Properties

Label 1470.2.m.e.1273.1
Level $1470$
Weight $2$
Character 1470.1273
Analytic conductor $11.738$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1470,2,Mod(97,1470)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1470, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1470.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1470.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7380090971\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 12 x^{14} - 48 x^{13} + 67 x^{12} - 24 x^{11} + 118 x^{10} - 176 x^{9} + 351 x^{8} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1273.1
Root \(2.69978 + 0.355433i\) of defining polynomial
Character \(\chi\) \(=\) 1470.1273
Dual form 1470.2.m.e.97.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +(-0.707107 + 0.707107i) q^{3} -1.00000i q^{4} +(-1.99671 + 1.00656i) q^{5} -1.00000i q^{6} +(0.707107 + 0.707107i) q^{8} -1.00000i q^{9} +(0.700141 - 2.12363i) q^{10} -3.10780 q^{11} +(0.707107 + 0.707107i) q^{12} +(3.40812 - 3.40812i) q^{13} +(0.700141 - 2.12363i) q^{15} -1.00000 q^{16} +(3.76725 + 3.76725i) q^{17} +(0.707107 + 0.707107i) q^{18} +7.23346 q^{19} +(1.00656 + 1.99671i) q^{20} +(2.19755 - 2.19755i) q^{22} +(-3.72349 - 3.72349i) q^{23} -1.00000 q^{24} +(2.97368 - 4.01961i) q^{25} +4.81981i q^{26} +(0.707107 + 0.707107i) q^{27} +4.49359i q^{29} +(1.00656 + 1.99671i) q^{30} +9.22503i q^{31} +(0.707107 - 0.707107i) q^{32} +(2.19755 - 2.19755i) q^{33} -5.32769 q^{34} -1.00000 q^{36} +(-2.54080 + 2.54080i) q^{37} +(-5.11483 + 5.11483i) q^{38} +4.81981i q^{39} +(-2.12363 - 0.700141i) q^{40} -2.51851i q^{41} +(-3.86848 - 3.86848i) q^{43} +3.10780i q^{44} +(1.00656 + 1.99671i) q^{45} +5.26581 q^{46} +(-2.88813 - 2.88813i) q^{47} +(0.707107 - 0.707107i) q^{48} +(0.739583 + 4.94500i) q^{50} -5.32769 q^{51} +(-3.40812 - 3.40812i) q^{52} +(2.43203 + 2.43203i) q^{53} -1.00000 q^{54} +(6.20538 - 3.12819i) q^{55} +(-5.11483 + 5.11483i) q^{57} +(-3.17745 - 3.17745i) q^{58} -1.33238 q^{59} +(-2.12363 - 0.700141i) q^{60} +12.5538i q^{61} +(-6.52308 - 6.52308i) q^{62} +1.00000i q^{64} +(-3.37454 + 10.2355i) q^{65} +3.10780i q^{66} +(-4.71136 + 4.71136i) q^{67} +(3.76725 - 3.76725i) q^{68} +5.26581 q^{69} +9.22738 q^{71} +(0.707107 - 0.707107i) q^{72} +(5.82099 - 5.82099i) q^{73} -3.59323i q^{74} +(0.739583 + 4.94500i) q^{75} -7.23346i q^{76} +(-3.40812 - 3.40812i) q^{78} +1.91436i q^{79} +(1.99671 - 1.00656i) q^{80} -1.00000 q^{81} +(1.78086 + 1.78086i) q^{82} +(-8.97250 + 8.97250i) q^{83} +(-11.3140 - 3.73013i) q^{85} +5.47086 q^{86} +(-3.17745 - 3.17745i) q^{87} +(-2.19755 - 2.19755i) q^{88} -4.07354 q^{89} +(-2.12363 - 0.700141i) q^{90} +(-3.72349 + 3.72349i) q^{92} +(-6.52308 - 6.52308i) q^{93} +4.08444 q^{94} +(-14.4431 + 7.28091i) q^{95} +1.00000i q^{96} +(-2.69423 - 2.69423i) q^{97} +3.10780i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{10} - 8 q^{11} + 16 q^{13} + 4 q^{15} - 16 q^{16} - 24 q^{17} - 16 q^{19} + 8 q^{20} + 4 q^{22} + 8 q^{23} - 16 q^{24} + 16 q^{25} + 8 q^{30} + 4 q^{33} - 16 q^{34} - 16 q^{36} + 16 q^{37} - 8 q^{38}+ \cdots - 44 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1470\mathbb{Z}\right)^\times\).

\(n\) \(491\) \(1081\) \(1177\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) −0.707107 + 0.707107i −0.408248 + 0.408248i
\(4\) 1.00000i 0.500000i
\(5\) −1.99671 + 1.00656i −0.892955 + 0.450147i
\(6\) 1.00000i 0.408248i
\(7\) 0 0
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 1.00000i 0.333333i
\(10\) 0.700141 2.12363i 0.221404 0.671551i
\(11\) −3.10780 −0.937038 −0.468519 0.883453i \(-0.655212\pi\)
−0.468519 + 0.883453i \(0.655212\pi\)
\(12\) 0.707107 + 0.707107i 0.204124 + 0.204124i
\(13\) 3.40812 3.40812i 0.945243 0.945243i −0.0533341 0.998577i \(-0.516985\pi\)
0.998577 + 0.0533341i \(0.0169848\pi\)
\(14\) 0 0
\(15\) 0.700141 2.12363i 0.180776 0.548319i
\(16\) −1.00000 −0.250000
\(17\) 3.76725 + 3.76725i 0.913692 + 0.913692i 0.996560 0.0828688i \(-0.0264083\pi\)
−0.0828688 + 0.996560i \(0.526408\pi\)
\(18\) 0.707107 + 0.707107i 0.166667 + 0.166667i
\(19\) 7.23346 1.65947 0.829735 0.558158i \(-0.188492\pi\)
0.829735 + 0.558158i \(0.188492\pi\)
\(20\) 1.00656 + 1.99671i 0.225073 + 0.446477i
\(21\) 0 0
\(22\) 2.19755 2.19755i 0.468519 0.468519i
\(23\) −3.72349 3.72349i −0.776401 0.776401i 0.202816 0.979217i \(-0.434991\pi\)
−0.979217 + 0.202816i \(0.934991\pi\)
\(24\) −1.00000 −0.204124
\(25\) 2.97368 4.01961i 0.594736 0.803921i
\(26\) 4.81981i 0.945243i
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) 0 0
\(29\) 4.49359i 0.834438i 0.908806 + 0.417219i \(0.136995\pi\)
−0.908806 + 0.417219i \(0.863005\pi\)
\(30\) 1.00656 + 1.99671i 0.183772 + 0.364547i
\(31\) 9.22503i 1.65686i 0.560089 + 0.828432i \(0.310767\pi\)
−0.560089 + 0.828432i \(0.689233\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 2.19755 2.19755i 0.382544 0.382544i
\(34\) −5.32769 −0.913692
\(35\) 0 0
\(36\) −1.00000 −0.166667
\(37\) −2.54080 + 2.54080i −0.417705 + 0.417705i −0.884412 0.466707i \(-0.845440\pi\)
0.466707 + 0.884412i \(0.345440\pi\)
\(38\) −5.11483 + 5.11483i −0.829735 + 0.829735i
\(39\) 4.81981i 0.771787i
\(40\) −2.12363 0.700141i −0.335775 0.110702i
\(41\) 2.51851i 0.393326i −0.980471 0.196663i \(-0.936990\pi\)
0.980471 0.196663i \(-0.0630104\pi\)
\(42\) 0 0
\(43\) −3.86848 3.86848i −0.589938 0.589938i 0.347677 0.937615i \(-0.386971\pi\)
−0.937615 + 0.347677i \(0.886971\pi\)
\(44\) 3.10780i 0.468519i
\(45\) 1.00656 + 1.99671i 0.150049 + 0.297652i
\(46\) 5.26581 0.776401
\(47\) −2.88813 2.88813i −0.421277 0.421277i 0.464366 0.885643i \(-0.346282\pi\)
−0.885643 + 0.464366i \(0.846282\pi\)
\(48\) 0.707107 0.707107i 0.102062 0.102062i
\(49\) 0 0
\(50\) 0.739583 + 4.94500i 0.104593 + 0.699328i
\(51\) −5.32769 −0.746026
\(52\) −3.40812 3.40812i −0.472621 0.472621i
\(53\) 2.43203 + 2.43203i 0.334066 + 0.334066i 0.854128 0.520063i \(-0.174091\pi\)
−0.520063 + 0.854128i \(0.674091\pi\)
\(54\) −1.00000 −0.136083
\(55\) 6.20538 3.12819i 0.836733 0.421805i
\(56\) 0 0
\(57\) −5.11483 + 5.11483i −0.677476 + 0.677476i
\(58\) −3.17745 3.17745i −0.417219 0.417219i
\(59\) −1.33238 −0.173461 −0.0867303 0.996232i \(-0.527642\pi\)
−0.0867303 + 0.996232i \(0.527642\pi\)
\(60\) −2.12363 0.700141i −0.274159 0.0903878i
\(61\) 12.5538i 1.60735i 0.595071 + 0.803673i \(0.297124\pi\)
−0.595071 + 0.803673i \(0.702876\pi\)
\(62\) −6.52308 6.52308i −0.828432 0.828432i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −3.37454 + 10.2355i −0.418561 + 1.26956i
\(66\) 3.10780i 0.382544i
\(67\) −4.71136 + 4.71136i −0.575584 + 0.575584i −0.933684 0.358099i \(-0.883425\pi\)
0.358099 + 0.933684i \(0.383425\pi\)
\(68\) 3.76725 3.76725i 0.456846 0.456846i
\(69\) 5.26581 0.633929
\(70\) 0 0
\(71\) 9.22738 1.09509 0.547544 0.836777i \(-0.315563\pi\)
0.547544 + 0.836777i \(0.315563\pi\)
\(72\) 0.707107 0.707107i 0.0833333 0.0833333i
\(73\) 5.82099 5.82099i 0.681296 0.681296i −0.278996 0.960292i \(-0.590002\pi\)
0.960292 + 0.278996i \(0.0900017\pi\)
\(74\) 3.59323i 0.417705i
\(75\) 0.739583 + 4.94500i 0.0853997 + 0.570999i
\(76\) 7.23346i 0.829735i
\(77\) 0 0
\(78\) −3.40812 3.40812i −0.385894 0.385894i
\(79\) 1.91436i 0.215383i 0.994184 + 0.107691i \(0.0343458\pi\)
−0.994184 + 0.107691i \(0.965654\pi\)
\(80\) 1.99671 1.00656i 0.223239 0.112537i
\(81\) −1.00000 −0.111111
\(82\) 1.78086 + 1.78086i 0.196663 + 0.196663i
\(83\) −8.97250 + 8.97250i −0.984860 + 0.984860i −0.999887 0.0150269i \(-0.995217\pi\)
0.0150269 + 0.999887i \(0.495217\pi\)
\(84\) 0 0
\(85\) −11.3140 3.73013i −1.22718 0.404590i
\(86\) 5.47086 0.589938
\(87\) −3.17745 3.17745i −0.340658 0.340658i
\(88\) −2.19755 2.19755i −0.234260 0.234260i
\(89\) −4.07354 −0.431794 −0.215897 0.976416i \(-0.569268\pi\)
−0.215897 + 0.976416i \(0.569268\pi\)
\(90\) −2.12363 0.700141i −0.223850 0.0738013i
\(91\) 0 0
\(92\) −3.72349 + 3.72349i −0.388201 + 0.388201i
\(93\) −6.52308 6.52308i −0.676412 0.676412i
\(94\) 4.08444 0.421277
\(95\) −14.4431 + 7.28091i −1.48183 + 0.747005i
\(96\) 1.00000i 0.102062i
\(97\) −2.69423 2.69423i −0.273558 0.273558i 0.556973 0.830531i \(-0.311963\pi\)
−0.830531 + 0.556973i \(0.811963\pi\)
\(98\) 0 0
\(99\) 3.10780i 0.312346i
\(100\) −4.01961 2.97368i −0.401961 0.297368i
\(101\) 7.86244i 0.782342i 0.920318 + 0.391171i \(0.127930\pi\)
−0.920318 + 0.391171i \(0.872070\pi\)
\(102\) 3.76725 3.76725i 0.373013 0.373013i
\(103\) −8.36587 + 8.36587i −0.824313 + 0.824313i −0.986723 0.162410i \(-0.948073\pi\)
0.162410 + 0.986723i \(0.448073\pi\)
\(104\) 4.81981 0.472621
\(105\) 0 0
\(106\) −3.43942 −0.334066
\(107\) −1.52895 + 1.52895i −0.147809 + 0.147809i −0.777139 0.629329i \(-0.783330\pi\)
0.629329 + 0.777139i \(0.283330\pi\)
\(108\) 0.707107 0.707107i 0.0680414 0.0680414i
\(109\) 0.565551i 0.0541700i −0.999633 0.0270850i \(-0.991378\pi\)
0.999633 0.0270850i \(-0.00862248\pi\)
\(110\) −2.17590 + 6.59983i −0.207464 + 0.629269i
\(111\) 3.59323i 0.341054i
\(112\) 0 0
\(113\) 9.98231 + 9.98231i 0.939057 + 0.939057i 0.998247 0.0591899i \(-0.0188518\pi\)
−0.0591899 + 0.998247i \(0.518852\pi\)
\(114\) 7.23346i 0.677476i
\(115\) 11.1826 + 3.68681i 1.04279 + 0.343797i
\(116\) 4.49359 0.417219
\(117\) −3.40812 3.40812i −0.315081 0.315081i
\(118\) 0.942132 0.942132i 0.0867303 0.0867303i
\(119\) 0 0
\(120\) 1.99671 1.00656i 0.182274 0.0918858i
\(121\) −1.34155 −0.121959
\(122\) −8.87686 8.87686i −0.803673 0.803673i
\(123\) 1.78086 + 1.78086i 0.160575 + 0.160575i
\(124\) 9.22503 0.828432
\(125\) −1.89159 + 11.0192i −0.169189 + 0.985584i
\(126\) 0 0
\(127\) −2.14534 + 2.14534i −0.190368 + 0.190368i −0.795855 0.605487i \(-0.792978\pi\)
0.605487 + 0.795855i \(0.292978\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 5.47086 0.481682
\(130\) −4.85142 9.62375i −0.425498 0.844059i
\(131\) 8.77339i 0.766534i 0.923638 + 0.383267i \(0.125201\pi\)
−0.923638 + 0.383267i \(0.874799\pi\)
\(132\) −2.19755 2.19755i −0.191272 0.191272i
\(133\) 0 0
\(134\) 6.66287i 0.575584i
\(135\) −2.12363 0.700141i −0.182773 0.0602585i
\(136\) 5.32769i 0.456846i
\(137\) −9.62030 + 9.62030i −0.821918 + 0.821918i −0.986383 0.164465i \(-0.947410\pi\)
0.164465 + 0.986383i \(0.447410\pi\)
\(138\) −3.72349 + 3.72349i −0.316965 + 0.316965i
\(139\) 10.9145 0.925753 0.462876 0.886423i \(-0.346817\pi\)
0.462876 + 0.886423i \(0.346817\pi\)
\(140\) 0 0
\(141\) 4.08444 0.343972
\(142\) −6.52474 + 6.52474i −0.547544 + 0.547544i
\(143\) −10.5918 + 10.5918i −0.885729 + 0.885729i
\(144\) 1.00000i 0.0833333i
\(145\) −4.52306 8.97238i −0.375620 0.745115i
\(146\) 8.23213i 0.681296i
\(147\) 0 0
\(148\) 2.54080 + 2.54080i 0.208852 + 0.208852i
\(149\) 2.09021i 0.171237i 0.996328 + 0.0856183i \(0.0272866\pi\)
−0.996328 + 0.0856183i \(0.972713\pi\)
\(150\) −4.01961 2.97368i −0.328200 0.242800i
\(151\) 4.04236 0.328963 0.164481 0.986380i \(-0.447405\pi\)
0.164481 + 0.986380i \(0.447405\pi\)
\(152\) 5.11483 + 5.11483i 0.414867 + 0.414867i
\(153\) 3.76725 3.76725i 0.304564 0.304564i
\(154\) 0 0
\(155\) −9.28554 18.4197i −0.745832 1.47950i
\(156\) 4.81981 0.385894
\(157\) −0.640337 0.640337i −0.0511044 0.0511044i 0.681093 0.732197i \(-0.261505\pi\)
−0.732197 + 0.681093i \(0.761505\pi\)
\(158\) −1.35366 1.35366i −0.107691 0.107691i
\(159\) −3.43942 −0.272763
\(160\) −0.700141 + 2.12363i −0.0553510 + 0.167888i
\(161\) 0 0
\(162\) 0.707107 0.707107i 0.0555556 0.0555556i
\(163\) −5.21998 5.21998i −0.408860 0.408860i 0.472481 0.881341i \(-0.343359\pi\)
−0.881341 + 0.472481i \(0.843359\pi\)
\(164\) −2.51851 −0.196663
\(165\) −2.17590 + 6.59983i −0.169394 + 0.513796i
\(166\) 12.6890i 0.984860i
\(167\) 0.610646 + 0.610646i 0.0472532 + 0.0472532i 0.730339 0.683085i \(-0.239362\pi\)
−0.683085 + 0.730339i \(0.739362\pi\)
\(168\) 0 0
\(169\) 10.2306i 0.786967i
\(170\) 10.6378 5.36264i 0.815885 0.411295i
\(171\) 7.23346i 0.553157i
\(172\) −3.86848 + 3.86848i −0.294969 + 0.294969i
\(173\) 2.47309 2.47309i 0.188026 0.188026i −0.606816 0.794842i \(-0.707554\pi\)
0.794842 + 0.606816i \(0.207554\pi\)
\(174\) 4.49359 0.340658
\(175\) 0 0
\(176\) 3.10780 0.234260
\(177\) 0.942132 0.942132i 0.0708150 0.0708150i
\(178\) 2.88043 2.88043i 0.215897 0.215897i
\(179\) 18.0618i 1.35000i −0.737816 0.675002i \(-0.764143\pi\)
0.737816 0.675002i \(-0.235857\pi\)
\(180\) 1.99671 1.00656i 0.148826 0.0750245i
\(181\) 21.7257i 1.61486i 0.589965 + 0.807429i \(0.299142\pi\)
−0.589965 + 0.807429i \(0.700858\pi\)
\(182\) 0 0
\(183\) −8.87686 8.87686i −0.656196 0.656196i
\(184\) 5.26581i 0.388201i
\(185\) 2.51577 7.63069i 0.184963 0.561020i
\(186\) 9.22503 0.676412
\(187\) −11.7079 11.7079i −0.856164 0.856164i
\(188\) −2.88813 + 2.88813i −0.210639 + 0.210639i
\(189\) 0 0
\(190\) 5.06444 15.3612i 0.367413 1.11442i
\(191\) 16.5825 1.19986 0.599932 0.800051i \(-0.295194\pi\)
0.599932 + 0.800051i \(0.295194\pi\)
\(192\) −0.707107 0.707107i −0.0510310 0.0510310i
\(193\) −1.49728 1.49728i −0.107777 0.107777i 0.651162 0.758939i \(-0.274282\pi\)
−0.758939 + 0.651162i \(0.774282\pi\)
\(194\) 3.81022 0.273558
\(195\) −4.85142 9.62375i −0.347418 0.689171i
\(196\) 0 0
\(197\) −1.22531 + 1.22531i −0.0872995 + 0.0872995i −0.749408 0.662108i \(-0.769662\pi\)
0.662108 + 0.749408i \(0.269662\pi\)
\(198\) −2.19755 2.19755i −0.156173 0.156173i
\(199\) 7.87801 0.558458 0.279229 0.960225i \(-0.409921\pi\)
0.279229 + 0.960225i \(0.409921\pi\)
\(200\) 4.94500 0.739583i 0.349664 0.0522964i
\(201\) 6.66287i 0.469963i
\(202\) −5.55958 5.55958i −0.391171 0.391171i
\(203\) 0 0
\(204\) 5.32769i 0.373013i
\(205\) 2.53503 + 5.02873i 0.177054 + 0.351222i
\(206\) 11.8311i 0.824313i
\(207\) −3.72349 + 3.72349i −0.258800 + 0.258800i
\(208\) −3.40812 + 3.40812i −0.236311 + 0.236311i
\(209\) −22.4802 −1.55499
\(210\) 0 0
\(211\) −15.9995 −1.10145 −0.550724 0.834687i \(-0.685648\pi\)
−0.550724 + 0.834687i \(0.685648\pi\)
\(212\) 2.43203 2.43203i 0.167033 0.167033i
\(213\) −6.52474 + 6.52474i −0.447068 + 0.447068i
\(214\) 2.16226i 0.147809i
\(215\) 11.6181 + 3.83037i 0.792347 + 0.261229i
\(216\) 1.00000i 0.0680414i
\(217\) 0 0
\(218\) 0.399905 + 0.399905i 0.0270850 + 0.0270850i
\(219\) 8.23213i 0.556276i
\(220\) −3.12819 6.20538i −0.210902 0.418366i
\(221\) 25.6785 1.72732
\(222\) 2.54080 + 2.54080i 0.170527 + 0.170527i
\(223\) 1.20707 1.20707i 0.0808314 0.0808314i −0.665535 0.746367i \(-0.731797\pi\)
0.746367 + 0.665535i \(0.231797\pi\)
\(224\) 0 0
\(225\) −4.01961 2.97368i −0.267974 0.198245i
\(226\) −14.1171 −0.939057
\(227\) −4.81749 4.81749i −0.319748 0.319748i 0.528922 0.848670i \(-0.322596\pi\)
−0.848670 + 0.528922i \(0.822596\pi\)
\(228\) 5.11483 + 5.11483i 0.338738 + 0.338738i
\(229\) 19.8143 1.30936 0.654682 0.755904i \(-0.272802\pi\)
0.654682 + 0.755904i \(0.272802\pi\)
\(230\) −10.5143 + 5.30035i −0.693291 + 0.349495i
\(231\) 0 0
\(232\) −3.17745 + 3.17745i −0.208610 + 0.208610i
\(233\) 12.7261 + 12.7261i 0.833714 + 0.833714i 0.988023 0.154309i \(-0.0493150\pi\)
−0.154309 + 0.988023i \(0.549315\pi\)
\(234\) 4.81981 0.315081
\(235\) 8.67383 + 2.85968i 0.565818 + 0.186545i
\(236\) 1.33238i 0.0867303i
\(237\) −1.35366 1.35366i −0.0879296 0.0879296i
\(238\) 0 0
\(239\) 26.6409i 1.72325i 0.507542 + 0.861627i \(0.330554\pi\)
−0.507542 + 0.861627i \(0.669446\pi\)
\(240\) −0.700141 + 2.12363i −0.0451939 + 0.137080i
\(241\) 14.4248i 0.929185i 0.885525 + 0.464592i \(0.153799\pi\)
−0.885525 + 0.464592i \(0.846201\pi\)
\(242\) 0.948618 0.948618i 0.0609795 0.0609795i
\(243\) 0.707107 0.707107i 0.0453609 0.0453609i
\(244\) 12.5538 0.803673
\(245\) 0 0
\(246\) −2.51851 −0.160575
\(247\) 24.6525 24.6525i 1.56860 1.56860i
\(248\) −6.52308 + 6.52308i −0.414216 + 0.414216i
\(249\) 12.6890i 0.804135i
\(250\) −6.45416 9.12928i −0.408197 0.577386i
\(251\) 26.4573i 1.66997i 0.550271 + 0.834986i \(0.314524\pi\)
−0.550271 + 0.834986i \(0.685476\pi\)
\(252\) 0 0
\(253\) 11.5719 + 11.5719i 0.727518 + 0.727518i
\(254\) 3.03397i 0.190368i
\(255\) 10.6378 5.36264i 0.666167 0.335821i
\(256\) 1.00000 0.0625000
\(257\) −7.93021 7.93021i −0.494673 0.494673i 0.415102 0.909775i \(-0.363746\pi\)
−0.909775 + 0.415102i \(0.863746\pi\)
\(258\) −3.86848 + 3.86848i −0.240841 + 0.240841i
\(259\) 0 0
\(260\) 10.2355 + 3.37454i 0.634778 + 0.209280i
\(261\) 4.49359 0.278146
\(262\) −6.20372 6.20372i −0.383267 0.383267i
\(263\) −4.85012 4.85012i −0.299071 0.299071i 0.541579 0.840650i \(-0.317827\pi\)
−0.840650 + 0.541579i \(0.817827\pi\)
\(264\) 3.10780 0.191272
\(265\) −7.30405 2.40807i −0.448684 0.147927i
\(266\) 0 0
\(267\) 2.88043 2.88043i 0.176279 0.176279i
\(268\) 4.71136 + 4.71136i 0.287792 + 0.287792i
\(269\) 8.98064 0.547559 0.273780 0.961792i \(-0.411726\pi\)
0.273780 + 0.961792i \(0.411726\pi\)
\(270\) 1.99671 1.00656i 0.121516 0.0612572i
\(271\) 8.97179i 0.544998i 0.962156 + 0.272499i \(0.0878501\pi\)
−0.962156 + 0.272499i \(0.912150\pi\)
\(272\) −3.76725 3.76725i −0.228423 0.228423i
\(273\) 0 0
\(274\) 13.6052i 0.821918i
\(275\) −9.24161 + 12.4922i −0.557290 + 0.753305i
\(276\) 5.26581i 0.316965i
\(277\) −17.4734 + 17.4734i −1.04988 + 1.04988i −0.0511860 + 0.998689i \(0.516300\pi\)
−0.998689 + 0.0511860i \(0.983700\pi\)
\(278\) −7.71769 + 7.71769i −0.462876 + 0.462876i
\(279\) 9.22503 0.552288
\(280\) 0 0
\(281\) 18.4916 1.10312 0.551558 0.834137i \(-0.314034\pi\)
0.551558 + 0.834137i \(0.314034\pi\)
\(282\) −2.88813 + 2.88813i −0.171986 + 0.171986i
\(283\) 3.93983 3.93983i 0.234198 0.234198i −0.580244 0.814443i \(-0.697043\pi\)
0.814443 + 0.580244i \(0.197043\pi\)
\(284\) 9.22738i 0.547544i
\(285\) 5.06444 15.3612i 0.299992 0.909919i
\(286\) 14.9790i 0.885729i
\(287\) 0 0
\(288\) −0.707107 0.707107i −0.0416667 0.0416667i
\(289\) 11.3843i 0.669665i
\(290\) 9.54272 + 3.14614i 0.560368 + 0.184748i
\(291\) 3.81022 0.223359
\(292\) −5.82099 5.82099i −0.340648 0.340648i
\(293\) 17.6465 17.6465i 1.03092 1.03092i 0.0314115 0.999507i \(-0.490000\pi\)
0.999507 0.0314115i \(-0.0100002\pi\)
\(294\) 0 0
\(295\) 2.66037 1.34112i 0.154892 0.0780828i
\(296\) −3.59323 −0.208852
\(297\) −2.19755 2.19755i −0.127515 0.127515i
\(298\) −1.47800 1.47800i −0.0856183 0.0856183i
\(299\) −25.3802 −1.46778
\(300\) 4.94500 0.739583i 0.285500 0.0426998i
\(301\) 0 0
\(302\) −2.85838 + 2.85838i −0.164481 + 0.164481i
\(303\) −5.55958 5.55958i −0.319390 0.319390i
\(304\) −7.23346 −0.414867
\(305\) −12.6361 25.0662i −0.723542 1.43529i
\(306\) 5.32769i 0.304564i
\(307\) 11.4807 + 11.4807i 0.655239 + 0.655239i 0.954250 0.299011i \(-0.0966566\pi\)
−0.299011 + 0.954250i \(0.596657\pi\)
\(308\) 0 0
\(309\) 11.8311i 0.673049i
\(310\) 19.5906 + 6.45882i 1.11267 + 0.366836i
\(311\) 13.1349i 0.744809i 0.928070 + 0.372405i \(0.121467\pi\)
−0.928070 + 0.372405i \(0.878533\pi\)
\(312\) −3.40812 + 3.40812i −0.192947 + 0.192947i
\(313\) 17.9946 17.9946i 1.01711 1.01711i 0.0172640 0.999851i \(-0.494504\pi\)
0.999851 0.0172640i \(-0.00549556\pi\)
\(314\) 0.905573 0.0511044
\(315\) 0 0
\(316\) 1.91436 0.107691
\(317\) 13.4535 13.4535i 0.755626 0.755626i −0.219897 0.975523i \(-0.570572\pi\)
0.975523 + 0.219897i \(0.0705722\pi\)
\(318\) 2.43203 2.43203i 0.136382 0.136382i
\(319\) 13.9652i 0.781901i
\(320\) −1.00656 1.99671i −0.0562684 0.111619i
\(321\) 2.16226i 0.120686i
\(322\) 0 0
\(323\) 27.2502 + 27.2502i 1.51624 + 1.51624i
\(324\) 1.00000i 0.0555556i
\(325\) −3.56465 23.8340i −0.197731 1.32207i
\(326\) 7.38217 0.408860
\(327\) 0.399905 + 0.399905i 0.0221148 + 0.0221148i
\(328\) 1.78086 1.78086i 0.0983314 0.0983314i
\(329\) 0 0
\(330\) −3.12819 6.20538i −0.172201 0.341595i
\(331\) −20.9381 −1.15086 −0.575430 0.817851i \(-0.695165\pi\)
−0.575430 + 0.817851i \(0.695165\pi\)
\(332\) 8.97250 + 8.97250i 0.492430 + 0.492430i
\(333\) 2.54080 + 2.54080i 0.139235 + 0.139235i
\(334\) −0.863584 −0.0472532
\(335\) 4.66495 14.1495i 0.254873 0.773068i
\(336\) 0 0
\(337\) 0.272770 0.272770i 0.0148587 0.0148587i −0.699638 0.714497i \(-0.746656\pi\)
0.714497 + 0.699638i \(0.246656\pi\)
\(338\) 7.23411 + 7.23411i 0.393484 + 0.393484i
\(339\) −14.1171 −0.766737
\(340\) −3.73013 + 11.3140i −0.202295 + 0.613590i
\(341\) 28.6696i 1.55255i
\(342\) 5.11483 + 5.11483i 0.276578 + 0.276578i
\(343\) 0 0
\(344\) 5.47086i 0.294969i
\(345\) −10.5143 + 5.30035i −0.566070 + 0.285361i
\(346\) 3.49748i 0.188026i
\(347\) −10.6964 + 10.6964i −0.574214 + 0.574214i −0.933303 0.359089i \(-0.883087\pi\)
0.359089 + 0.933303i \(0.383087\pi\)
\(348\) −3.17745 + 3.17745i −0.170329 + 0.170329i
\(349\) −15.2733 −0.817563 −0.408781 0.912632i \(-0.634046\pi\)
−0.408781 + 0.912632i \(0.634046\pi\)
\(350\) 0 0
\(351\) 4.81981 0.257262
\(352\) −2.19755 + 2.19755i −0.117130 + 0.117130i
\(353\) 21.2321 21.2321i 1.13007 1.13007i 0.139903 0.990165i \(-0.455321\pi\)
0.990165 0.139903i \(-0.0446790\pi\)
\(354\) 1.33238i 0.0708150i
\(355\) −18.4244 + 9.28790i −0.977864 + 0.492950i
\(356\) 4.07354i 0.215897i
\(357\) 0 0
\(358\) 12.7716 + 12.7716i 0.675002 + 0.675002i
\(359\) 11.7244i 0.618792i −0.950933 0.309396i \(-0.899873\pi\)
0.950933 0.309396i \(-0.100127\pi\)
\(360\) −0.700141 + 2.12363i −0.0369006 + 0.111925i
\(361\) 33.3230 1.75384
\(362\) −15.3624 15.3624i −0.807429 0.807429i
\(363\) 0.948618 0.948618i 0.0497895 0.0497895i
\(364\) 0 0
\(365\) −5.76365 + 17.4820i −0.301683 + 0.915049i
\(366\) 12.5538 0.656196
\(367\) −21.4951 21.4951i −1.12204 1.12204i −0.991435 0.130600i \(-0.958310\pi\)
−0.130600 0.991435i \(-0.541690\pi\)
\(368\) 3.72349 + 3.72349i 0.194100 + 0.194100i
\(369\) −2.51851 −0.131109
\(370\) 3.61680 + 7.17463i 0.188028 + 0.372991i
\(371\) 0 0
\(372\) −6.52308 + 6.52308i −0.338206 + 0.338206i
\(373\) 21.3303 + 21.3303i 1.10444 + 1.10444i 0.993868 + 0.110572i \(0.0352681\pi\)
0.110572 + 0.993868i \(0.464732\pi\)
\(374\) 16.5574 0.856164
\(375\) −6.45416 9.12928i −0.333292 0.471434i
\(376\) 4.08444i 0.210639i
\(377\) 15.3147 + 15.3147i 0.788746 + 0.788746i
\(378\) 0 0
\(379\) 4.44115i 0.228127i 0.993473 + 0.114063i \(0.0363867\pi\)
−0.993473 + 0.114063i \(0.963613\pi\)
\(380\) 7.28091 + 14.4431i 0.373503 + 0.740916i
\(381\) 3.03397i 0.155435i
\(382\) −11.7256 + 11.7256i −0.599932 + 0.599932i
\(383\) 15.7414 15.7414i 0.804350 0.804350i −0.179422 0.983772i \(-0.557423\pi\)
0.983772 + 0.179422i \(0.0574227\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 2.11748 0.107777
\(387\) −3.86848 + 3.86848i −0.196646 + 0.196646i
\(388\) −2.69423 + 2.69423i −0.136779 + 0.136779i
\(389\) 12.6880i 0.643307i 0.946857 + 0.321653i \(0.104239\pi\)
−0.946857 + 0.321653i \(0.895761\pi\)
\(390\) 10.2355 + 3.37454i 0.518294 + 0.170877i
\(391\) 28.0546i 1.41878i
\(392\) 0 0
\(393\) −6.20372 6.20372i −0.312936 0.312936i
\(394\) 1.73285i 0.0872995i
\(395\) −1.92692 3.82242i −0.0969538 0.192327i
\(396\) 3.10780 0.156173
\(397\) 15.3969 + 15.3969i 0.772748 + 0.772748i 0.978586 0.205838i \(-0.0659920\pi\)
−0.205838 + 0.978586i \(0.565992\pi\)
\(398\) −5.57060 + 5.57060i −0.279229 + 0.279229i
\(399\) 0 0
\(400\) −2.97368 + 4.01961i −0.148684 + 0.200980i
\(401\) 26.3077 1.31374 0.656872 0.754002i \(-0.271879\pi\)
0.656872 + 0.754002i \(0.271879\pi\)
\(402\) 4.71136 + 4.71136i 0.234981 + 0.234981i
\(403\) 31.4400 + 31.4400i 1.56614 + 1.56614i
\(404\) 7.86244 0.391171
\(405\) 1.99671 1.00656i 0.0992172 0.0500163i
\(406\) 0 0
\(407\) 7.89630 7.89630i 0.391405 0.391405i
\(408\) −3.76725 3.76725i −0.186507 0.186507i
\(409\) −2.34651 −0.116027 −0.0580137 0.998316i \(-0.518477\pi\)
−0.0580137 + 0.998316i \(0.518477\pi\)
\(410\) −5.34839 1.76331i −0.264138 0.0870838i
\(411\) 13.6052i 0.671093i
\(412\) 8.36587 + 8.36587i 0.412157 + 0.412157i
\(413\) 0 0
\(414\) 5.26581i 0.258800i
\(415\) 8.88411 26.9468i 0.436104 1.32277i
\(416\) 4.81981i 0.236311i
\(417\) −7.71769 + 7.71769i −0.377937 + 0.377937i
\(418\) 15.8959 15.8959i 0.777494 0.777494i
\(419\) 1.03087 0.0503614 0.0251807 0.999683i \(-0.491984\pi\)
0.0251807 + 0.999683i \(0.491984\pi\)
\(420\) 0 0
\(421\) 28.6945 1.39849 0.699243 0.714884i \(-0.253521\pi\)
0.699243 + 0.714884i \(0.253521\pi\)
\(422\) 11.3133 11.3133i 0.550724 0.550724i
\(423\) −2.88813 + 2.88813i −0.140426 + 0.140426i
\(424\) 3.43942i 0.167033i
\(425\) 26.3454 3.94027i 1.27794 0.191131i
\(426\) 9.22738i 0.447068i
\(427\) 0 0
\(428\) 1.52895 + 1.52895i 0.0739047 + 0.0739047i
\(429\) 14.9790i 0.723194i
\(430\) −10.9237 + 5.50674i −0.526788 + 0.265559i
\(431\) −24.2775 −1.16941 −0.584704 0.811247i \(-0.698789\pi\)
−0.584704 + 0.811247i \(0.698789\pi\)
\(432\) −0.707107 0.707107i −0.0340207 0.0340207i
\(433\) −19.1704 + 19.1704i −0.921271 + 0.921271i −0.997119 0.0758481i \(-0.975834\pi\)
0.0758481 + 0.997119i \(0.475834\pi\)
\(434\) 0 0
\(435\) 9.54272 + 3.14614i 0.457538 + 0.150846i
\(436\) −0.565551 −0.0270850
\(437\) −26.9337 26.9337i −1.28841 1.28841i
\(438\) −5.82099 5.82099i −0.278138 0.278138i
\(439\) −14.5989 −0.696769 −0.348385 0.937352i \(-0.613270\pi\)
−0.348385 + 0.937352i \(0.613270\pi\)
\(440\) 6.59983 + 2.17590i 0.314634 + 0.103732i
\(441\) 0 0
\(442\) −18.1574 + 18.1574i −0.863660 + 0.863660i
\(443\) −16.0790 16.0790i −0.763938 0.763938i 0.213094 0.977032i \(-0.431646\pi\)
−0.977032 + 0.213094i \(0.931646\pi\)
\(444\) −3.59323 −0.170527
\(445\) 8.13367 4.10026i 0.385573 0.194371i
\(446\) 1.70706i 0.0808314i
\(447\) −1.47800 1.47800i −0.0699071 0.0699071i
\(448\) 0 0
\(449\) 41.8564i 1.97532i −0.156600 0.987662i \(-0.550053\pi\)
0.156600 0.987662i \(-0.449947\pi\)
\(450\) 4.94500 0.739583i 0.233109 0.0348643i
\(451\) 7.82705i 0.368561i
\(452\) 9.98231 9.98231i 0.469528 0.469528i
\(453\) −2.85838 + 2.85838i −0.134298 + 0.134298i
\(454\) 6.81296 0.319748
\(455\) 0 0
\(456\) −7.23346 −0.338738
\(457\) 18.7798 18.7798i 0.878480 0.878480i −0.114897 0.993377i \(-0.536654\pi\)
0.993377 + 0.114897i \(0.0366539\pi\)
\(458\) −14.0108 + 14.0108i −0.654682 + 0.654682i
\(459\) 5.32769i 0.248675i
\(460\) 3.68681 11.1826i 0.171898 0.521393i
\(461\) 16.5608i 0.771313i 0.922642 + 0.385656i \(0.126025\pi\)
−0.922642 + 0.385656i \(0.873975\pi\)
\(462\) 0 0
\(463\) −19.0305 19.0305i −0.884424 0.884424i 0.109557 0.993981i \(-0.465057\pi\)
−0.993981 + 0.109557i \(0.965057\pi\)
\(464\) 4.49359i 0.208610i
\(465\) 19.5906 + 6.45882i 0.908490 + 0.299521i
\(466\) −17.9974 −0.833714
\(467\) −9.62124 9.62124i −0.445218 0.445218i 0.448543 0.893761i \(-0.351943\pi\)
−0.893761 + 0.448543i \(0.851943\pi\)
\(468\) −3.40812 + 3.40812i −0.157540 + 0.157540i
\(469\) 0 0
\(470\) −8.15542 + 4.11123i −0.376182 + 0.189637i
\(471\) 0.905573 0.0417266
\(472\) −0.942132 0.942132i −0.0433652 0.0433652i
\(473\) 12.0225 + 12.0225i 0.552795 + 0.552795i
\(474\) 1.91436 0.0879296
\(475\) 21.5100 29.0757i 0.986946 1.33408i
\(476\) 0 0
\(477\) 2.43203 2.43203i 0.111355 0.111355i
\(478\) −18.8379 18.8379i −0.861627 0.861627i
\(479\) −1.32529 −0.0605539 −0.0302769 0.999542i \(-0.509639\pi\)
−0.0302769 + 0.999542i \(0.509639\pi\)
\(480\) −1.00656 1.99671i −0.0459429 0.0911368i
\(481\) 17.3187i 0.789664i
\(482\) −10.1999 10.1999i −0.464592 0.464592i
\(483\) 0 0
\(484\) 1.34155i 0.0609795i
\(485\) 8.09149 + 2.66769i 0.367416 + 0.121133i
\(486\) 1.00000i 0.0453609i
\(487\) 22.6570 22.6570i 1.02669 1.02669i 0.0270532 0.999634i \(-0.491388\pi\)
0.999634 0.0270532i \(-0.00861234\pi\)
\(488\) −8.87686 + 8.87686i −0.401837 + 0.401837i
\(489\) 7.38217 0.333833
\(490\) 0 0
\(491\) −22.3460 −1.00846 −0.504231 0.863569i \(-0.668224\pi\)
−0.504231 + 0.863569i \(0.668224\pi\)
\(492\) 1.78086 1.78086i 0.0802873 0.0802873i
\(493\) −16.9285 + 16.9285i −0.762419 + 0.762419i
\(494\) 34.8639i 1.56860i
\(495\) −3.12819 6.20538i −0.140602 0.278911i
\(496\) 9.22503i 0.414216i
\(497\) 0 0
\(498\) 8.97250 + 8.97250i 0.402067 + 0.402067i
\(499\) 10.8523i 0.485817i 0.970049 + 0.242908i \(0.0781014\pi\)
−0.970049 + 0.242908i \(0.921899\pi\)
\(500\) 11.0192 + 1.89159i 0.492792 + 0.0845947i
\(501\) −0.863584 −0.0385821
\(502\) −18.7082 18.7082i −0.834986 0.834986i
\(503\) −2.64043 + 2.64043i −0.117731 + 0.117731i −0.763518 0.645787i \(-0.776529\pi\)
0.645787 + 0.763518i \(0.276529\pi\)
\(504\) 0 0
\(505\) −7.91401 15.6990i −0.352169 0.698596i
\(506\) −16.3651 −0.727518
\(507\) 7.23411 + 7.23411i 0.321278 + 0.321278i
\(508\) 2.14534 + 2.14534i 0.0951842 + 0.0951842i
\(509\) 17.4093 0.771653 0.385827 0.922571i \(-0.373916\pi\)
0.385827 + 0.922571i \(0.373916\pi\)
\(510\) −3.73013 + 11.3140i −0.165173 + 0.500994i
\(511\) 0 0
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 5.11483 + 5.11483i 0.225825 + 0.225825i
\(514\) 11.2150 0.494673
\(515\) 8.28345 25.1249i 0.365012 1.10714i
\(516\) 5.47086i 0.240841i
\(517\) 8.97575 + 8.97575i 0.394753 + 0.394753i
\(518\) 0 0
\(519\) 3.49748i 0.153522i
\(520\) −9.62375 + 4.85142i −0.422029 + 0.212749i
\(521\) 7.09577i 0.310871i −0.987846 0.155436i \(-0.950322\pi\)
0.987846 0.155436i \(-0.0496781\pi\)
\(522\) −3.17745 + 3.17745i −0.139073 + 0.139073i
\(523\) −2.49227 + 2.49227i −0.108979 + 0.108979i −0.759494 0.650515i \(-0.774553\pi\)
0.650515 + 0.759494i \(0.274553\pi\)
\(524\) 8.77339 0.383267
\(525\) 0 0
\(526\) 6.85911 0.299071
\(527\) −34.7530 + 34.7530i −1.51386 + 1.51386i
\(528\) −2.19755 + 2.19755i −0.0956361 + 0.0956361i
\(529\) 4.72876i 0.205598i
\(530\) 6.86751 3.46198i 0.298305 0.150379i
\(531\) 1.33238i 0.0578202i
\(532\) 0 0
\(533\) −8.58340 8.58340i −0.371788 0.371788i
\(534\) 4.07354i 0.176279i
\(535\) 1.51389 4.59185i 0.0654511 0.198523i
\(536\) −6.66287 −0.287792
\(537\) 12.7716 + 12.7716i 0.551137 + 0.551137i
\(538\) −6.35027 + 6.35027i −0.273780 + 0.273780i
\(539\) 0 0
\(540\) −0.700141 + 2.12363i −0.0301293 + 0.0913865i
\(541\) 20.3951 0.876853 0.438426 0.898767i \(-0.355536\pi\)
0.438426 + 0.898767i \(0.355536\pi\)
\(542\) −6.34402 6.34402i −0.272499 0.272499i
\(543\) −15.3624 15.3624i −0.659263 0.659263i
\(544\) 5.32769 0.228423
\(545\) 0.569261 + 1.12924i 0.0243845 + 0.0483713i
\(546\) 0 0
\(547\) −8.79499 + 8.79499i −0.376047 + 0.376047i −0.869674 0.493627i \(-0.835671\pi\)
0.493627 + 0.869674i \(0.335671\pi\)
\(548\) 9.62030 + 9.62030i 0.410959 + 0.410959i
\(549\) 12.5538 0.535782
\(550\) −2.29848 15.3681i −0.0980075 0.655298i
\(551\) 32.5042i 1.38473i
\(552\) 3.72349 + 3.72349i 0.158482 + 0.158482i
\(553\) 0 0
\(554\) 24.7111i 1.04988i
\(555\) 3.61680 + 7.17463i 0.153525 + 0.304546i
\(556\) 10.9145i 0.462876i
\(557\) −12.7022 + 12.7022i −0.538210 + 0.538210i −0.923003 0.384793i \(-0.874273\pi\)
0.384793 + 0.923003i \(0.374273\pi\)
\(558\) −6.52308 + 6.52308i −0.276144 + 0.276144i
\(559\) −26.3685 −1.11527
\(560\) 0 0
\(561\) 16.5574 0.699055
\(562\) −13.0755 + 13.0755i −0.551558 + 0.551558i
\(563\) −30.7771 + 30.7771i −1.29710 + 1.29710i −0.366799 + 0.930300i \(0.619546\pi\)
−0.930300 + 0.366799i \(0.880454\pi\)
\(564\) 4.08444i 0.171986i
\(565\) −29.9795 9.88397i −1.26125 0.415822i
\(566\) 5.57176i 0.234198i
\(567\) 0 0
\(568\) 6.52474 + 6.52474i 0.273772 + 0.273772i
\(569\) 18.1826i 0.762255i 0.924522 + 0.381128i \(0.124464\pi\)
−0.924522 + 0.381128i \(0.875536\pi\)
\(570\) 7.28091 + 14.4431i 0.304964 + 0.604955i
\(571\) −27.3134 −1.14303 −0.571516 0.820591i \(-0.693644\pi\)
−0.571516 + 0.820591i \(0.693644\pi\)
\(572\) 10.5918 + 10.5918i 0.442864 + 0.442864i
\(573\) −11.7256 + 11.7256i −0.489843 + 0.489843i
\(574\) 0 0
\(575\) −26.0394 + 3.89450i −1.08592 + 0.162412i
\(576\) 1.00000 0.0416667
\(577\) −17.5022 17.5022i −0.728625 0.728625i 0.241721 0.970346i \(-0.422288\pi\)
−0.970346 + 0.241721i \(0.922288\pi\)
\(578\) −8.04992 8.04992i −0.334832 0.334832i
\(579\) 2.11748 0.0879995
\(580\) −8.97238 + 4.52306i −0.372558 + 0.187810i
\(581\) 0 0
\(582\) −2.69423 + 2.69423i −0.111679 + 0.111679i
\(583\) −7.55829 7.55829i −0.313032 0.313032i
\(584\) 8.23213 0.340648
\(585\) 10.2355 + 3.37454i 0.423186 + 0.139520i
\(586\) 24.9559i 1.03092i
\(587\) −25.7187 25.7187i −1.06153 1.06153i −0.997979 0.0635463i \(-0.979759\pi\)
−0.0635463 0.997979i \(-0.520241\pi\)
\(588\) 0 0
\(589\) 66.7289i 2.74952i
\(590\) −0.932851 + 2.82947i −0.0384049 + 0.116488i
\(591\) 1.73285i 0.0712798i
\(592\) 2.54080 2.54080i 0.104426 0.104426i
\(593\) −19.5784 + 19.5784i −0.803988 + 0.803988i −0.983716 0.179728i \(-0.942478\pi\)
0.179728 + 0.983716i \(0.442478\pi\)
\(594\) 3.10780 0.127515
\(595\) 0 0
\(596\) 2.09021 0.0856183
\(597\) −5.57060 + 5.57060i −0.227989 + 0.227989i
\(598\) 17.9465 17.9465i 0.733888 0.733888i
\(599\) 21.9587i 0.897207i −0.893731 0.448603i \(-0.851922\pi\)
0.893731 0.448603i \(-0.148078\pi\)
\(600\) −2.97368 + 4.01961i −0.121400 + 0.164100i
\(601\) 7.04092i 0.287205i −0.989635 0.143603i \(-0.954131\pi\)
0.989635 0.143603i \(-0.0458687\pi\)
\(602\) 0 0
\(603\) 4.71136 + 4.71136i 0.191861 + 0.191861i
\(604\) 4.04236i 0.164481i
\(605\) 2.67868 1.35035i 0.108904 0.0548994i
\(606\) 7.86244 0.319390
\(607\) 16.6691 + 16.6691i 0.676576 + 0.676576i 0.959224 0.282647i \(-0.0912127\pi\)
−0.282647 + 0.959224i \(0.591213\pi\)
\(608\) 5.11483 5.11483i 0.207434 0.207434i
\(609\) 0 0
\(610\) 26.6596 + 8.78941i 1.07941 + 0.355873i
\(611\) −19.6862 −0.796419
\(612\) −3.76725 3.76725i −0.152282 0.152282i
\(613\) −9.85213 9.85213i −0.397924 0.397924i 0.479576 0.877500i \(-0.340790\pi\)
−0.877500 + 0.479576i \(0.840790\pi\)
\(614\) −16.2362 −0.655239
\(615\) −5.34839 1.76331i −0.215668 0.0711036i
\(616\) 0 0
\(617\) 9.68360 9.68360i 0.389847 0.389847i −0.484786 0.874633i \(-0.661102\pi\)
0.874633 + 0.484786i \(0.161102\pi\)
\(618\) 8.36587 + 8.36587i 0.336525 + 0.336525i
\(619\) −12.4190 −0.499162 −0.249581 0.968354i \(-0.580293\pi\)
−0.249581 + 0.968354i \(0.580293\pi\)
\(620\) −18.4197 + 9.28554i −0.739752 + 0.372916i
\(621\) 5.26581i 0.211310i
\(622\) −9.28775 9.28775i −0.372405 0.372405i
\(623\) 0 0
\(624\) 4.81981i 0.192947i
\(625\) −7.31447 23.9060i −0.292579 0.956241i
\(626\) 25.4482i 1.01711i
\(627\) 15.8959 15.8959i 0.634821 0.634821i
\(628\) −0.640337 + 0.640337i −0.0255522 + 0.0255522i
\(629\) −19.1436 −0.763306
\(630\) 0 0
\(631\) −0.546516 −0.0217565 −0.0108782 0.999941i \(-0.503463\pi\)
−0.0108782 + 0.999941i \(0.503463\pi\)
\(632\) −1.35366 + 1.35366i −0.0538457 + 0.0538457i
\(633\) 11.3133 11.3133i 0.449665 0.449665i
\(634\) 19.0262i 0.755626i
\(635\) 2.12421 6.44304i 0.0842966 0.255684i
\(636\) 3.43942i 0.136382i
\(637\) 0 0
\(638\) 9.87488 + 9.87488i 0.390950 + 0.390950i
\(639\) 9.22738i 0.365029i
\(640\) 2.12363 + 0.700141i 0.0839438 + 0.0276755i
\(641\) 8.75118 0.345651 0.172825 0.984952i \(-0.444710\pi\)
0.172825 + 0.984952i \(0.444710\pi\)
\(642\) 1.52895 + 1.52895i 0.0603429 + 0.0603429i
\(643\) −10.2080 + 10.2080i −0.402565 + 0.402565i −0.879136 0.476571i \(-0.841879\pi\)
0.476571 + 0.879136i \(0.341879\pi\)
\(644\) 0 0
\(645\) −10.9237 + 5.50674i −0.430120 + 0.216828i
\(646\) −38.5377 −1.51624
\(647\) 16.9715 + 16.9715i 0.667219 + 0.667219i 0.957071 0.289852i \(-0.0936062\pi\)
−0.289852 + 0.957071i \(0.593606\pi\)
\(648\) −0.707107 0.707107i −0.0277778 0.0277778i
\(649\) 4.14077 0.162539
\(650\) 19.3737 + 14.3326i 0.759901 + 0.562169i
\(651\) 0 0
\(652\) −5.21998 + 5.21998i −0.204430 + 0.204430i
\(653\) −26.5386 26.5386i −1.03854 1.03854i −0.999227 0.0393104i \(-0.987484\pi\)
−0.0393104 0.999227i \(-0.512516\pi\)
\(654\) −0.565551 −0.0221148
\(655\) −8.83093 17.5179i −0.345053 0.684480i
\(656\) 2.51851i 0.0983314i
\(657\) −5.82099 5.82099i −0.227099 0.227099i
\(658\) 0 0
\(659\) 30.4591i 1.18652i −0.805011 0.593259i \(-0.797841\pi\)
0.805011 0.593259i \(-0.202159\pi\)
\(660\) 6.59983 + 2.17590i 0.256898 + 0.0846968i
\(661\) 27.5737i 1.07249i 0.844062 + 0.536246i \(0.180158\pi\)
−0.844062 + 0.536246i \(0.819842\pi\)
\(662\) 14.8054 14.8054i 0.575430 0.575430i
\(663\) −18.1574 + 18.1574i −0.705176 + 0.705176i
\(664\) −12.6890 −0.492430
\(665\) 0 0
\(666\) −3.59323 −0.139235
\(667\) 16.7318 16.7318i 0.647859 0.647859i
\(668\) 0.610646 0.610646i 0.0236266 0.0236266i
\(669\) 1.70706i 0.0659986i
\(670\) 6.70657 + 13.3038i 0.259097 + 0.513971i
\(671\) 39.0147i 1.50615i
\(672\) 0 0
\(673\) −8.77420 8.77420i −0.338221 0.338221i 0.517477 0.855697i \(-0.326871\pi\)
−0.855697 + 0.517477i \(0.826871\pi\)
\(674\) 0.385754i 0.0148587i
\(675\) 4.94500 0.739583i 0.190333 0.0284666i
\(676\) −10.2306 −0.393484
\(677\) 20.9822 + 20.9822i 0.806412 + 0.806412i 0.984089 0.177677i \(-0.0568583\pi\)
−0.177677 + 0.984089i \(0.556858\pi\)
\(678\) 9.98231 9.98231i 0.383368 0.383368i
\(679\) 0 0
\(680\) −5.36264 10.6378i −0.205648 0.407943i
\(681\) 6.81296 0.261073
\(682\) 20.2725 + 20.2725i 0.776273 + 0.776273i
\(683\) 29.5234 + 29.5234i 1.12968 + 1.12968i 0.990229 + 0.139451i \(0.0445337\pi\)
0.139451 + 0.990229i \(0.455466\pi\)
\(684\) −7.23346 −0.276578
\(685\) 9.52552 28.8923i 0.363952 1.10392i
\(686\) 0 0
\(687\) −14.0108 + 14.0108i −0.534546 + 0.534546i
\(688\) 3.86848 + 3.86848i 0.147485 + 0.147485i
\(689\) 16.5773 0.631546
\(690\) 3.68681 11.1826i 0.140354 0.425716i
\(691\) 45.1068i 1.71594i 0.513697 + 0.857972i \(0.328276\pi\)
−0.513697 + 0.857972i \(0.671724\pi\)
\(692\) −2.47309 2.47309i −0.0940129 0.0940129i
\(693\) 0 0
\(694\) 15.1270i 0.574214i
\(695\) −21.7930 + 10.9860i −0.826655 + 0.416725i
\(696\) 4.49359i 0.170329i
\(697\) 9.48786 9.48786i 0.359378 0.359378i
\(698\) 10.7999 10.7999i 0.408781 0.408781i
\(699\) −17.9974 −0.680725
\(700\) 0 0
\(701\) −2.29359 −0.0866278 −0.0433139 0.999062i \(-0.513792\pi\)
−0.0433139 + 0.999062i \(0.513792\pi\)
\(702\) −3.40812 + 3.40812i −0.128631 + 0.128631i
\(703\) −18.3788 + 18.3788i −0.693168 + 0.693168i
\(704\) 3.10780i 0.117130i
\(705\) −8.15542 + 4.11123i −0.307151 + 0.154838i
\(706\) 30.0267i 1.13007i
\(707\) 0 0
\(708\) −0.942132 0.942132i −0.0354075 0.0354075i
\(709\) 48.2598i 1.81243i 0.422812 + 0.906217i \(0.361043\pi\)
−0.422812 + 0.906217i \(0.638957\pi\)
\(710\) 6.46046 19.5955i 0.242457 0.735407i
\(711\) 1.91436 0.0717942
\(712\) −2.88043 2.88043i −0.107949 0.107949i
\(713\) 34.3493 34.3493i 1.28639 1.28639i
\(714\) 0 0
\(715\) 10.4874 31.8099i 0.392207 1.18962i
\(716\) −18.0618 −0.675002
\(717\) −18.8379 18.8379i −0.703516 0.703516i
\(718\) 8.29043 + 8.29043i 0.309396 + 0.309396i
\(719\) −25.0470 −0.934096 −0.467048 0.884232i \(-0.654682\pi\)
−0.467048 + 0.884232i \(0.654682\pi\)
\(720\) −1.00656 1.99671i −0.0375122 0.0744129i
\(721\) 0 0
\(722\) −23.5629 + 23.5629i −0.876920 + 0.876920i
\(723\) −10.1999 10.1999i −0.379338 0.379338i
\(724\) 21.7257 0.807429
\(725\) 18.0625 + 13.3625i 0.670823 + 0.496270i
\(726\) 1.34155i 0.0497895i
\(727\) 17.1495 + 17.1495i 0.636039 + 0.636039i 0.949576 0.313537i \(-0.101514\pi\)
−0.313537 + 0.949576i \(0.601514\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) −8.28612 16.4372i −0.306683 0.608366i
\(731\) 29.1471i 1.07804i
\(732\) −8.87686 + 8.87686i −0.328098 + 0.328098i
\(733\) 5.25687 5.25687i 0.194167 0.194167i −0.603327 0.797494i \(-0.706159\pi\)
0.797494 + 0.603327i \(0.206159\pi\)
\(734\) 30.3987 1.12204
\(735\) 0 0
\(736\) −5.26581 −0.194100
\(737\) 14.6420 14.6420i 0.539345 0.539345i
\(738\) 1.78086 1.78086i 0.0655543 0.0655543i
\(739\) 8.35457i 0.307328i −0.988123 0.153664i \(-0.950893\pi\)
0.988123 0.153664i \(-0.0491073\pi\)
\(740\) −7.63069 2.51577i −0.280510 0.0924814i
\(741\) 34.8639i 1.28076i
\(742\) 0 0
\(743\) −20.5565 20.5565i −0.754146 0.754146i 0.221104 0.975250i \(-0.429034\pi\)
−0.975250 + 0.221104i \(0.929034\pi\)
\(744\) 9.22503i 0.338206i
\(745\) −2.10392 4.17354i −0.0770816 0.152907i
\(746\) −30.1656 −1.10444
\(747\) 8.97250 + 8.97250i 0.328287 + 0.328287i
\(748\) −11.7079 + 11.7079i −0.428082 + 0.428082i
\(749\) 0 0
\(750\) 11.0192 + 1.89159i 0.402363 + 0.0690712i
\(751\) −34.6297 −1.26366 −0.631828 0.775109i \(-0.717695\pi\)
−0.631828 + 0.775109i \(0.717695\pi\)
\(752\) 2.88813 + 2.88813i 0.105319 + 0.105319i
\(753\) −18.7082 18.7082i −0.681763 0.681763i
\(754\) −21.6582 −0.788746
\(755\) −8.07141 + 4.06887i −0.293749 + 0.148082i
\(756\) 0 0
\(757\) −24.7332 + 24.7332i −0.898945 + 0.898945i −0.995343 0.0963983i \(-0.969268\pi\)
0.0963983 + 0.995343i \(0.469268\pi\)
\(758\) −3.14037 3.14037i −0.114063 0.114063i
\(759\) −16.3651 −0.594016
\(760\) −15.3612 5.06444i −0.557209 0.183707i
\(761\) 37.5984i 1.36294i −0.731845 0.681471i \(-0.761341\pi\)
0.731845 0.681471i \(-0.238659\pi\)
\(762\) 2.14534 + 2.14534i 0.0777176 + 0.0777176i
\(763\) 0 0
\(764\) 16.5825i 0.599932i
\(765\) −3.73013 + 11.3140i −0.134863 + 0.409060i
\(766\) 22.2618i 0.804350i
\(767\) −4.54090 + 4.54090i −0.163962 + 0.163962i
\(768\) −0.707107 + 0.707107i −0.0255155 + 0.0255155i
\(769\) −23.9494 −0.863638 −0.431819 0.901960i \(-0.642128\pi\)
−0.431819 + 0.901960i \(0.642128\pi\)
\(770\) 0 0
\(771\) 11.2150 0.403899
\(772\) −1.49728 + 1.49728i −0.0538884 + 0.0538884i
\(773\) −0.0264874 + 0.0264874i −0.000952685 + 0.000952685i −0.707583 0.706630i \(-0.750214\pi\)
0.706630 + 0.707583i \(0.250214\pi\)
\(774\) 5.47086i 0.196646i
\(775\) 37.0810 + 27.4323i 1.33199 + 0.985396i
\(776\) 3.81022i 0.136779i
\(777\) 0 0
\(778\) −8.97176 8.97176i −0.321653 0.321653i
\(779\) 18.2176i 0.652712i
\(780\) −9.62375 + 4.85142i −0.344586 + 0.173709i
\(781\) −28.6769 −1.02614
\(782\) 19.8376 + 19.8376i 0.709391 + 0.709391i
\(783\) −3.17745 + 3.17745i −0.113553 + 0.113553i
\(784\) 0 0
\(785\) 1.92310 + 0.634028i 0.0686384 + 0.0226294i
\(786\) 8.77339 0.312936
\(787\) 18.4576 + 18.4576i 0.657942 + 0.657942i 0.954893 0.296951i \(-0.0959696\pi\)
−0.296951 + 0.954893i \(0.595970\pi\)
\(788\) 1.22531 + 1.22531i 0.0436498 + 0.0436498i
\(789\) 6.85911 0.244191
\(790\) 4.06540 + 1.34032i 0.144640 + 0.0476866i
\(791\) 0 0
\(792\) −2.19755 + 2.19755i −0.0780865 + 0.0780865i
\(793\) 42.7848 + 42.7848i 1.51933 + 1.51933i
\(794\) −21.7745 −0.772748
\(795\) 6.86751 3.46198i 0.243565 0.122784i
\(796\) 7.87801i 0.279229i
\(797\) 0.973551 + 0.973551i 0.0344850 + 0.0344850i 0.724139 0.689654i \(-0.242237\pi\)
−0.689654 + 0.724139i \(0.742237\pi\)
\(798\) 0 0
\(799\) 21.7606i 0.769835i
\(800\) −0.739583 4.94500i −0.0261482 0.174832i
\(801\) 4.07354i 0.143931i
\(802\) −18.6024 + 18.6024i −0.656872 + 0.656872i
\(803\) −18.0905 + 18.0905i −0.638400 + 0.638400i
\(804\) −6.66287 −0.234981
\(805\) 0 0
\(806\) −44.4629 −1.56614
\(807\) −6.35027 + 6.35027i −0.223540 + 0.223540i
\(808\) −5.55958 + 5.55958i −0.195585 + 0.195585i
\(809\) 40.1730i 1.41241i −0.708009 0.706203i \(-0.750407\pi\)
0.708009 0.706203i \(-0.249593\pi\)
\(810\) −0.700141 + 2.12363i −0.0246004 + 0.0746167i
\(811\) 24.5727i 0.862866i 0.902145 + 0.431433i \(0.141992\pi\)
−0.902145 + 0.431433i \(0.858008\pi\)
\(812\) 0 0
\(813\) −6.34402 6.34402i −0.222494 0.222494i
\(814\) 11.1671i 0.391405i
\(815\) 15.6770 + 5.16855i 0.549141 + 0.181047i
\(816\) 5.32769 0.186507
\(817\) −27.9825 27.9825i −0.978984 0.978984i
\(818\) 1.65923 1.65923i 0.0580137 0.0580137i
\(819\) 0 0
\(820\) 5.02873 2.53503i 0.175611 0.0885271i
\(821\) −49.0817 −1.71296 −0.856482 0.516177i \(-0.827355\pi\)
−0.856482 + 0.516177i \(0.827355\pi\)
\(822\) 9.62030 + 9.62030i 0.335547 + 0.335547i
\(823\) 20.7131 + 20.7131i 0.722014 + 0.722014i 0.969015 0.247001i \(-0.0794452\pi\)
−0.247001 + 0.969015i \(0.579445\pi\)
\(824\) −11.8311 −0.412157
\(825\) −2.29848 15.3681i −0.0800228 0.535048i
\(826\) 0 0
\(827\) 14.8882 14.8882i 0.517712 0.517712i −0.399166 0.916879i \(-0.630700\pi\)
0.916879 + 0.399166i \(0.130700\pi\)
\(828\) 3.72349 + 3.72349i 0.129400 + 0.129400i
\(829\) 36.7688 1.27703 0.638516 0.769609i \(-0.279549\pi\)
0.638516 + 0.769609i \(0.279549\pi\)
\(830\) 12.7723 + 25.3363i 0.443332 + 0.879435i
\(831\) 24.7111i 0.857219i
\(832\) 3.40812 + 3.40812i 0.118155 + 0.118155i
\(833\) 0 0
\(834\) 10.9145i 0.377937i
\(835\) −1.83393 0.604630i −0.0634659 0.0209241i
\(836\) 22.4802i 0.777494i
\(837\) −6.52308 + 6.52308i −0.225471 + 0.225471i
\(838\) −0.728937 + 0.728937i −0.0251807 + 0.0251807i
\(839\) −11.6715 −0.402944 −0.201472 0.979494i \(-0.564573\pi\)
−0.201472 + 0.979494i \(0.564573\pi\)
\(840\) 0 0
\(841\) 8.80767 0.303713
\(842\) −20.2901 + 20.2901i −0.699243 + 0.699243i
\(843\) −13.0755 + 13.0755i −0.450345 + 0.450345i
\(844\) 15.9995i 0.550724i
\(845\) 10.2977 + 20.4275i 0.354251 + 0.702726i
\(846\) 4.08444i 0.140426i
\(847\) 0 0
\(848\) −2.43203 2.43203i −0.0835164 0.0835164i
\(849\) 5.57176i 0.191222i
\(850\) −15.8428 + 21.4152i −0.543405 + 0.734536i
\(851\) 18.9213 0.648613
\(852\) 6.52474 + 6.52474i 0.223534 + 0.223534i
\(853\) −19.6499 + 19.6499i −0.672801 + 0.672801i −0.958361 0.285560i \(-0.907821\pi\)
0.285560 + 0.958361i \(0.407821\pi\)
\(854\) 0 0
\(855\) 7.28091 + 14.4431i 0.249002 + 0.493944i
\(856\) −2.16226 −0.0739047
\(857\) 39.6746 + 39.6746i 1.35526 + 1.35526i 0.879664 + 0.475596i \(0.157767\pi\)
0.475596 + 0.879664i \(0.342233\pi\)
\(858\) 10.5918 + 10.5918i 0.361597 + 0.361597i
\(859\) 19.0290 0.649261 0.324630 0.945841i \(-0.394760\pi\)
0.324630 + 0.945841i \(0.394760\pi\)
\(860\) 3.83037 11.6181i 0.130615 0.396173i
\(861\) 0 0
\(862\) 17.1668 17.1668i 0.584704 0.584704i
\(863\) −14.5855 14.5855i −0.496495 0.496495i 0.413850 0.910345i \(-0.364184\pi\)
−0.910345 + 0.413850i \(0.864184\pi\)
\(864\) 1.00000 0.0340207
\(865\) −2.44873 + 7.42736i −0.0832593 + 0.252538i
\(866\) 27.1111i 0.921271i
\(867\) −8.04992 8.04992i −0.273389 0.273389i
\(868\) 0 0
\(869\) 5.94947i 0.201822i
\(870\) −8.97238 + 4.52306i −0.304192 + 0.153346i
\(871\) 32.1138i 1.08813i
\(872\) 0.399905 0.399905i 0.0135425 0.0135425i
\(873\) −2.69423 + 2.69423i −0.0911859 + 0.0911859i
\(874\) 38.0900 1.28841
\(875\) 0 0
\(876\) 8.23213 0.278138
\(877\) −20.1153 + 20.1153i −0.679245 + 0.679245i −0.959829 0.280585i \(-0.909472\pi\)
0.280585 + 0.959829i \(0.409472\pi\)
\(878\) 10.3230 10.3230i 0.348385 0.348385i
\(879\) 24.9559i 0.841741i
\(880\) −6.20538 + 3.12819i −0.209183 + 0.105451i
\(881\) 17.6227i 0.593724i −0.954920 0.296862i \(-0.904060\pi\)
0.954920 0.296862i \(-0.0959401\pi\)
\(882\) 0 0
\(883\) −4.03577 4.03577i −0.135814 0.135814i 0.635931 0.771746i \(-0.280616\pi\)
−0.771746 + 0.635931i \(0.780616\pi\)
\(884\) 25.6785i 0.863660i
\(885\) −0.932851 + 2.82947i −0.0313574 + 0.0951117i
\(886\) 22.7392 0.763938
\(887\) 10.5767 + 10.5767i 0.355130 + 0.355130i 0.862014 0.506884i \(-0.169203\pi\)
−0.506884 + 0.862014i \(0.669203\pi\)
\(888\) 2.54080 2.54080i 0.0852636 0.0852636i
\(889\) 0 0
\(890\) −2.85205 + 8.65069i −0.0956010 + 0.289972i
\(891\) 3.10780 0.104115
\(892\) −1.20707 1.20707i −0.0404157 0.0404157i
\(893\) −20.8912 20.8912i −0.699097 0.699097i
\(894\) 2.09021 0.0699071
\(895\) 18.1803 + 36.0642i 0.607700 + 1.20549i
\(896\) 0 0
\(897\) 17.9465 17.9465i 0.599217 0.599217i
\(898\) 29.5969 + 29.5969i 0.987662 + 0.987662i
\(899\) −41.4535 −1.38255
\(900\) −2.97368 + 4.01961i −0.0991226 + 0.133987i
\(901\) 18.3242i 0.610466i
\(902\) −5.53456 5.53456i −0.184281 0.184281i
\(903\) 0 0
\(904\) 14.1171i 0.469528i
\(905\) −21.8682 43.3798i −0.726923 1.44199i
\(906\) 4.04236i 0.134298i
\(907\) −12.3104 + 12.3104i −0.408761 + 0.408761i −0.881306 0.472545i \(-0.843335\pi\)
0.472545 + 0.881306i \(0.343335\pi\)
\(908\) −4.81749 + 4.81749i −0.159874 + 0.159874i
\(909\) 7.86244 0.260781
\(910\) 0 0
\(911\) 9.74129 0.322743 0.161372 0.986894i \(-0.448408\pi\)
0.161372 + 0.986894i \(0.448408\pi\)
\(912\) 5.11483 5.11483i 0.169369 0.169369i
\(913\) 27.8848 27.8848i 0.922852 0.922852i
\(914\) 26.5586i 0.878480i
\(915\) 26.6596 + 8.78941i 0.881338 + 0.290569i
\(916\) 19.8143i 0.654682i
\(917\) 0 0
\(918\) −3.76725 3.76725i −0.124338 0.124338i
\(919\) 23.1175i 0.762575i −0.924456 0.381288i \(-0.875481\pi\)
0.924456 0.381288i \(-0.124519\pi\)
\(920\) 5.30035 + 10.5143i 0.174747 + 0.346646i
\(921\) −16.2362 −0.535001
\(922\) −11.7102 11.7102i −0.385656 0.385656i
\(923\) 31.4480 31.4480i 1.03512 1.03512i
\(924\) 0 0
\(925\) 2.65749 + 17.7685i 0.0873778 + 0.584225i
\(926\) 26.9132 0.884424
\(927\) 8.36587 + 8.36587i 0.274771 + 0.274771i
\(928\) 3.17745 + 3.17745i 0.104305 + 0.104305i
\(929\) 18.3779 0.602958 0.301479 0.953473i \(-0.402520\pi\)
0.301479 + 0.953473i \(0.402520\pi\)
\(930\) −18.4197 + 9.28554i −0.604005 + 0.304485i
\(931\) 0 0
\(932\) 12.7261 12.7261i 0.416857 0.416857i
\(933\) −9.28775 9.28775i −0.304067 0.304067i
\(934\) 13.6065 0.445218
\(935\) 35.1618 + 11.5925i 1.14992 + 0.379116i
\(936\) 4.81981i 0.157540i
\(937\) −12.6455 12.6455i −0.413111 0.413111i 0.469710 0.882821i \(-0.344358\pi\)
−0.882821 + 0.469710i \(0.844358\pi\)
\(938\) 0 0
\(939\) 25.4482i 0.830471i
\(940\) 2.85968 8.67383i 0.0932725 0.282909i
\(941\) 51.6202i 1.68277i −0.540436 0.841385i \(-0.681741\pi\)
0.540436 0.841385i \(-0.318259\pi\)
\(942\) −0.640337 + 0.640337i −0.0208633 + 0.0208633i
\(943\) −9.37766 + 9.37766i −0.305379 + 0.305379i
\(944\) 1.33238 0.0433652
\(945\) 0 0
\(946\) −17.0024 −0.552795
\(947\) 36.9153 36.9153i 1.19959 1.19959i 0.225297 0.974290i \(-0.427665\pi\)
0.974290 0.225297i \(-0.0723352\pi\)
\(948\) −1.35366 + 1.35366i −0.0439648 + 0.0439648i
\(949\) 39.6773i 1.28798i
\(950\) 5.34974 + 35.7695i 0.173569 + 1.16051i
\(951\) 19.0262i 0.616966i
\(952\) 0 0
\(953\) 0.900242 + 0.900242i 0.0291617 + 0.0291617i 0.721537 0.692376i \(-0.243436\pi\)
−0.692376 + 0.721537i \(0.743436\pi\)
\(954\) 3.43942i 0.111355i
\(955\) −33.1103 + 16.6912i −1.07142 + 0.540115i
\(956\) 26.6409 0.861627
\(957\) 9.87488 + 9.87488i 0.319210 + 0.319210i
\(958\) 0.937119 0.937119i 0.0302769 0.0302769i
\(959\) 0 0
\(960\) 2.12363 + 0.700141i 0.0685399 + 0.0225969i
\(961\) −54.1012 −1.74520
\(962\) −12.2462 12.2462i −0.394832 0.394832i
\(963\) 1.52895 + 1.52895i 0.0492698 + 0.0492698i
\(964\) 14.4248 0.464592
\(965\) 4.49674 + 1.48253i 0.144755 + 0.0477244i
\(966\) 0 0
\(967\) 39.5119 39.5119i 1.27062 1.27062i 0.324852 0.945765i \(-0.394686\pi\)
0.945765 0.324852i \(-0.105314\pi\)
\(968\) −0.948618 0.948618i −0.0304897 0.0304897i
\(969\) −38.5377 −1.23801
\(970\) −7.60789 + 3.83521i −0.244275 + 0.123141i
\(971\) 0.110632i 0.00355034i −0.999998 0.00177517i \(-0.999435\pi\)
0.999998 0.00177517i \(-0.000565055\pi\)
\(972\) −0.707107 0.707107i −0.0226805 0.0226805i
\(973\) 0 0
\(974\) 32.0419i 1.02669i
\(975\) 19.3737 + 14.3326i 0.620456 + 0.459009i
\(976\) 12.5538i 0.401837i
\(977\) 5.61031 5.61031i 0.179490 0.179490i −0.611644 0.791133i \(-0.709491\pi\)
0.791133 + 0.611644i \(0.209491\pi\)
\(978\) −5.21998 + 5.21998i −0.166917 + 0.166917i
\(979\) 12.6598 0.404608
\(980\) 0 0
\(981\) −0.565551 −0.0180567
\(982\) 15.8010 15.8010i 0.504231 0.504231i
\(983\) 23.5138 23.5138i 0.749973 0.749973i −0.224501 0.974474i \(-0.572075\pi\)
0.974474 + 0.224501i \(0.0720752\pi\)
\(984\) 2.51851i 0.0802873i
\(985\) 1.21324 3.67992i 0.0386569 0.117252i
\(986\) 23.9404i 0.762419i
\(987\) 0 0
\(988\) −24.6525 24.6525i −0.784301 0.784301i
\(989\) 28.8085i 0.916057i
\(990\) 6.59983 + 2.17590i 0.209756 + 0.0691546i
\(991\) −14.3373 −0.455439 −0.227720 0.973727i \(-0.573127\pi\)
−0.227720 + 0.973727i \(0.573127\pi\)
\(992\) 6.52308 + 6.52308i 0.207108 + 0.207108i
\(993\) 14.8054 14.8054i 0.469837 0.469837i
\(994\) 0 0
\(995\) −15.7301 + 7.92969i −0.498677 + 0.251388i
\(996\) −12.6890 −0.402067
\(997\) −21.5103 21.5103i −0.681239 0.681239i 0.279040 0.960279i \(-0.409984\pi\)
−0.960279 + 0.279040i \(0.909984\pi\)
\(998\) −7.67375 7.67375i −0.242908 0.242908i
\(999\) −3.59323 −0.113685
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1470.2.m.e.1273.1 16
5.2 odd 4 1470.2.m.d.97.4 16
7.2 even 3 210.2.u.b.73.4 yes 16
7.3 odd 6 210.2.u.a.103.1 16
7.6 odd 2 1470.2.m.d.1273.4 16
21.2 odd 6 630.2.bv.b.73.1 16
21.17 even 6 630.2.bv.a.523.4 16
35.2 odd 12 210.2.u.a.157.1 yes 16
35.3 even 12 1050.2.bc.g.607.2 16
35.9 even 6 1050.2.bc.g.493.2 16
35.17 even 12 210.2.u.b.187.4 yes 16
35.23 odd 12 1050.2.bc.h.157.4 16
35.24 odd 6 1050.2.bc.h.943.4 16
35.27 even 4 inner 1470.2.m.e.97.1 16
105.2 even 12 630.2.bv.a.577.4 16
105.17 odd 12 630.2.bv.b.397.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.u.a.103.1 16 7.3 odd 6
210.2.u.a.157.1 yes 16 35.2 odd 12
210.2.u.b.73.4 yes 16 7.2 even 3
210.2.u.b.187.4 yes 16 35.17 even 12
630.2.bv.a.523.4 16 21.17 even 6
630.2.bv.a.577.4 16 105.2 even 12
630.2.bv.b.73.1 16 21.2 odd 6
630.2.bv.b.397.1 16 105.17 odd 12
1050.2.bc.g.493.2 16 35.9 even 6
1050.2.bc.g.607.2 16 35.3 even 12
1050.2.bc.h.157.4 16 35.23 odd 12
1050.2.bc.h.943.4 16 35.24 odd 6
1470.2.m.d.97.4 16 5.2 odd 4
1470.2.m.d.1273.4 16 7.6 odd 2
1470.2.m.e.97.1 16 35.27 even 4 inner
1470.2.m.e.1273.1 16 1.1 even 1 trivial