0138242 + 0.0138242i
\(873\) 0.265501 0.265501i 0.00898584 0.00898584i
\(874\) 14.2070 0.480561
\(875\) 0 0
\(876\) −3.74538 −0.126545
\(877\) 2.88138 2.88138i 0.0972971 0.0972971i −0.656783 0.754080i \(-0.728083\pi\)
0.754080 + 0.656783i \(0.228083\pi\)
\(878\) 11.4694 11.4694i 0.387075 0.387075i
\(879\) 24.6135i 0.830193i
\(880\) 2.53025 0.627061i 0.0852948 0.0211382i
\(881\) 19.0783i 0.642764i −0.946950 0.321382i \(-0.895853\pi\)
0.946950 0.321382i \(-0.104147\pi\)
\(882\) 0 0
\(883\) 6.02976 + 6.02976i 0.202918 + 0.202918i 0.801249 0.598331i \(-0.204169\pi\)
−0.598331 + 0.801249i \(0.704169\pi\)
\(884\) 0.0589937i 0.00198417i
\(885\) −12.3431 + 20.4766i −0.414908 + 0.688315i
\(886\) −21.7859 −0.731911
\(887\) 30.7970 + 30.7970i 1.03406 + 1.03406i 0.999399 + 0.0346645i \(0.0110363\pi\)
0.0346645 + 0.999399i \(0.488964\pi\)
\(888\) −7.51026 + 7.51026i −0.252028 + 0.252028i
\(889\) 0 0
\(890\) −4.16162 + 6.90395i −0.139498 + 0.231421i
\(891\) 1.16579 0.0390556
\(892\) 2.94490 + 2.94490i 0.0986027 + 0.0986027i
\(893\) −5.71806 5.71806i −0.191348 0.191348i
\(894\) 0.220803 0.00738477
\(895\) −0.810606 3.27088i −0.0270956 0.109333i
\(896\) 0 0
\(897\) −13.8214 + 13.8214i −0.461483 + 0.461483i
\(898\) 7.18762 + 7.18762i 0.239854 + 0.239854i
\(899\) 44.4619 1.48289
\(900\) −4.42136 + 2.33485i −0.147379 + 0.0778284i
\(901\) 0.0634319i 0.00211322i
\(902\) −2.05242 2.05242i −0.0683381 0.0683381i
\(903\) 0 0
\(904\) 18.7650i 0.624115i
\(905\) 11.4815 + 46.3290i 0.381658 + 1.54003i
\(906\) 6.36885i 0.211591i
\(907\) −40.3409 + 40.3409i −1.33950 + 1.33950i −0.442950 + 0.896546i \(0.646068\pi\)
−0.896546 + 0.442950i \(0.853932\pi\)
\(908\) −13.0383 + 13.0383i −0.432690 + 0.432690i
\(909\) 13.9159 0.461562
\(910\) 0 0
\(911\) −32.4993 −1.07675 −0.538375 0.842705i \(-0.680962\pi\)
−0.538375 + 0.842705i \(0.680962\pi\)
\(912\) −1.39917 + 1.39917i −0.0463312 + 0.0463312i
\(913\) −11.3643 + 11.3643i −0.376105 + 0.376105i
\(914\) 28.5246i 0.943509i
\(915\) −6.98322 4.20940i −0.230858 0.139159i
\(916\) 5.91011i 0.195276i
\(917\) 0 0
\(918\) 0.0153229 + 0.0153229i 0.000505732 + 0.000505732i
\(919\) 2.22330i 0.0733400i −0.999327 0.0366700i \(-0.988325\pi\)
0.999327 0.0366700i \(-0.0116750\pi\)
\(920\) 3.86194 + 15.5833i 0.127324 + 0.513767i
\(921\) −0.800938 −0.0263918
\(922\) −14.2109 14.2109i −0.468011 0.468011i
\(923\) 14.4732 14.4732i 0.476391 0.476391i
\(924\) 0 0
\(925\) 15.6702 50.7409i 0.515234 1.66835i
\(926\) 10.3869 0.341334
\(927\) 8.47403 + 8.47403i 0.278324 + 0.278324i
\(928\) −3.96407 3.96407i −0.130127 0.130127i
\(929\) −0.716611 −0.0235112 −0.0117556 0.999931i \(-0.503742\pi\)
−0.0117556 + 0.999931i \(0.503742\pi\)
\(930\) 17.2137 4.26598i 0.564458 0.139887i
\(931\) 0 0
\(932\) 5.11615 5.11615i 0.167585 0.167585i
\(933\) −9.47327 9.47327i −0.310141 0.310141i
\(934\) −23.6044 −0.772359
\(935\) 0.0483793 + 0.0291625i 0.00158217 + 0.000953715i
\(936\) 2.72238i 0.0889838i
\(937\) −11.6639 11.6639i −0.381042 0.381042i 0.490435 0.871478i \(-0.336838\pi\)
−0.871478 + 0.490435i \(0.836838\pi\)
\(938\) 0 0
\(939\) 28.7580i 0.938481i
\(940\) 4.71763 7.82634i 0.153872 0.255267i
\(941\) 30.9242i 1.00810i 0.863674 + 0.504051i \(0.168158\pi\)
−0.863674 + 0.504051i \(0.831842\pi\)
\(942\) −10.2363 + 10.2363i −0.333515 + 0.333515i
\(943\) 12.6404 12.6404i 0.411629 0.411629i
\(944\) −10.6925 −0.348010
\(945\) 0 0
\(946\) −12.9876 −0.422263
\(947\) −11.5507 + 11.5507i −0.375348 + 0.375348i −0.869421 0.494073i \(-0.835508\pi\)
0.494073 + 0.869421i \(0.335508\pi\)
\(948\) 1.13872 1.13872i 0.0369839 0.0369839i
\(949\) 10.1963i 0.330988i
\(950\) 2.91939 9.45310i 0.0947174 0.306699i
\(951\) 33.7349i 1.09393i
\(952\) 0 0
\(953\) −8.22927 8.22927i −0.266572 0.266572i 0.561145 0.827717i \(-0.310361\pi\)
−0.827717 + 0.561145i \(0.810361\pi\)
\(954\) 2.92719i 0.0947714i
\(955\) 14.0010 3.46980i 0.453062 0.112280i
\(956\) 4.20172 0.135893
\(957\) −4.62129 4.62129i −0.149385 0.149385i
\(958\) 17.5210 17.5210i 0.566079 0.566079i
\(959\) 0 0
\(960\) −1.91505 1.15437i −0.0618081 0.0372572i
\(961\) −31.9018 −1.02909
\(962\) 20.4458 + 20.4458i 0.659198 + 0.659198i
\(963\) −4.88300 4.88300i −0.157353 0.157353i
\(964\) −21.9359 −0.706507
\(965\) −9.84065 5.93183i −0.316782 0.190952i
\(966\) 0 0
\(967\) 1.15164 1.15164i 0.0370342 0.0370342i −0.688347 0.725381i \(-0.741663\pi\)
0.725381 + 0.688347i \(0.241663\pi\)
\(968\) −6.81716 6.81716i −0.219112 0.219112i
\(969\) −0.0428788 −0.00137747
\(970\) −0.814935 + 0.201961i −0.0261660 + 0.00648459i
\(971\) 14.4046i 0.462265i −0.972922 0.231133i \(-0.925757\pi\)
0.972922 0.231133i \(-0.0742431\pi\)
\(972\) −0.707107 0.707107i −0.0226805 0.0226805i
\(973\) 0 0
\(974\) 23.7668i 0.761536i
\(975\) 6.35636 + 12.0366i 0.203566 + 0.385481i
\(976\) 3.64649i 0.116721i
\(977\) −26.3118 + 26.3118i −0.841788 + 0.841788i −0.989091 0.147303i \(-0.952941\pi\)
0.147303 + 0.989091i \(0.452941\pi\)
\(978\) 15.4896 15.4896i 0.495304 0.495304i
\(979\) −4.20281 −0.134322
\(980\) 0 0
\(981\) 0.577314 0.0184322
\(982\) 0.273009 0.273009i 0.00871208 0.00871208i
\(983\) −20.0064 + 20.0064i −0.638106 + 0.638106i −0.950088 0.311982i \(-0.899007\pi\)
0.311982 + 0.950088i \(0.399007\pi\)
\(984\) 2.48977i 0.0793709i
\(985\) 29.1156 48.3016i 0.927701 1.53902i
\(986\) 0.121482i 0.00386879i
\(987\) 0 0
\(988\) 3.80907 + 3.80907i 0.121183 + 0.121183i
\(989\) 79.9880i 2.54347i
\(990\) −2.23256 1.34576i −0.0709554 0.0427711i
\(991\) 37.3450 1.18630 0.593151 0.805091i \(-0.297884\pi\)
0.593151 + 0.805091i \(0.297884\pi\)
\(992\) 5.60811 + 5.60811i 0.178058 + 0.178058i
\(993\) 7.73266 7.73266i 0.245388 0.245388i
\(994\) 0 0
\(995\) −10.7261 + 2.65820i −0.340040 + 0.0842706i
\(996\) 13.7860 0.436825
\(997\) 26.2047 + 26.2047i 0.829913 + 0.829913i 0.987504 0.157592i \(-0.0503730\pi\)
−0.157592 + 0.987504i \(0.550373\pi\)
\(998\) 5.67458 + 5.67458i 0.179626 + 0.179626i
\(999\) 10.6211 0.336037
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1470.2.m.e.1273.4 16
5.2 odd 4 1470.2.m.d.97.1 16
7.4 even 3 210.2.u.b.103.1 yes 16
7.5 odd 6 210.2.u.a.73.4 16
7.6 odd 2 1470.2.m.d.1273.1 16
21.5 even 6 630.2.bv.a.73.1 16
21.11 odd 6 630.2.bv.b.523.4 16
35.4 even 6 1050.2.bc.g.943.3 16
35.12 even 12 210.2.u.b.157.1 yes 16
35.18 odd 12 1050.2.bc.h.607.2 16
35.19 odd 6 1050.2.bc.h.493.2 16
35.27 even 4 inner 1470.2.m.e.97.4 16
35.32 odd 12 210.2.u.a.187.4 yes 16
35.33 even 12 1050.2.bc.g.157.3 16
105.32 even 12 630.2.bv.a.397.1 16
105.47 odd 12 630.2.bv.b.577.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.u.a.73.4 16 7.5 odd 6
210.2.u.a.187.4 yes 16 35.32 odd 12
210.2.u.b.103.1 yes 16 7.4 even 3
210.2.u.b.157.1 yes 16 35.12 even 12
630.2.bv.a.73.1 16 21.5 even 6
630.2.bv.a.397.1 16 105.32 even 12
630.2.bv.b.523.4 16 21.11 odd 6
630.2.bv.b.577.4 16 105.47 odd 12
1050.2.bc.g.157.3 16 35.33 even 12
1050.2.bc.g.943.3 16 35.4 even 6
1050.2.bc.h.493.2 16 35.19 odd 6
1050.2.bc.h.607.2 16 35.18 odd 12
1470.2.m.d.97.1 16 5.2 odd 4
1470.2.m.d.1273.1 16 7.6 odd 2
1470.2.m.e.97.4 16 35.27 even 4 inner
1470.2.m.e.1273.4 16 1.1 even 1 trivial