Properties

Label 147.8.a.m.1.5
Level $147$
Weight $8$
Character 147.1
Self dual yes
Analytic conductor $45.921$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [147,8,Mod(1,147)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("147.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(147, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 147.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-14,162] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.9205987462\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 553x^{4} + 1386x^{3} + 69169x^{2} - 44864x - 1106944 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4}\cdot 7^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(4.50858\) of defining polynomial
Character \(\chi\) \(=\) 147.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+11.9730 q^{2} +27.0000 q^{3} +15.3529 q^{4} +147.782 q^{5} +323.271 q^{6} -1348.72 q^{8} +729.000 q^{9} +1769.40 q^{10} -6362.41 q^{11} +414.529 q^{12} -6191.39 q^{13} +3990.11 q^{15} -18113.5 q^{16} -15339.7 q^{17} +8728.32 q^{18} -11942.0 q^{19} +2268.88 q^{20} -76177.1 q^{22} +78573.4 q^{23} -36415.6 q^{24} -56285.5 q^{25} -74129.5 q^{26} +19683.0 q^{27} -10830.8 q^{29} +47773.7 q^{30} -46357.4 q^{31} -44235.9 q^{32} -171785. q^{33} -183663. q^{34} +11192.3 q^{36} +357314. q^{37} -142982. q^{38} -167167. q^{39} -199317. q^{40} -352362. q^{41} -618076. q^{43} -97681.5 q^{44} +107733. q^{45} +940760. q^{46} -1.00174e6 q^{47} -489063. q^{48} -673906. q^{50} -414173. q^{51} -95055.9 q^{52} +723424. q^{53} +235665. q^{54} -940249. q^{55} -322435. q^{57} -129677. q^{58} -1.61679e6 q^{59} +61259.9 q^{60} -1.01852e6 q^{61} -555038. q^{62} +1.78889e6 q^{64} -914976. q^{65} -2.05678e6 q^{66} +3.83846e6 q^{67} -235510. q^{68} +2.12148e6 q^{69} -344495. q^{71} -983220. q^{72} +2.73444e6 q^{73} +4.27812e6 q^{74} -1.51971e6 q^{75} -183345. q^{76} -2.00150e6 q^{78} -8.30571e6 q^{79} -2.67684e6 q^{80} +531441. q^{81} -4.21883e6 q^{82} +9.63245e6 q^{83} -2.26694e6 q^{85} -7.40023e6 q^{86} -292432. q^{87} +8.58113e6 q^{88} -9.22066e6 q^{89} +1.28989e6 q^{90} +1.20633e6 q^{92} -1.25165e6 q^{93} -1.19938e7 q^{94} -1.76482e6 q^{95} -1.19437e6 q^{96} -1.32776e7 q^{97} -4.63819e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 14 q^{2} + 162 q^{3} + 438 q^{4} - 500 q^{5} - 378 q^{6} - 1218 q^{8} + 4374 q^{9} - 6912 q^{10} - 1204 q^{11} + 11826 q^{12} - 17576 q^{13} - 13500 q^{15} + 15522 q^{16} - 60836 q^{17} - 10206 q^{18}+ \cdots - 877716 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 11.9730 1.05827 0.529137 0.848536i \(-0.322516\pi\)
0.529137 + 0.848536i \(0.322516\pi\)
\(3\) 27.0000 0.577350
\(4\) 15.3529 0.119945
\(5\) 147.782 0.528721 0.264360 0.964424i \(-0.414839\pi\)
0.264360 + 0.964424i \(0.414839\pi\)
\(6\) 323.271 0.610995
\(7\) 0 0
\(8\) −1348.72 −0.931340
\(9\) 729.000 0.333333
\(10\) 1769.40 0.559532
\(11\) −6362.41 −1.44128 −0.720638 0.693312i \(-0.756151\pi\)
−0.720638 + 0.693312i \(0.756151\pi\)
\(12\) 414.529 0.0692501
\(13\) −6191.39 −0.781603 −0.390802 0.920475i \(-0.627802\pi\)
−0.390802 + 0.920475i \(0.627802\pi\)
\(14\) 0 0
\(15\) 3990.11 0.305257
\(16\) −18113.5 −1.10556
\(17\) −15339.7 −0.757263 −0.378632 0.925547i \(-0.623605\pi\)
−0.378632 + 0.925547i \(0.623605\pi\)
\(18\) 8728.32 0.352758
\(19\) −11942.0 −0.399430 −0.199715 0.979854i \(-0.564002\pi\)
−0.199715 + 0.979854i \(0.564002\pi\)
\(20\) 2268.88 0.0634172
\(21\) 0 0
\(22\) −76177.1 −1.52526
\(23\) 78573.4 1.34657 0.673284 0.739384i \(-0.264883\pi\)
0.673284 + 0.739384i \(0.264883\pi\)
\(24\) −36415.6 −0.537709
\(25\) −56285.5 −0.720454
\(26\) −74129.5 −0.827151
\(27\) 19683.0 0.192450
\(28\) 0 0
\(29\) −10830.8 −0.0824646 −0.0412323 0.999150i \(-0.513128\pi\)
−0.0412323 + 0.999150i \(0.513128\pi\)
\(30\) 47773.7 0.323046
\(31\) −46357.4 −0.279482 −0.139741 0.990188i \(-0.544627\pi\)
−0.139741 + 0.990188i \(0.544627\pi\)
\(32\) −44235.9 −0.238644
\(33\) −171785. −0.832121
\(34\) −183663. −0.801393
\(35\) 0 0
\(36\) 11192.3 0.0399815
\(37\) 357314. 1.15969 0.579847 0.814725i \(-0.303112\pi\)
0.579847 + 0.814725i \(0.303112\pi\)
\(38\) −142982. −0.422706
\(39\) −167167. −0.451259
\(40\) −199317. −0.492419
\(41\) −352362. −0.798445 −0.399222 0.916854i \(-0.630720\pi\)
−0.399222 + 0.916854i \(0.630720\pi\)
\(42\) 0 0
\(43\) −618076. −1.18550 −0.592751 0.805385i \(-0.701958\pi\)
−0.592751 + 0.805385i \(0.701958\pi\)
\(44\) −97681.5 −0.172873
\(45\) 107733. 0.176240
\(46\) 940760. 1.42504
\(47\) −1.00174e6 −1.40738 −0.703692 0.710505i \(-0.748466\pi\)
−0.703692 + 0.710505i \(0.748466\pi\)
\(48\) −489063. −0.638294
\(49\) 0 0
\(50\) −673906. −0.762438
\(51\) −414173. −0.437206
\(52\) −95055.9 −0.0937491
\(53\) 723424. 0.667463 0.333732 0.942668i \(-0.391692\pi\)
0.333732 + 0.942668i \(0.391692\pi\)
\(54\) 235665. 0.203665
\(55\) −940249. −0.762033
\(56\) 0 0
\(57\) −322435. −0.230611
\(58\) −129677. −0.0872702
\(59\) −1.61679e6 −1.02488 −0.512439 0.858724i \(-0.671258\pi\)
−0.512439 + 0.858724i \(0.671258\pi\)
\(60\) 61259.9 0.0366140
\(61\) −1.01852e6 −0.574531 −0.287265 0.957851i \(-0.592746\pi\)
−0.287265 + 0.957851i \(0.592746\pi\)
\(62\) −555038. −0.295768
\(63\) 0 0
\(64\) 1.78889e6 0.853008
\(65\) −914976. −0.413250
\(66\) −2.05678e6 −0.880612
\(67\) 3.83846e6 1.55917 0.779587 0.626294i \(-0.215429\pi\)
0.779587 + 0.626294i \(0.215429\pi\)
\(68\) −235510. −0.0908297
\(69\) 2.12148e6 0.777441
\(70\) 0 0
\(71\) −344495. −0.114229 −0.0571147 0.998368i \(-0.518190\pi\)
−0.0571147 + 0.998368i \(0.518190\pi\)
\(72\) −983220. −0.310447
\(73\) 2.73444e6 0.822693 0.411347 0.911479i \(-0.365059\pi\)
0.411347 + 0.911479i \(0.365059\pi\)
\(74\) 4.27812e6 1.22727
\(75\) −1.51971e6 −0.415954
\(76\) −183345. −0.0479094
\(77\) 0 0
\(78\) −2.00150e6 −0.477556
\(79\) −8.30571e6 −1.89532 −0.947659 0.319286i \(-0.896557\pi\)
−0.947659 + 0.319286i \(0.896557\pi\)
\(80\) −2.67684e6 −0.584532
\(81\) 531441. 0.111111
\(82\) −4.21883e6 −0.844974
\(83\) 9.63245e6 1.84911 0.924556 0.381046i \(-0.124436\pi\)
0.924556 + 0.381046i \(0.124436\pi\)
\(84\) 0 0
\(85\) −2.26694e6 −0.400381
\(86\) −7.40023e6 −1.25459
\(87\) −292432. −0.0476110
\(88\) 8.58113e6 1.34232
\(89\) −9.22066e6 −1.38643 −0.693214 0.720732i \(-0.743806\pi\)
−0.693214 + 0.720732i \(0.743806\pi\)
\(90\) 1.28989e6 0.186511
\(91\) 0 0
\(92\) 1.20633e6 0.161514
\(93\) −1.25165e6 −0.161359
\(94\) −1.19938e7 −1.48940
\(95\) −1.76482e6 −0.211187
\(96\) −1.19437e6 −0.137781
\(97\) −1.32776e7 −1.47713 −0.738564 0.674183i \(-0.764496\pi\)
−0.738564 + 0.674183i \(0.764496\pi\)
\(98\) 0 0
\(99\) −4.63819e6 −0.480425
\(100\) −864146. −0.0864146
\(101\) 3.77157e6 0.364248 0.182124 0.983276i \(-0.441703\pi\)
0.182124 + 0.983276i \(0.441703\pi\)
\(102\) −4.95890e6 −0.462684
\(103\) 2.02815e7 1.82882 0.914410 0.404790i \(-0.132655\pi\)
0.914410 + 0.404790i \(0.132655\pi\)
\(104\) 8.35048e6 0.727938
\(105\) 0 0
\(106\) 8.66156e6 0.706359
\(107\) 2.24485e6 0.177151 0.0885757 0.996069i \(-0.471768\pi\)
0.0885757 + 0.996069i \(0.471768\pi\)
\(108\) 302191. 0.0230834
\(109\) 1.63686e7 1.21065 0.605324 0.795979i \(-0.293044\pi\)
0.605324 + 0.795979i \(0.293044\pi\)
\(110\) −1.12576e7 −0.806440
\(111\) 9.64746e6 0.669550
\(112\) 0 0
\(113\) −1.76531e7 −1.15092 −0.575462 0.817828i \(-0.695178\pi\)
−0.575462 + 0.817828i \(0.695178\pi\)
\(114\) −3.86051e6 −0.244049
\(115\) 1.16117e7 0.711958
\(116\) −166284. −0.00989119
\(117\) −4.51352e6 −0.260534
\(118\) −1.93578e7 −1.08460
\(119\) 0 0
\(120\) −5.38156e6 −0.284298
\(121\) 2.09930e7 1.07728
\(122\) −1.21947e7 −0.608011
\(123\) −9.51376e6 −0.460982
\(124\) −711721. −0.0335223
\(125\) −1.98634e7 −0.909640
\(126\) 0 0
\(127\) 2.50963e6 0.108717 0.0543584 0.998521i \(-0.482689\pi\)
0.0543584 + 0.998521i \(0.482689\pi\)
\(128\) 2.70805e7 1.14136
\(129\) −1.66881e7 −0.684450
\(130\) −1.09550e7 −0.437332
\(131\) −2.38551e7 −0.927112 −0.463556 0.886068i \(-0.653427\pi\)
−0.463556 + 0.886068i \(0.653427\pi\)
\(132\) −2.63740e6 −0.0998084
\(133\) 0 0
\(134\) 4.59579e7 1.65003
\(135\) 2.90879e6 0.101752
\(136\) 2.06891e7 0.705270
\(137\) −1.65732e7 −0.550660 −0.275330 0.961350i \(-0.588787\pi\)
−0.275330 + 0.961350i \(0.588787\pi\)
\(138\) 2.54005e7 0.822746
\(139\) −4.23290e7 −1.33686 −0.668431 0.743774i \(-0.733034\pi\)
−0.668431 + 0.743774i \(0.733034\pi\)
\(140\) 0 0
\(141\) −2.70470e7 −0.812554
\(142\) −4.12464e6 −0.120886
\(143\) 3.93921e7 1.12651
\(144\) −1.32047e7 −0.368519
\(145\) −1.60060e6 −0.0436008
\(146\) 3.27394e7 0.870635
\(147\) 0 0
\(148\) 5.48580e6 0.139099
\(149\) 4.63550e7 1.14801 0.574003 0.818853i \(-0.305390\pi\)
0.574003 + 0.818853i \(0.305390\pi\)
\(150\) −1.81955e7 −0.440194
\(151\) −6.41314e6 −0.151583 −0.0757916 0.997124i \(-0.524148\pi\)
−0.0757916 + 0.997124i \(0.524148\pi\)
\(152\) 1.61065e7 0.372005
\(153\) −1.11827e7 −0.252421
\(154\) 0 0
\(155\) −6.85079e6 −0.147768
\(156\) −2.56651e6 −0.0541261
\(157\) 7.37494e7 1.52093 0.760466 0.649378i \(-0.224971\pi\)
0.760466 + 0.649378i \(0.224971\pi\)
\(158\) −9.94443e7 −2.00577
\(159\) 1.95324e7 0.385360
\(160\) −6.53727e6 −0.126176
\(161\) 0 0
\(162\) 6.36295e6 0.117586
\(163\) 6.32095e7 1.14321 0.571604 0.820529i \(-0.306321\pi\)
0.571604 + 0.820529i \(0.306321\pi\)
\(164\) −5.40978e6 −0.0957692
\(165\) −2.53867e7 −0.439960
\(166\) 1.15329e8 1.95687
\(167\) 1.01813e8 1.69159 0.845794 0.533510i \(-0.179127\pi\)
0.845794 + 0.533510i \(0.179127\pi\)
\(168\) 0 0
\(169\) −2.44152e7 −0.389096
\(170\) −2.71421e7 −0.423713
\(171\) −8.70573e6 −0.133143
\(172\) −9.48927e6 −0.142195
\(173\) 1.35596e7 0.199106 0.0995531 0.995032i \(-0.468259\pi\)
0.0995531 + 0.995032i \(0.468259\pi\)
\(174\) −3.50129e6 −0.0503854
\(175\) 0 0
\(176\) 1.15245e8 1.59341
\(177\) −4.36534e7 −0.591713
\(178\) −1.10399e8 −1.46722
\(179\) 4.47771e7 0.583540 0.291770 0.956489i \(-0.405756\pi\)
0.291770 + 0.956489i \(0.405756\pi\)
\(180\) 1.65402e6 0.0211391
\(181\) 9.90123e7 1.24112 0.620561 0.784158i \(-0.286905\pi\)
0.620561 + 0.784158i \(0.286905\pi\)
\(182\) 0 0
\(183\) −2.74999e7 −0.331705
\(184\) −1.05974e8 −1.25411
\(185\) 5.28045e7 0.613155
\(186\) −1.49860e7 −0.170762
\(187\) 9.75977e7 1.09143
\(188\) −1.53796e7 −0.168808
\(189\) 0 0
\(190\) −2.11302e7 −0.223494
\(191\) 9.30277e7 0.966041 0.483020 0.875609i \(-0.339540\pi\)
0.483020 + 0.875609i \(0.339540\pi\)
\(192\) 4.82999e7 0.492484
\(193\) −1.21860e8 −1.22015 −0.610073 0.792345i \(-0.708860\pi\)
−0.610073 + 0.792345i \(0.708860\pi\)
\(194\) −1.58973e8 −1.56321
\(195\) −2.47043e7 −0.238590
\(196\) 0 0
\(197\) 1.33984e8 1.24859 0.624296 0.781188i \(-0.285386\pi\)
0.624296 + 0.781188i \(0.285386\pi\)
\(198\) −5.55331e7 −0.508422
\(199\) −2.67278e6 −0.0240424 −0.0120212 0.999928i \(-0.503827\pi\)
−0.0120212 + 0.999928i \(0.503827\pi\)
\(200\) 7.59136e7 0.670988
\(201\) 1.03638e8 0.900190
\(202\) 4.51570e7 0.385474
\(203\) 0 0
\(204\) −6.35877e6 −0.0524406
\(205\) −5.20727e7 −0.422155
\(206\) 2.42831e8 1.93539
\(207\) 5.72800e7 0.448856
\(208\) 1.12147e8 0.864108
\(209\) 7.59800e7 0.575688
\(210\) 0 0
\(211\) −9.35784e7 −0.685784 −0.342892 0.939375i \(-0.611406\pi\)
−0.342892 + 0.939375i \(0.611406\pi\)
\(212\) 1.11067e7 0.0800586
\(213\) −9.30135e6 −0.0659504
\(214\) 2.68776e7 0.187475
\(215\) −9.13406e7 −0.626800
\(216\) −2.65469e7 −0.179236
\(217\) 0 0
\(218\) 1.95981e8 1.28120
\(219\) 7.38298e7 0.474982
\(220\) −1.44356e7 −0.0914017
\(221\) 9.49743e7 0.591880
\(222\) 1.15509e8 0.708567
\(223\) −1.41723e8 −0.855804 −0.427902 0.903825i \(-0.640747\pi\)
−0.427902 + 0.903825i \(0.640747\pi\)
\(224\) 0 0
\(225\) −4.10321e7 −0.240151
\(226\) −2.11361e8 −1.21799
\(227\) −1.90934e8 −1.08341 −0.541704 0.840569i \(-0.682221\pi\)
−0.541704 + 0.840569i \(0.682221\pi\)
\(228\) −4.95031e6 −0.0276605
\(229\) −2.55329e8 −1.40500 −0.702500 0.711683i \(-0.747933\pi\)
−0.702500 + 0.711683i \(0.747933\pi\)
\(230\) 1.39027e8 0.753447
\(231\) 0 0
\(232\) 1.46078e7 0.0768026
\(233\) 1.72507e8 0.893430 0.446715 0.894676i \(-0.352594\pi\)
0.446715 + 0.894676i \(0.352594\pi\)
\(234\) −5.40404e7 −0.275717
\(235\) −1.48039e8 −0.744113
\(236\) −2.48224e7 −0.122929
\(237\) −2.24254e8 −1.09426
\(238\) 0 0
\(239\) −7.15156e7 −0.338851 −0.169425 0.985543i \(-0.554191\pi\)
−0.169425 + 0.985543i \(0.554191\pi\)
\(240\) −7.22748e7 −0.337479
\(241\) −2.43260e8 −1.11946 −0.559732 0.828674i \(-0.689096\pi\)
−0.559732 + 0.828674i \(0.689096\pi\)
\(242\) 2.51350e8 1.14005
\(243\) 1.43489e7 0.0641500
\(244\) −1.56372e7 −0.0689119
\(245\) 0 0
\(246\) −1.13908e8 −0.487846
\(247\) 7.39377e7 0.312195
\(248\) 6.25234e7 0.260292
\(249\) 2.60076e8 1.06759
\(250\) −2.37825e8 −0.962649
\(251\) −4.15842e8 −1.65986 −0.829928 0.557871i \(-0.811618\pi\)
−0.829928 + 0.557871i \(0.811618\pi\)
\(252\) 0 0
\(253\) −4.99916e8 −1.94077
\(254\) 3.00478e7 0.115052
\(255\) −6.12073e7 −0.231160
\(256\) 9.52581e7 0.354864
\(257\) −4.63963e8 −1.70497 −0.852487 0.522749i \(-0.824906\pi\)
−0.852487 + 0.522749i \(0.824906\pi\)
\(258\) −1.99806e8 −0.724336
\(259\) 0 0
\(260\) −1.40475e7 −0.0495671
\(261\) −7.89565e6 −0.0274882
\(262\) −2.85618e8 −0.981138
\(263\) 1.90290e8 0.645018 0.322509 0.946566i \(-0.395474\pi\)
0.322509 + 0.946566i \(0.395474\pi\)
\(264\) 2.31691e8 0.774987
\(265\) 1.06909e8 0.352902
\(266\) 0 0
\(267\) −2.48958e8 −0.800454
\(268\) 5.89315e7 0.187015
\(269\) 2.61320e8 0.818540 0.409270 0.912413i \(-0.365783\pi\)
0.409270 + 0.912413i \(0.365783\pi\)
\(270\) 3.48270e7 0.107682
\(271\) −5.98252e7 −0.182596 −0.0912981 0.995824i \(-0.529102\pi\)
−0.0912981 + 0.995824i \(0.529102\pi\)
\(272\) 2.77856e8 0.837199
\(273\) 0 0
\(274\) −1.98431e8 −0.582749
\(275\) 3.58111e8 1.03837
\(276\) 3.25709e7 0.0932499
\(277\) −3.40657e8 −0.963027 −0.481514 0.876439i \(-0.659913\pi\)
−0.481514 + 0.876439i \(0.659913\pi\)
\(278\) −5.06806e8 −1.41477
\(279\) −3.37945e7 −0.0931605
\(280\) 0 0
\(281\) 4.33869e8 1.16650 0.583252 0.812291i \(-0.301780\pi\)
0.583252 + 0.812291i \(0.301780\pi\)
\(282\) −3.23834e8 −0.859905
\(283\) −4.62429e8 −1.21281 −0.606405 0.795156i \(-0.707389\pi\)
−0.606405 + 0.795156i \(0.707389\pi\)
\(284\) −5.28900e6 −0.0137012
\(285\) −4.76500e7 −0.121929
\(286\) 4.71642e8 1.19215
\(287\) 0 0
\(288\) −3.22480e7 −0.0795479
\(289\) −1.75031e8 −0.426552
\(290\) −1.91640e7 −0.0461416
\(291\) −3.58495e8 −0.852820
\(292\) 4.19816e7 0.0986776
\(293\) −5.23279e8 −1.21534 −0.607668 0.794191i \(-0.707895\pi\)
−0.607668 + 0.794191i \(0.707895\pi\)
\(294\) 0 0
\(295\) −2.38933e8 −0.541874
\(296\) −4.81917e8 −1.08007
\(297\) −1.25231e8 −0.277374
\(298\) 5.55008e8 1.21491
\(299\) −4.86478e8 −1.05248
\(300\) −2.33319e7 −0.0498915
\(301\) 0 0
\(302\) −7.67846e7 −0.160417
\(303\) 1.01832e8 0.210299
\(304\) 2.16311e8 0.441593
\(305\) −1.50518e8 −0.303766
\(306\) −1.33890e8 −0.267131
\(307\) −5.56846e8 −1.09838 −0.549188 0.835699i \(-0.685063\pi\)
−0.549188 + 0.835699i \(0.685063\pi\)
\(308\) 0 0
\(309\) 5.47602e8 1.05587
\(310\) −8.20246e7 −0.156379
\(311\) −2.00327e8 −0.377641 −0.188820 0.982012i \(-0.560466\pi\)
−0.188820 + 0.982012i \(0.560466\pi\)
\(312\) 2.25463e8 0.420275
\(313\) 5.63849e7 0.103934 0.0519670 0.998649i \(-0.483451\pi\)
0.0519670 + 0.998649i \(0.483451\pi\)
\(314\) 8.83002e8 1.60956
\(315\) 0 0
\(316\) −1.27517e8 −0.227333
\(317\) 2.66478e8 0.469844 0.234922 0.972014i \(-0.424517\pi\)
0.234922 + 0.972014i \(0.424517\pi\)
\(318\) 2.33862e8 0.407817
\(319\) 6.89099e7 0.118854
\(320\) 2.64365e8 0.451003
\(321\) 6.06110e7 0.102278
\(322\) 0 0
\(323\) 1.83188e8 0.302473
\(324\) 8.15917e6 0.0133272
\(325\) 3.48485e8 0.563109
\(326\) 7.56807e8 1.20983
\(327\) 4.41951e8 0.698968
\(328\) 4.75239e8 0.743624
\(329\) 0 0
\(330\) −3.03955e8 −0.465598
\(331\) −7.10038e8 −1.07618 −0.538088 0.842889i \(-0.680853\pi\)
−0.538088 + 0.842889i \(0.680853\pi\)
\(332\) 1.47886e8 0.221791
\(333\) 2.60482e8 0.386565
\(334\) 1.21900e9 1.79016
\(335\) 5.67255e8 0.824368
\(336\) 0 0
\(337\) 1.99282e8 0.283638 0.141819 0.989893i \(-0.454705\pi\)
0.141819 + 0.989893i \(0.454705\pi\)
\(338\) −2.92324e8 −0.411771
\(339\) −4.76634e8 −0.664486
\(340\) −3.48041e7 −0.0480236
\(341\) 2.94945e8 0.402810
\(342\) −1.04234e8 −0.140902
\(343\) 0 0
\(344\) 8.33615e8 1.10411
\(345\) 3.13517e8 0.411049
\(346\) 1.62349e8 0.210709
\(347\) −2.12282e8 −0.272747 −0.136373 0.990658i \(-0.543545\pi\)
−0.136373 + 0.990658i \(0.543545\pi\)
\(348\) −4.48968e6 −0.00571068
\(349\) −1.06480e9 −1.34084 −0.670421 0.741981i \(-0.733887\pi\)
−0.670421 + 0.741981i \(0.733887\pi\)
\(350\) 0 0
\(351\) −1.21865e8 −0.150420
\(352\) 2.81447e8 0.343951
\(353\) −7.14274e7 −0.0864278 −0.0432139 0.999066i \(-0.513760\pi\)
−0.0432139 + 0.999066i \(0.513760\pi\)
\(354\) −5.22662e8 −0.626195
\(355\) −5.09101e7 −0.0603955
\(356\) −1.41564e8 −0.166295
\(357\) 0 0
\(358\) 5.36117e8 0.617545
\(359\) −778009. −0.000887471 0 −0.000443735 1.00000i \(-0.500141\pi\)
−0.000443735 1.00000i \(0.500141\pi\)
\(360\) −1.45302e8 −0.164140
\(361\) −7.51260e8 −0.840456
\(362\) 1.18548e9 1.31345
\(363\) 5.66812e8 0.621965
\(364\) 0 0
\(365\) 4.04101e8 0.434975
\(366\) −3.29257e8 −0.351035
\(367\) 1.79377e9 1.89424 0.947122 0.320874i \(-0.103976\pi\)
0.947122 + 0.320874i \(0.103976\pi\)
\(368\) −1.42324e9 −1.48871
\(369\) −2.56872e8 −0.266148
\(370\) 6.32229e8 0.648886
\(371\) 0 0
\(372\) −1.92165e7 −0.0193541
\(373\) 3.13767e8 0.313059 0.156529 0.987673i \(-0.449969\pi\)
0.156529 + 0.987673i \(0.449969\pi\)
\(374\) 1.16854e9 1.15503
\(375\) −5.36313e8 −0.525181
\(376\) 1.35107e9 1.31075
\(377\) 6.70577e7 0.0644546
\(378\) 0 0
\(379\) 1.58359e9 1.49419 0.747096 0.664716i \(-0.231448\pi\)
0.747096 + 0.664716i \(0.231448\pi\)
\(380\) −2.70951e7 −0.0253307
\(381\) 6.77600e7 0.0627676
\(382\) 1.11382e9 1.02234
\(383\) 6.11227e8 0.555913 0.277956 0.960594i \(-0.410343\pi\)
0.277956 + 0.960594i \(0.410343\pi\)
\(384\) 7.31175e8 0.658964
\(385\) 0 0
\(386\) −1.45904e9 −1.29125
\(387\) −4.50578e8 −0.395168
\(388\) −2.03850e8 −0.177174
\(389\) −1.22334e9 −1.05371 −0.526856 0.849954i \(-0.676629\pi\)
−0.526856 + 0.849954i \(0.676629\pi\)
\(390\) −2.95785e8 −0.252494
\(391\) −1.20530e9 −1.01971
\(392\) 0 0
\(393\) −6.44088e8 −0.535268
\(394\) 1.60419e9 1.32135
\(395\) −1.22743e9 −1.00209
\(396\) −7.12098e7 −0.0576244
\(397\) −2.35711e9 −1.89066 −0.945328 0.326120i \(-0.894259\pi\)
−0.945328 + 0.326120i \(0.894259\pi\)
\(398\) −3.20013e7 −0.0254435
\(399\) 0 0
\(400\) 1.01952e9 0.796504
\(401\) 1.83192e9 1.41873 0.709367 0.704840i \(-0.248981\pi\)
0.709367 + 0.704840i \(0.248981\pi\)
\(402\) 1.24086e9 0.952648
\(403\) 2.87017e8 0.218444
\(404\) 5.79046e7 0.0436896
\(405\) 7.85374e7 0.0587468
\(406\) 0 0
\(407\) −2.27337e9 −1.67144
\(408\) 5.58606e8 0.407188
\(409\) −3.21133e8 −0.232089 −0.116044 0.993244i \(-0.537021\pi\)
−0.116044 + 0.993244i \(0.537021\pi\)
\(410\) −6.23467e8 −0.446755
\(411\) −4.47475e8 −0.317924
\(412\) 3.11381e8 0.219357
\(413\) 0 0
\(414\) 6.85814e8 0.475013
\(415\) 1.42350e9 0.977665
\(416\) 2.73882e8 0.186525
\(417\) −1.14288e9 −0.771837
\(418\) 9.09709e8 0.609236
\(419\) −1.07921e9 −0.716735 −0.358368 0.933581i \(-0.616667\pi\)
−0.358368 + 0.933581i \(0.616667\pi\)
\(420\) 0 0
\(421\) 2.69627e8 0.176107 0.0880535 0.996116i \(-0.471935\pi\)
0.0880535 + 0.996116i \(0.471935\pi\)
\(422\) −1.12042e9 −0.725747
\(423\) −7.30269e8 −0.469128
\(424\) −9.75700e8 −0.621635
\(425\) 8.63405e8 0.545574
\(426\) −1.11365e8 −0.0697936
\(427\) 0 0
\(428\) 3.44650e7 0.0212483
\(429\) 1.06359e9 0.650388
\(430\) −1.09362e9 −0.663327
\(431\) −1.66399e9 −1.00111 −0.500554 0.865705i \(-0.666870\pi\)
−0.500554 + 0.865705i \(0.666870\pi\)
\(432\) −3.56527e8 −0.212765
\(433\) −8.52786e8 −0.504815 −0.252408 0.967621i \(-0.581222\pi\)
−0.252408 + 0.967621i \(0.581222\pi\)
\(434\) 0 0
\(435\) −4.32161e7 −0.0251729
\(436\) 2.51305e8 0.145211
\(437\) −9.38325e8 −0.537859
\(438\) 8.83965e8 0.502661
\(439\) 6.18483e8 0.348901 0.174450 0.984666i \(-0.444185\pi\)
0.174450 + 0.984666i \(0.444185\pi\)
\(440\) 1.26814e9 0.709711
\(441\) 0 0
\(442\) 1.13713e9 0.626371
\(443\) −8.31055e8 −0.454168 −0.227084 0.973875i \(-0.572919\pi\)
−0.227084 + 0.973875i \(0.572919\pi\)
\(444\) 1.48117e8 0.0803089
\(445\) −1.36265e9 −0.733033
\(446\) −1.69685e9 −0.905675
\(447\) 1.25158e9 0.662802
\(448\) 0 0
\(449\) −9.02353e8 −0.470451 −0.235225 0.971941i \(-0.575583\pi\)
−0.235225 + 0.971941i \(0.575583\pi\)
\(450\) −4.91278e8 −0.254146
\(451\) 2.24187e9 1.15078
\(452\) −2.71027e8 −0.138047
\(453\) −1.73155e8 −0.0875166
\(454\) −2.28605e9 −1.14654
\(455\) 0 0
\(456\) 4.34875e8 0.214777
\(457\) 4.81860e6 0.00236164 0.00118082 0.999999i \(-0.499624\pi\)
0.00118082 + 0.999999i \(0.499624\pi\)
\(458\) −3.05706e9 −1.48688
\(459\) −3.01932e8 −0.145735
\(460\) 1.78274e8 0.0853956
\(461\) −8.95231e8 −0.425580 −0.212790 0.977098i \(-0.568255\pi\)
−0.212790 + 0.977098i \(0.568255\pi\)
\(462\) 0 0
\(463\) −2.52287e9 −1.18130 −0.590652 0.806926i \(-0.701129\pi\)
−0.590652 + 0.806926i \(0.701129\pi\)
\(464\) 1.96183e8 0.0911694
\(465\) −1.84971e8 −0.0853138
\(466\) 2.06543e9 0.945494
\(467\) 3.69100e9 1.67701 0.838504 0.544895i \(-0.183430\pi\)
0.838504 + 0.544895i \(0.183430\pi\)
\(468\) −6.92957e7 −0.0312497
\(469\) 0 0
\(470\) −1.77247e9 −0.787476
\(471\) 1.99123e9 0.878110
\(472\) 2.18061e9 0.954509
\(473\) 3.93245e9 1.70864
\(474\) −2.68500e9 −1.15803
\(475\) 6.72162e8 0.287771
\(476\) 0 0
\(477\) 5.27376e8 0.222488
\(478\) −8.56257e8 −0.358597
\(479\) 1.28903e9 0.535907 0.267953 0.963432i \(-0.413653\pi\)
0.267953 + 0.963432i \(0.413653\pi\)
\(480\) −1.76506e8 −0.0728477
\(481\) −2.21227e9 −0.906421
\(482\) −2.91255e9 −1.18470
\(483\) 0 0
\(484\) 3.22304e8 0.129213
\(485\) −1.96219e9 −0.780989
\(486\) 1.71800e8 0.0678883
\(487\) 2.88487e9 1.13181 0.565907 0.824469i \(-0.308526\pi\)
0.565907 + 0.824469i \(0.308526\pi\)
\(488\) 1.37370e9 0.535083
\(489\) 1.70666e9 0.660032
\(490\) 0 0
\(491\) 1.04090e8 0.0396849 0.0198425 0.999803i \(-0.493684\pi\)
0.0198425 + 0.999803i \(0.493684\pi\)
\(492\) −1.46064e8 −0.0552924
\(493\) 1.66142e8 0.0624474
\(494\) 8.85257e8 0.330388
\(495\) −6.85442e8 −0.254011
\(496\) 8.39693e8 0.308983
\(497\) 0 0
\(498\) 3.11389e9 1.12980
\(499\) −4.00550e9 −1.44313 −0.721565 0.692347i \(-0.756577\pi\)
−0.721565 + 0.692347i \(0.756577\pi\)
\(500\) −3.04962e8 −0.109106
\(501\) 2.74894e9 0.976639
\(502\) −4.97888e9 −1.75658
\(503\) −1.59670e9 −0.559417 −0.279708 0.960085i \(-0.590238\pi\)
−0.279708 + 0.960085i \(0.590238\pi\)
\(504\) 0 0
\(505\) 5.57370e8 0.192586
\(506\) −5.98550e9 −2.05387
\(507\) −6.59211e8 −0.224645
\(508\) 3.85301e7 0.0130400
\(509\) −3.43182e7 −0.0115349 −0.00576743 0.999983i \(-0.501836\pi\)
−0.00576743 + 0.999983i \(0.501836\pi\)
\(510\) −7.32836e8 −0.244631
\(511\) 0 0
\(512\) −2.32578e9 −0.765816
\(513\) −2.35055e8 −0.0768703
\(514\) −5.55503e9 −1.80433
\(515\) 2.99725e9 0.966935
\(516\) −2.56210e8 −0.0820962
\(517\) 6.37348e9 2.02843
\(518\) 0 0
\(519\) 3.66108e8 0.114954
\(520\) 1.23405e9 0.384876
\(521\) −1.29223e9 −0.400321 −0.200161 0.979763i \(-0.564146\pi\)
−0.200161 + 0.979763i \(0.564146\pi\)
\(522\) −9.45347e7 −0.0290901
\(523\) −2.58606e8 −0.0790465 −0.0395233 0.999219i \(-0.512584\pi\)
−0.0395233 + 0.999219i \(0.512584\pi\)
\(524\) −3.66246e8 −0.111202
\(525\) 0 0
\(526\) 2.27835e9 0.682605
\(527\) 7.11111e8 0.211641
\(528\) 3.11162e9 0.919958
\(529\) 2.76895e9 0.813243
\(530\) 1.28002e9 0.373467
\(531\) −1.17864e9 −0.341626
\(532\) 0 0
\(533\) 2.18161e9 0.624067
\(534\) −2.98078e9 −0.847100
\(535\) 3.31749e8 0.0936636
\(536\) −5.17702e9 −1.45212
\(537\) 1.20898e9 0.336907
\(538\) 3.12879e9 0.866240
\(539\) 0 0
\(540\) 4.46584e7 0.0122047
\(541\) −3.55359e8 −0.0964888 −0.0482444 0.998836i \(-0.515363\pi\)
−0.0482444 + 0.998836i \(0.515363\pi\)
\(542\) −7.16288e8 −0.193237
\(543\) 2.67333e9 0.716562
\(544\) 6.78567e8 0.180716
\(545\) 2.41898e9 0.640095
\(546\) 0 0
\(547\) −3.16657e9 −0.827244 −0.413622 0.910449i \(-0.635736\pi\)
−0.413622 + 0.910449i \(0.635736\pi\)
\(548\) −2.54446e8 −0.0660487
\(549\) −7.42498e8 −0.191510
\(550\) 4.28767e9 1.09888
\(551\) 1.29342e8 0.0329388
\(552\) −2.86129e9 −0.724062
\(553\) 0 0
\(554\) −4.07869e9 −1.01915
\(555\) 1.42572e9 0.354005
\(556\) −6.49874e8 −0.160349
\(557\) 6.34922e9 1.55678 0.778390 0.627781i \(-0.216037\pi\)
0.778390 + 0.627781i \(0.216037\pi\)
\(558\) −4.04622e8 −0.0985894
\(559\) 3.82675e9 0.926593
\(560\) 0 0
\(561\) 2.63514e9 0.630135
\(562\) 5.19472e9 1.23448
\(563\) −1.17095e9 −0.276540 −0.138270 0.990395i \(-0.544154\pi\)
−0.138270 + 0.990395i \(0.544154\pi\)
\(564\) −4.15250e8 −0.0974614
\(565\) −2.60881e9 −0.608518
\(566\) −5.53667e9 −1.28349
\(567\) 0 0
\(568\) 4.64628e8 0.106386
\(569\) −5.09242e9 −1.15886 −0.579431 0.815021i \(-0.696725\pi\)
−0.579431 + 0.815021i \(0.696725\pi\)
\(570\) −5.70514e8 −0.129034
\(571\) −6.92793e9 −1.55732 −0.778659 0.627447i \(-0.784100\pi\)
−0.778659 + 0.627447i \(0.784100\pi\)
\(572\) 6.04784e8 0.135118
\(573\) 2.51175e9 0.557744
\(574\) 0 0
\(575\) −4.42254e9 −0.970140
\(576\) 1.30410e9 0.284336
\(577\) 1.02827e9 0.222839 0.111419 0.993773i \(-0.464460\pi\)
0.111419 + 0.993773i \(0.464460\pi\)
\(578\) −2.09564e9 −0.451409
\(579\) −3.29023e9 −0.704452
\(580\) −2.45738e7 −0.00522968
\(581\) 0 0
\(582\) −4.29226e9 −0.902518
\(583\) −4.60272e9 −0.961998
\(584\) −3.68800e9 −0.766207
\(585\) −6.67017e8 −0.137750
\(586\) −6.26522e9 −1.28616
\(587\) −2.89305e9 −0.590368 −0.295184 0.955440i \(-0.595381\pi\)
−0.295184 + 0.955440i \(0.595381\pi\)
\(588\) 0 0
\(589\) 5.53601e8 0.111633
\(590\) −2.86074e9 −0.573451
\(591\) 3.61756e9 0.720875
\(592\) −6.47218e9 −1.28211
\(593\) 7.60849e9 1.49833 0.749165 0.662384i \(-0.230455\pi\)
0.749165 + 0.662384i \(0.230455\pi\)
\(594\) −1.49939e9 −0.293537
\(595\) 0 0
\(596\) 7.11684e8 0.137697
\(597\) −7.21652e7 −0.0138809
\(598\) −5.82461e9 −1.11381
\(599\) 3.85051e9 0.732023 0.366011 0.930610i \(-0.380723\pi\)
0.366011 + 0.930610i \(0.380723\pi\)
\(600\) 2.04967e9 0.387395
\(601\) −2.41853e9 −0.454456 −0.227228 0.973842i \(-0.572966\pi\)
−0.227228 + 0.973842i \(0.572966\pi\)
\(602\) 0 0
\(603\) 2.79823e9 0.519725
\(604\) −9.84604e7 −0.0181816
\(605\) 3.10239e9 0.569578
\(606\) 1.21924e9 0.222554
\(607\) −3.68586e9 −0.668926 −0.334463 0.942409i \(-0.608555\pi\)
−0.334463 + 0.942409i \(0.608555\pi\)
\(608\) 5.28266e8 0.0953213
\(609\) 0 0
\(610\) −1.80216e9 −0.321468
\(611\) 6.20216e9 1.10002
\(612\) −1.71687e8 −0.0302766
\(613\) −1.07967e10 −1.89312 −0.946558 0.322532i \(-0.895466\pi\)
−0.946558 + 0.322532i \(0.895466\pi\)
\(614\) −6.66712e9 −1.16238
\(615\) −1.40596e9 −0.243731
\(616\) 0 0
\(617\) 1.77134e9 0.303601 0.151801 0.988411i \(-0.451493\pi\)
0.151801 + 0.988411i \(0.451493\pi\)
\(618\) 6.55644e9 1.11740
\(619\) 8.68180e8 0.147127 0.0735635 0.997291i \(-0.476563\pi\)
0.0735635 + 0.997291i \(0.476563\pi\)
\(620\) −1.05180e8 −0.0177240
\(621\) 1.54656e9 0.259147
\(622\) −2.39852e9 −0.399647
\(623\) 0 0
\(624\) 3.02798e9 0.498893
\(625\) 1.46184e9 0.239508
\(626\) 6.75097e8 0.109991
\(627\) 2.05146e9 0.332374
\(628\) 1.13227e9 0.182428
\(629\) −5.48110e9 −0.878194
\(630\) 0 0
\(631\) −6.66494e9 −1.05607 −0.528036 0.849222i \(-0.677071\pi\)
−0.528036 + 0.849222i \(0.677071\pi\)
\(632\) 1.12021e10 1.76518
\(633\) −2.52662e9 −0.395937
\(634\) 3.19054e9 0.497224
\(635\) 3.70878e8 0.0574808
\(636\) 2.99880e8 0.0462219
\(637\) 0 0
\(638\) 8.25059e8 0.125780
\(639\) −2.51137e8 −0.0380765
\(640\) 4.00202e9 0.603461
\(641\) −3.56030e9 −0.533928 −0.266964 0.963706i \(-0.586021\pi\)
−0.266964 + 0.963706i \(0.586021\pi\)
\(642\) 7.25696e8 0.108239
\(643\) 6.88842e9 1.02184 0.510918 0.859629i \(-0.329306\pi\)
0.510918 + 0.859629i \(0.329306\pi\)
\(644\) 0 0
\(645\) −2.46620e9 −0.361883
\(646\) 2.19331e9 0.320100
\(647\) 1.02798e10 1.49217 0.746085 0.665851i \(-0.231931\pi\)
0.746085 + 0.665851i \(0.231931\pi\)
\(648\) −7.16767e8 −0.103482
\(649\) 1.02867e10 1.47713
\(650\) 4.17242e9 0.595924
\(651\) 0 0
\(652\) 9.70449e8 0.137122
\(653\) 8.94969e9 1.25780 0.628901 0.777486i \(-0.283505\pi\)
0.628901 + 0.777486i \(0.283505\pi\)
\(654\) 5.29148e9 0.739700
\(655\) −3.52536e9 −0.490183
\(656\) 6.38249e9 0.882727
\(657\) 1.99340e9 0.274231
\(658\) 0 0
\(659\) 8.16275e9 1.11106 0.555530 0.831496i \(-0.312515\pi\)
0.555530 + 0.831496i \(0.312515\pi\)
\(660\) −3.89760e8 −0.0527708
\(661\) 1.09427e8 0.0147374 0.00736868 0.999973i \(-0.497654\pi\)
0.00736868 + 0.999973i \(0.497654\pi\)
\(662\) −8.50129e9 −1.13889
\(663\) 2.56431e9 0.341722
\(664\) −1.29915e10 −1.72215
\(665\) 0 0
\(666\) 3.11875e9 0.409091
\(667\) −8.51012e8 −0.111044
\(668\) 1.56312e9 0.202897
\(669\) −3.82653e9 −0.494099
\(670\) 6.79174e9 0.872408
\(671\) 6.48021e9 0.828057
\(672\) 0 0
\(673\) 1.03359e10 1.30705 0.653527 0.756903i \(-0.273289\pi\)
0.653527 + 0.756903i \(0.273289\pi\)
\(674\) 2.38601e9 0.300167
\(675\) −1.10787e9 −0.138651
\(676\) −3.74845e8 −0.0466700
\(677\) −1.42026e9 −0.175917 −0.0879586 0.996124i \(-0.528034\pi\)
−0.0879586 + 0.996124i \(0.528034\pi\)
\(678\) −5.70674e9 −0.703209
\(679\) 0 0
\(680\) 3.05748e9 0.372891
\(681\) −5.15521e9 −0.625506
\(682\) 3.53137e9 0.426283
\(683\) 2.33921e9 0.280929 0.140464 0.990086i \(-0.455140\pi\)
0.140464 + 0.990086i \(0.455140\pi\)
\(684\) −1.33658e8 −0.0159698
\(685\) −2.44922e9 −0.291145
\(686\) 0 0
\(687\) −6.89389e9 −0.811178
\(688\) 1.11955e10 1.31064
\(689\) −4.47900e9 −0.521691
\(690\) 3.75374e9 0.435003
\(691\) 4.07953e9 0.470367 0.235184 0.971951i \(-0.424431\pi\)
0.235184 + 0.971951i \(0.424431\pi\)
\(692\) 2.08179e8 0.0238817
\(693\) 0 0
\(694\) −2.54165e9 −0.288641
\(695\) −6.25547e9 −0.706827
\(696\) 3.94410e8 0.0443420
\(697\) 5.40514e9 0.604633
\(698\) −1.27488e10 −1.41898
\(699\) 4.65769e9 0.515822
\(700\) 0 0
\(701\) 4.48674e9 0.491947 0.245973 0.969277i \(-0.420892\pi\)
0.245973 + 0.969277i \(0.420892\pi\)
\(702\) −1.45909e9 −0.159185
\(703\) −4.26705e9 −0.463216
\(704\) −1.13816e10 −1.22942
\(705\) −3.99706e9 −0.429614
\(706\) −8.55201e8 −0.0914643
\(707\) 0 0
\(708\) −6.70206e8 −0.0709728
\(709\) −1.02918e10 −1.08450 −0.542248 0.840218i \(-0.682427\pi\)
−0.542248 + 0.840218i \(0.682427\pi\)
\(710\) −6.09547e8 −0.0639150
\(711\) −6.05486e9 −0.631772
\(712\) 1.24361e10 1.29124
\(713\) −3.64246e9 −0.376341
\(714\) 0 0
\(715\) 5.82145e9 0.595607
\(716\) 6.87459e8 0.0699925
\(717\) −1.93092e9 −0.195636
\(718\) −9.31511e6 −0.000939188 0
\(719\) 1.38302e10 1.38764 0.693820 0.720149i \(-0.255927\pi\)
0.693820 + 0.720149i \(0.255927\pi\)
\(720\) −1.95142e9 −0.194844
\(721\) 0 0
\(722\) −8.99484e9 −0.889433
\(723\) −6.56801e9 −0.646323
\(724\) 1.52013e9 0.148866
\(725\) 6.09617e8 0.0594120
\(726\) 6.78645e9 0.658210
\(727\) 1.90270e10 1.83654 0.918270 0.395954i \(-0.129586\pi\)
0.918270 + 0.395954i \(0.129586\pi\)
\(728\) 0 0
\(729\) 3.87420e8 0.0370370
\(730\) 4.83830e9 0.460323
\(731\) 9.48114e9 0.897738
\(732\) −4.22204e8 −0.0397863
\(733\) −9.26816e8 −0.0869220 −0.0434610 0.999055i \(-0.513838\pi\)
−0.0434610 + 0.999055i \(0.513838\pi\)
\(734\) 2.14768e10 2.00463
\(735\) 0 0
\(736\) −3.47576e9 −0.321350
\(737\) −2.44218e10 −2.24720
\(738\) −3.07553e9 −0.281658
\(739\) 3.58717e9 0.326961 0.163481 0.986547i \(-0.447728\pi\)
0.163481 + 0.986547i \(0.447728\pi\)
\(740\) 8.10703e8 0.0735446
\(741\) 1.99632e9 0.180246
\(742\) 0 0
\(743\) 2.20176e10 1.96928 0.984642 0.174583i \(-0.0558577\pi\)
0.984642 + 0.174583i \(0.0558577\pi\)
\(744\) 1.68813e9 0.150280
\(745\) 6.85043e9 0.606975
\(746\) 3.75673e9 0.331302
\(747\) 7.02205e9 0.616371
\(748\) 1.49841e9 0.130911
\(749\) 0 0
\(750\) −6.42128e9 −0.555786
\(751\) −1.05025e10 −0.904797 −0.452398 0.891816i \(-0.649431\pi\)
−0.452398 + 0.891816i \(0.649431\pi\)
\(752\) 1.81450e10 1.55594
\(753\) −1.12277e10 −0.958318
\(754\) 8.02882e8 0.0682106
\(755\) −9.47746e8 −0.0801453
\(756\) 0 0
\(757\) 1.58187e9 0.132536 0.0662682 0.997802i \(-0.478891\pi\)
0.0662682 + 0.997802i \(0.478891\pi\)
\(758\) 1.89604e10 1.58126
\(759\) −1.34977e10 −1.12051
\(760\) 2.38025e9 0.196687
\(761\) −1.67401e10 −1.37693 −0.688466 0.725269i \(-0.741715\pi\)
−0.688466 + 0.725269i \(0.741715\pi\)
\(762\) 8.11291e8 0.0664254
\(763\) 0 0
\(764\) 1.42825e9 0.115871
\(765\) −1.65260e9 −0.133460
\(766\) 7.31822e9 0.588308
\(767\) 1.00102e10 0.801047
\(768\) 2.57197e9 0.204881
\(769\) −2.13180e10 −1.69046 −0.845229 0.534405i \(-0.820536\pi\)
−0.845229 + 0.534405i \(0.820536\pi\)
\(770\) 0 0
\(771\) −1.25270e10 −0.984367
\(772\) −1.87091e9 −0.146350
\(773\) −1.65142e10 −1.28597 −0.642984 0.765880i \(-0.722304\pi\)
−0.642984 + 0.765880i \(0.722304\pi\)
\(774\) −5.39477e9 −0.418196
\(775\) 2.60925e9 0.201354
\(776\) 1.79078e10 1.37571
\(777\) 0 0
\(778\) −1.46470e10 −1.11512
\(779\) 4.20791e9 0.318923
\(780\) −3.79284e8 −0.0286176
\(781\) 2.19181e9 0.164636
\(782\) −1.44310e10 −1.07913
\(783\) −2.13183e8 −0.0158703
\(784\) 0 0
\(785\) 1.08988e10 0.804149
\(786\) −7.71167e9 −0.566461
\(787\) 9.18131e9 0.671418 0.335709 0.941966i \(-0.391024\pi\)
0.335709 + 0.941966i \(0.391024\pi\)
\(788\) 2.05704e9 0.149762
\(789\) 5.13784e9 0.372401
\(790\) −1.46961e10 −1.06049
\(791\) 0 0
\(792\) 6.25565e9 0.447439
\(793\) 6.30602e9 0.449055
\(794\) −2.82217e10 −2.00083
\(795\) 2.88654e9 0.203748
\(796\) −4.10350e7 −0.00288376
\(797\) 1.31379e10 0.919225 0.459612 0.888120i \(-0.347988\pi\)
0.459612 + 0.888120i \(0.347988\pi\)
\(798\) 0 0
\(799\) 1.53664e10 1.06576
\(800\) 2.48984e9 0.171932
\(801\) −6.72186e9 −0.462143
\(802\) 2.19336e10 1.50141
\(803\) −1.73976e10 −1.18573
\(804\) 1.59115e9 0.107973
\(805\) 0 0
\(806\) 3.43645e9 0.231173
\(807\) 7.05564e9 0.472584
\(808\) −5.08681e9 −0.339239
\(809\) −1.85815e10 −1.23384 −0.616922 0.787024i \(-0.711621\pi\)
−0.616922 + 0.787024i \(0.711621\pi\)
\(810\) 9.40329e8 0.0621702
\(811\) −2.24767e9 −0.147965 −0.0739826 0.997260i \(-0.523571\pi\)
−0.0739826 + 0.997260i \(0.523571\pi\)
\(812\) 0 0
\(813\) −1.61528e9 −0.105422
\(814\) −2.72191e10 −1.76884
\(815\) 9.34122e9 0.604438
\(816\) 7.50211e9 0.483357
\(817\) 7.38108e9 0.473525
\(818\) −3.84493e9 −0.245614
\(819\) 0 0
\(820\) −7.99468e8 −0.0506352
\(821\) 5.85982e9 0.369559 0.184779 0.982780i \(-0.440843\pi\)
0.184779 + 0.982780i \(0.440843\pi\)
\(822\) −5.35763e9 −0.336450
\(823\) 1.47824e10 0.924372 0.462186 0.886783i \(-0.347065\pi\)
0.462186 + 0.886783i \(0.347065\pi\)
\(824\) −2.73542e10 −1.70325
\(825\) 9.66900e9 0.599505
\(826\) 0 0
\(827\) −2.98930e10 −1.83781 −0.918905 0.394478i \(-0.870925\pi\)
−0.918905 + 0.394478i \(0.870925\pi\)
\(828\) 8.79415e8 0.0538378
\(829\) −2.15141e10 −1.31154 −0.655772 0.754959i \(-0.727657\pi\)
−0.655772 + 0.754959i \(0.727657\pi\)
\(830\) 1.70436e10 1.03464
\(831\) −9.19775e9 −0.556004
\(832\) −1.10757e10 −0.666713
\(833\) 0 0
\(834\) −1.36838e10 −0.816816
\(835\) 1.50461e10 0.894378
\(836\) 1.16651e9 0.0690507
\(837\) −9.12453e8 −0.0537863
\(838\) −1.29214e10 −0.758502
\(839\) −1.24647e10 −0.728644 −0.364322 0.931273i \(-0.618699\pi\)
−0.364322 + 0.931273i \(0.618699\pi\)
\(840\) 0 0
\(841\) −1.71326e10 −0.993200
\(842\) 3.22825e9 0.186370
\(843\) 1.17145e10 0.673482
\(844\) −1.43670e9 −0.0822561
\(845\) −3.60813e9 −0.205723
\(846\) −8.74351e9 −0.496466
\(847\) 0 0
\(848\) −1.31037e10 −0.737919
\(849\) −1.24856e10 −0.700216
\(850\) 1.03376e10 0.577367
\(851\) 2.80753e10 1.56161
\(852\) −1.42803e8 −0.00791040
\(853\) −2.55888e10 −1.41165 −0.705826 0.708385i \(-0.749424\pi\)
−0.705826 + 0.708385i \(0.749424\pi\)
\(854\) 0 0
\(855\) −1.28655e9 −0.0703956
\(856\) −3.02769e9 −0.164988
\(857\) 2.05773e10 1.11675 0.558375 0.829589i \(-0.311425\pi\)
0.558375 + 0.829589i \(0.311425\pi\)
\(858\) 1.27343e10 0.688289
\(859\) 3.87736e9 0.208718 0.104359 0.994540i \(-0.466721\pi\)
0.104359 + 0.994540i \(0.466721\pi\)
\(860\) −1.40234e9 −0.0751813
\(861\) 0 0
\(862\) −1.99230e10 −1.05945
\(863\) 6.63817e9 0.351569 0.175784 0.984429i \(-0.443754\pi\)
0.175784 + 0.984429i \(0.443754\pi\)
\(864\) −8.70695e8 −0.0459270
\(865\) 2.00386e9 0.105272
\(866\) −1.02104e10 −0.534233
\(867\) −4.72583e9 −0.246270
\(868\) 0 0
\(869\) 5.28443e10 2.73167
\(870\) −5.17427e8 −0.0266398
\(871\) −2.37654e10 −1.21866
\(872\) −2.20767e10 −1.12752
\(873\) −9.67936e9 −0.492376
\(874\) −1.12346e10 −0.569202
\(875\) 0 0
\(876\) 1.13350e9 0.0569716
\(877\) 5.21042e9 0.260840 0.130420 0.991459i \(-0.458367\pi\)
0.130420 + 0.991459i \(0.458367\pi\)
\(878\) 7.40510e9 0.369233
\(879\) −1.41285e10 −0.701675
\(880\) 1.70312e10 0.842471
\(881\) −3.14280e10 −1.54846 −0.774231 0.632903i \(-0.781863\pi\)
−0.774231 + 0.632903i \(0.781863\pi\)
\(882\) 0 0
\(883\) −1.28989e10 −0.630507 −0.315254 0.949007i \(-0.602090\pi\)
−0.315254 + 0.949007i \(0.602090\pi\)
\(884\) 1.45813e9 0.0709928
\(885\) −6.45118e9 −0.312851
\(886\) −9.95023e9 −0.480634
\(887\) −1.56991e10 −0.755337 −0.377668 0.925941i \(-0.623274\pi\)
−0.377668 + 0.925941i \(0.623274\pi\)
\(888\) −1.30118e10 −0.623578
\(889\) 0 0
\(890\) −1.63150e10 −0.775750
\(891\) −3.38124e9 −0.160142
\(892\) −2.17587e9 −0.102649
\(893\) 1.19628e10 0.562151
\(894\) 1.49852e10 0.701426
\(895\) 6.61725e9 0.308530
\(896\) 0 0
\(897\) −1.31349e10 −0.607650
\(898\) −1.08039e10 −0.497866
\(899\) 5.02088e8 0.0230473
\(900\) −6.29963e8 −0.0288049
\(901\) −1.10971e10 −0.505446
\(902\) 2.68419e10 1.21784
\(903\) 0 0
\(904\) 2.38092e10 1.07190
\(905\) 1.46322e10 0.656207
\(906\) −2.07318e9 −0.0926166
\(907\) 8.82395e9 0.392679 0.196339 0.980536i \(-0.437095\pi\)
0.196339 + 0.980536i \(0.437095\pi\)
\(908\) −2.93139e9 −0.129949
\(909\) 2.74947e9 0.121416
\(910\) 0 0
\(911\) 7.83674e9 0.343417 0.171708 0.985148i \(-0.445071\pi\)
0.171708 + 0.985148i \(0.445071\pi\)
\(912\) 5.84041e9 0.254954
\(913\) −6.12855e10 −2.66508
\(914\) 5.76932e7 0.00249927
\(915\) −4.06399e9 −0.175380
\(916\) −3.92005e9 −0.168522
\(917\) 0 0
\(918\) −3.61504e9 −0.154228
\(919\) 1.08422e10 0.460801 0.230401 0.973096i \(-0.425996\pi\)
0.230401 + 0.973096i \(0.425996\pi\)
\(920\) −1.56610e10 −0.663075
\(921\) −1.50348e10 −0.634147
\(922\) −1.07186e10 −0.450381
\(923\) 2.13290e9 0.0892821
\(924\) 0 0
\(925\) −2.01116e10 −0.835506
\(926\) −3.02064e10 −1.25014
\(927\) 1.47852e10 0.609606
\(928\) 4.79110e8 0.0196796
\(929\) 1.27560e10 0.521989 0.260994 0.965340i \(-0.415950\pi\)
0.260994 + 0.965340i \(0.415950\pi\)
\(930\) −2.21466e9 −0.0902854
\(931\) 0 0
\(932\) 2.64848e9 0.107162
\(933\) −5.40884e9 −0.218031
\(934\) 4.41924e10 1.77474
\(935\) 1.44232e10 0.577059
\(936\) 6.08750e9 0.242646
\(937\) 2.41827e10 0.960321 0.480160 0.877181i \(-0.340578\pi\)
0.480160 + 0.877181i \(0.340578\pi\)
\(938\) 0 0
\(939\) 1.52239e9 0.0600064
\(940\) −2.27283e9 −0.0892524
\(941\) 1.31783e10 0.515581 0.257790 0.966201i \(-0.417006\pi\)
0.257790 + 0.966201i \(0.417006\pi\)
\(942\) 2.38411e10 0.929282
\(943\) −2.76862e10 −1.07516
\(944\) 2.92857e10 1.13306
\(945\) 0 0
\(946\) 4.70833e10 1.80821
\(947\) 4.31517e10 1.65110 0.825550 0.564329i \(-0.190865\pi\)
0.825550 + 0.564329i \(0.190865\pi\)
\(948\) −3.44295e9 −0.131251
\(949\) −1.69300e10 −0.643020
\(950\) 8.04781e9 0.304540
\(951\) 7.19490e9 0.271265
\(952\) 0 0
\(953\) −3.33513e10 −1.24821 −0.624105 0.781340i \(-0.714536\pi\)
−0.624105 + 0.781340i \(0.714536\pi\)
\(954\) 6.31428e9 0.235453
\(955\) 1.37478e10 0.510766
\(956\) −1.09797e9 −0.0406433
\(957\) 1.86057e9 0.0686205
\(958\) 1.54336e10 0.567136
\(959\) 0 0
\(960\) 7.13786e9 0.260387
\(961\) −2.53636e10 −0.921890
\(962\) −2.64875e10 −0.959242
\(963\) 1.63650e9 0.0590504
\(964\) −3.73474e9 −0.134274
\(965\) −1.80088e10 −0.645117
\(966\) 0 0
\(967\) −4.08789e10 −1.45381 −0.726903 0.686740i \(-0.759041\pi\)
−0.726903 + 0.686740i \(0.759041\pi\)
\(968\) −2.83138e10 −1.00331
\(969\) 4.94607e9 0.174633
\(970\) −2.34933e10 −0.826500
\(971\) 2.93692e10 1.02950 0.514749 0.857341i \(-0.327885\pi\)
0.514749 + 0.857341i \(0.327885\pi\)
\(972\) 2.20298e8 0.00769445
\(973\) 0 0
\(974\) 3.45406e10 1.19777
\(975\) 9.40910e9 0.325111
\(976\) 1.84488e10 0.635177
\(977\) 2.34233e10 0.803556 0.401778 0.915737i \(-0.368392\pi\)
0.401778 + 0.915737i \(0.368392\pi\)
\(978\) 2.04338e10 0.698495
\(979\) 5.86656e10 1.99822
\(980\) 0 0
\(981\) 1.19327e10 0.403549
\(982\) 1.24628e9 0.0419975
\(983\) 1.13192e10 0.380082 0.190041 0.981776i \(-0.439138\pi\)
0.190041 + 0.981776i \(0.439138\pi\)
\(984\) 1.28314e10 0.429331
\(985\) 1.98004e10 0.660157
\(986\) 1.98922e9 0.0660865
\(987\) 0 0
\(988\) 1.13516e9 0.0374462
\(989\) −4.85644e10 −1.59636
\(990\) −8.20680e9 −0.268813
\(991\) −3.15390e10 −1.02942 −0.514708 0.857366i \(-0.672100\pi\)
−0.514708 + 0.857366i \(0.672100\pi\)
\(992\) 2.05066e9 0.0666965
\(993\) −1.91710e10 −0.621331
\(994\) 0 0
\(995\) −3.94989e8 −0.0127117
\(996\) 3.99293e9 0.128051
\(997\) 1.60961e10 0.514385 0.257193 0.966360i \(-0.417203\pi\)
0.257193 + 0.966360i \(0.417203\pi\)
\(998\) −4.79579e10 −1.52723
\(999\) 7.03300e9 0.223183
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 147.8.a.m.1.5 yes 6
3.2 odd 2 441.8.a.z.1.2 6
7.2 even 3 147.8.e.o.67.2 12
7.3 odd 6 147.8.e.p.79.2 12
7.4 even 3 147.8.e.o.79.2 12
7.5 odd 6 147.8.e.p.67.2 12
7.6 odd 2 147.8.a.l.1.5 6
21.20 even 2 441.8.a.y.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
147.8.a.l.1.5 6 7.6 odd 2
147.8.a.m.1.5 yes 6 1.1 even 1 trivial
147.8.e.o.67.2 12 7.2 even 3
147.8.e.o.79.2 12 7.4 even 3
147.8.e.p.67.2 12 7.5 odd 6
147.8.e.p.79.2 12 7.3 odd 6
441.8.a.y.1.2 6 21.20 even 2
441.8.a.z.1.2 6 3.2 odd 2