Properties

Label 1458.4.a.i.1.9
Level $1458$
Weight $4$
Character 1458.1
Self dual yes
Analytic conductor $86.025$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1458,4,Mod(1,1458)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1458.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1458, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1458 = 2 \cdot 3^{6} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1458.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,-30,0,60,-15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.0247847884\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 339 x^{13} - 1151 x^{12} + 35865 x^{11} + 180141 x^{10} - 1644266 x^{9} - 10786662 x^{8} + \cdots + 33185995624 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{24} \)
Twist minimal: no (minimal twist has level 54)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(4.59599\) of defining polynomial
Character \(\chi\) \(=\) 1458.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} +0.857990 q^{5} +21.8463 q^{7} -8.00000 q^{8} -1.71598 q^{10} -48.5698 q^{11} +55.0596 q^{13} -43.6926 q^{14} +16.0000 q^{16} -79.2082 q^{17} +110.031 q^{19} +3.43196 q^{20} +97.1396 q^{22} +45.2289 q^{23} -124.264 q^{25} -110.119 q^{26} +87.3852 q^{28} +124.902 q^{29} -133.698 q^{31} -32.0000 q^{32} +158.416 q^{34} +18.7439 q^{35} +168.323 q^{37} -220.062 q^{38} -6.86392 q^{40} -21.3943 q^{41} -168.177 q^{43} -194.279 q^{44} -90.4578 q^{46} +318.097 q^{47} +134.260 q^{49} +248.528 q^{50} +220.238 q^{52} +463.685 q^{53} -41.6724 q^{55} -174.770 q^{56} -249.804 q^{58} +542.432 q^{59} +690.176 q^{61} +267.396 q^{62} +64.0000 q^{64} +47.2406 q^{65} +643.049 q^{67} -316.833 q^{68} -37.4878 q^{70} -1049.54 q^{71} -960.314 q^{73} -336.646 q^{74} +440.125 q^{76} -1061.07 q^{77} +229.118 q^{79} +13.7278 q^{80} +42.7886 q^{82} -170.123 q^{83} -67.9598 q^{85} +336.355 q^{86} +388.558 q^{88} -759.358 q^{89} +1202.85 q^{91} +180.916 q^{92} -636.193 q^{94} +94.4057 q^{95} +1608.49 q^{97} -268.521 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 30 q^{2} + 60 q^{4} - 15 q^{5} + 42 q^{7} - 120 q^{8} + 30 q^{10} - 33 q^{11} + 117 q^{13} - 84 q^{14} + 240 q^{16} - 102 q^{17} + 171 q^{19} - 60 q^{20} + 66 q^{22} - 174 q^{23} + 600 q^{25} - 234 q^{26}+ \cdots - 4002 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 0.857990 0.0767410 0.0383705 0.999264i \(-0.487783\pi\)
0.0383705 + 0.999264i \(0.487783\pi\)
\(6\) 0 0
\(7\) 21.8463 1.17959 0.589794 0.807553i \(-0.299209\pi\)
0.589794 + 0.807553i \(0.299209\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) −1.71598 −0.0542641
\(11\) −48.5698 −1.33130 −0.665652 0.746262i \(-0.731846\pi\)
−0.665652 + 0.746262i \(0.731846\pi\)
\(12\) 0 0
\(13\) 55.0596 1.17468 0.587338 0.809342i \(-0.300176\pi\)
0.587338 + 0.809342i \(0.300176\pi\)
\(14\) −43.6926 −0.834095
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −79.2082 −1.13005 −0.565024 0.825075i \(-0.691133\pi\)
−0.565024 + 0.825075i \(0.691133\pi\)
\(18\) 0 0
\(19\) 110.031 1.32857 0.664287 0.747478i \(-0.268735\pi\)
0.664287 + 0.747478i \(0.268735\pi\)
\(20\) 3.43196 0.0383705
\(21\) 0 0
\(22\) 97.1396 0.941374
\(23\) 45.2289 0.410038 0.205019 0.978758i \(-0.434274\pi\)
0.205019 + 0.978758i \(0.434274\pi\)
\(24\) 0 0
\(25\) −124.264 −0.994111
\(26\) −110.119 −0.830621
\(27\) 0 0
\(28\) 87.3852 0.589794
\(29\) 124.902 0.799784 0.399892 0.916562i \(-0.369048\pi\)
0.399892 + 0.916562i \(0.369048\pi\)
\(30\) 0 0
\(31\) −133.698 −0.774608 −0.387304 0.921952i \(-0.626594\pi\)
−0.387304 + 0.921952i \(0.626594\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) 158.416 0.799064
\(35\) 18.7439 0.0905228
\(36\) 0 0
\(37\) 168.323 0.747895 0.373947 0.927450i \(-0.378004\pi\)
0.373947 + 0.927450i \(0.378004\pi\)
\(38\) −220.062 −0.939443
\(39\) 0 0
\(40\) −6.86392 −0.0271320
\(41\) −21.3943 −0.0814934 −0.0407467 0.999170i \(-0.512974\pi\)
−0.0407467 + 0.999170i \(0.512974\pi\)
\(42\) 0 0
\(43\) −168.177 −0.596437 −0.298219 0.954498i \(-0.596392\pi\)
−0.298219 + 0.954498i \(0.596392\pi\)
\(44\) −194.279 −0.665652
\(45\) 0 0
\(46\) −90.4578 −0.289941
\(47\) 318.097 0.987216 0.493608 0.869685i \(-0.335678\pi\)
0.493608 + 0.869685i \(0.335678\pi\)
\(48\) 0 0
\(49\) 134.260 0.391430
\(50\) 248.528 0.702943
\(51\) 0 0
\(52\) 220.238 0.587338
\(53\) 463.685 1.20174 0.600869 0.799348i \(-0.294822\pi\)
0.600869 + 0.799348i \(0.294822\pi\)
\(54\) 0 0
\(55\) −41.6724 −0.102166
\(56\) −174.770 −0.417048
\(57\) 0 0
\(58\) −249.804 −0.565532
\(59\) 542.432 1.19693 0.598463 0.801151i \(-0.295778\pi\)
0.598463 + 0.801151i \(0.295778\pi\)
\(60\) 0 0
\(61\) 690.176 1.44866 0.724328 0.689455i \(-0.242150\pi\)
0.724328 + 0.689455i \(0.242150\pi\)
\(62\) 267.396 0.547730
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 47.2406 0.0901458
\(66\) 0 0
\(67\) 643.049 1.17255 0.586276 0.810112i \(-0.300594\pi\)
0.586276 + 0.810112i \(0.300594\pi\)
\(68\) −316.833 −0.565024
\(69\) 0 0
\(70\) −37.4878 −0.0640093
\(71\) −1049.54 −1.75434 −0.877169 0.480181i \(-0.840571\pi\)
−0.877169 + 0.480181i \(0.840571\pi\)
\(72\) 0 0
\(73\) −960.314 −1.53967 −0.769837 0.638241i \(-0.779663\pi\)
−0.769837 + 0.638241i \(0.779663\pi\)
\(74\) −336.646 −0.528841
\(75\) 0 0
\(76\) 440.125 0.664287
\(77\) −1061.07 −1.57039
\(78\) 0 0
\(79\) 229.118 0.326301 0.163150 0.986601i \(-0.447834\pi\)
0.163150 + 0.986601i \(0.447834\pi\)
\(80\) 13.7278 0.0191852
\(81\) 0 0
\(82\) 42.7886 0.0576246
\(83\) −170.123 −0.224981 −0.112491 0.993653i \(-0.535883\pi\)
−0.112491 + 0.993653i \(0.535883\pi\)
\(84\) 0 0
\(85\) −67.9598 −0.0867209
\(86\) 336.355 0.421745
\(87\) 0 0
\(88\) 388.558 0.470687
\(89\) −759.358 −0.904402 −0.452201 0.891916i \(-0.649361\pi\)
−0.452201 + 0.891916i \(0.649361\pi\)
\(90\) 0 0
\(91\) 1202.85 1.38563
\(92\) 180.916 0.205019
\(93\) 0 0
\(94\) −636.193 −0.698067
\(95\) 94.4057 0.101956
\(96\) 0 0
\(97\) 1608.49 1.68368 0.841842 0.539724i \(-0.181471\pi\)
0.841842 + 0.539724i \(0.181471\pi\)
\(98\) −268.521 −0.276783
\(99\) 0 0
\(100\) −497.055 −0.497055
\(101\) 1625.32 1.60124 0.800622 0.599170i \(-0.204503\pi\)
0.800622 + 0.599170i \(0.204503\pi\)
\(102\) 0 0
\(103\) −7.78227 −0.00744476 −0.00372238 0.999993i \(-0.501185\pi\)
−0.00372238 + 0.999993i \(0.501185\pi\)
\(104\) −440.477 −0.415311
\(105\) 0 0
\(106\) −927.371 −0.849756
\(107\) −1846.09 −1.66792 −0.833962 0.551822i \(-0.813933\pi\)
−0.833962 + 0.551822i \(0.813933\pi\)
\(108\) 0 0
\(109\) −1637.48 −1.43892 −0.719461 0.694532i \(-0.755611\pi\)
−0.719461 + 0.694532i \(0.755611\pi\)
\(110\) 83.3448 0.0722420
\(111\) 0 0
\(112\) 349.541 0.294897
\(113\) 392.755 0.326967 0.163483 0.986546i \(-0.447727\pi\)
0.163483 + 0.986546i \(0.447727\pi\)
\(114\) 0 0
\(115\) 38.8059 0.0314667
\(116\) 499.608 0.399892
\(117\) 0 0
\(118\) −1084.86 −0.846354
\(119\) −1730.40 −1.33299
\(120\) 0 0
\(121\) 1028.03 0.772371
\(122\) −1380.35 −1.02435
\(123\) 0 0
\(124\) −534.791 −0.387304
\(125\) −213.866 −0.153030
\(126\) 0 0
\(127\) −631.149 −0.440988 −0.220494 0.975388i \(-0.570767\pi\)
−0.220494 + 0.975388i \(0.570767\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) −94.4812 −0.0637427
\(131\) 1804.25 1.20334 0.601672 0.798743i \(-0.294501\pi\)
0.601672 + 0.798743i \(0.294501\pi\)
\(132\) 0 0
\(133\) 2403.77 1.56717
\(134\) −1286.10 −0.829119
\(135\) 0 0
\(136\) 633.665 0.399532
\(137\) −226.723 −0.141388 −0.0706942 0.997498i \(-0.522521\pi\)
−0.0706942 + 0.997498i \(0.522521\pi\)
\(138\) 0 0
\(139\) −1348.56 −0.822902 −0.411451 0.911432i \(-0.634978\pi\)
−0.411451 + 0.911432i \(0.634978\pi\)
\(140\) 74.9756 0.0452614
\(141\) 0 0
\(142\) 2099.09 1.24050
\(143\) −2674.23 −1.56385
\(144\) 0 0
\(145\) 107.165 0.0613762
\(146\) 1920.63 1.08871
\(147\) 0 0
\(148\) 673.291 0.373947
\(149\) 1732.78 0.952718 0.476359 0.879251i \(-0.341956\pi\)
0.476359 + 0.879251i \(0.341956\pi\)
\(150\) 0 0
\(151\) 3196.76 1.72284 0.861420 0.507893i \(-0.169575\pi\)
0.861420 + 0.507893i \(0.169575\pi\)
\(152\) −880.250 −0.469722
\(153\) 0 0
\(154\) 2122.14 1.11043
\(155\) −114.711 −0.0594442
\(156\) 0 0
\(157\) −3521.62 −1.79016 −0.895082 0.445902i \(-0.852883\pi\)
−0.895082 + 0.445902i \(0.852883\pi\)
\(158\) −458.236 −0.230730
\(159\) 0 0
\(160\) −27.4557 −0.0135660
\(161\) 988.083 0.483676
\(162\) 0 0
\(163\) 3109.36 1.49414 0.747068 0.664747i \(-0.231461\pi\)
0.747068 + 0.664747i \(0.231461\pi\)
\(164\) −85.5773 −0.0407467
\(165\) 0 0
\(166\) 340.247 0.159086
\(167\) −462.302 −0.214216 −0.107108 0.994247i \(-0.534159\pi\)
−0.107108 + 0.994247i \(0.534159\pi\)
\(168\) 0 0
\(169\) 834.561 0.379864
\(170\) 135.920 0.0613209
\(171\) 0 0
\(172\) −672.710 −0.298219
\(173\) −945.039 −0.415318 −0.207659 0.978201i \(-0.566584\pi\)
−0.207659 + 0.978201i \(0.566584\pi\)
\(174\) 0 0
\(175\) −2714.70 −1.17264
\(176\) −777.117 −0.332826
\(177\) 0 0
\(178\) 1518.72 0.639509
\(179\) 4224.40 1.76395 0.881974 0.471297i \(-0.156214\pi\)
0.881974 + 0.471297i \(0.156214\pi\)
\(180\) 0 0
\(181\) 3161.42 1.29827 0.649135 0.760674i \(-0.275131\pi\)
0.649135 + 0.760674i \(0.275131\pi\)
\(182\) −2405.70 −0.979792
\(183\) 0 0
\(184\) −361.831 −0.144970
\(185\) 144.419 0.0573942
\(186\) 0 0
\(187\) 3847.12 1.50444
\(188\) 1272.39 0.493608
\(189\) 0 0
\(190\) −188.811 −0.0720938
\(191\) −587.087 −0.222409 −0.111205 0.993798i \(-0.535471\pi\)
−0.111205 + 0.993798i \(0.535471\pi\)
\(192\) 0 0
\(193\) 1326.86 0.494866 0.247433 0.968905i \(-0.420413\pi\)
0.247433 + 0.968905i \(0.420413\pi\)
\(194\) −3216.98 −1.19054
\(195\) 0 0
\(196\) 537.042 0.195715
\(197\) 2240.64 0.810348 0.405174 0.914239i \(-0.367211\pi\)
0.405174 + 0.914239i \(0.367211\pi\)
\(198\) 0 0
\(199\) −546.299 −0.194604 −0.0973019 0.995255i \(-0.531021\pi\)
−0.0973019 + 0.995255i \(0.531021\pi\)
\(200\) 994.111 0.351471
\(201\) 0 0
\(202\) −3250.64 −1.13225
\(203\) 2728.65 0.943416
\(204\) 0 0
\(205\) −18.3561 −0.00625389
\(206\) 15.5645 0.00526424
\(207\) 0 0
\(208\) 880.954 0.293669
\(209\) −5344.20 −1.76874
\(210\) 0 0
\(211\) 3007.57 0.981279 0.490639 0.871363i \(-0.336763\pi\)
0.490639 + 0.871363i \(0.336763\pi\)
\(212\) 1854.74 0.600869
\(213\) 0 0
\(214\) 3692.17 1.17940
\(215\) −144.295 −0.0457712
\(216\) 0 0
\(217\) −2920.80 −0.913719
\(218\) 3274.97 1.01747
\(219\) 0 0
\(220\) −166.690 −0.0510828
\(221\) −4361.17 −1.32744
\(222\) 0 0
\(223\) −491.208 −0.147506 −0.0737528 0.997277i \(-0.523498\pi\)
−0.0737528 + 0.997277i \(0.523498\pi\)
\(224\) −699.081 −0.208524
\(225\) 0 0
\(226\) −785.509 −0.231200
\(227\) 3374.83 0.986764 0.493382 0.869813i \(-0.335760\pi\)
0.493382 + 0.869813i \(0.335760\pi\)
\(228\) 0 0
\(229\) 516.263 0.148976 0.0744882 0.997222i \(-0.476268\pi\)
0.0744882 + 0.997222i \(0.476268\pi\)
\(230\) −77.6119 −0.0222503
\(231\) 0 0
\(232\) −999.216 −0.282766
\(233\) −1319.83 −0.371096 −0.185548 0.982635i \(-0.559406\pi\)
−0.185548 + 0.982635i \(0.559406\pi\)
\(234\) 0 0
\(235\) 272.924 0.0757599
\(236\) 2169.73 0.598463
\(237\) 0 0
\(238\) 3460.81 0.942567
\(239\) −732.750 −0.198316 −0.0991582 0.995072i \(-0.531615\pi\)
−0.0991582 + 0.995072i \(0.531615\pi\)
\(240\) 0 0
\(241\) 3906.21 1.04407 0.522036 0.852924i \(-0.325173\pi\)
0.522036 + 0.852924i \(0.325173\pi\)
\(242\) −2056.05 −0.546148
\(243\) 0 0
\(244\) 2760.71 0.724328
\(245\) 115.194 0.0300387
\(246\) 0 0
\(247\) 6058.28 1.56064
\(248\) 1069.58 0.273865
\(249\) 0 0
\(250\) 427.732 0.108209
\(251\) −2766.24 −0.695631 −0.347816 0.937563i \(-0.613077\pi\)
−0.347816 + 0.937563i \(0.613077\pi\)
\(252\) 0 0
\(253\) −2196.76 −0.545885
\(254\) 1262.30 0.311825
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 4670.37 1.13358 0.566789 0.823863i \(-0.308185\pi\)
0.566789 + 0.823863i \(0.308185\pi\)
\(258\) 0 0
\(259\) 3677.23 0.882208
\(260\) 188.962 0.0450729
\(261\) 0 0
\(262\) −3608.50 −0.850893
\(263\) 3145.49 0.737487 0.368744 0.929531i \(-0.379788\pi\)
0.368744 + 0.929531i \(0.379788\pi\)
\(264\) 0 0
\(265\) 397.837 0.0922225
\(266\) −4807.55 −1.10816
\(267\) 0 0
\(268\) 2572.20 0.586276
\(269\) 6454.02 1.46286 0.731428 0.681919i \(-0.238854\pi\)
0.731428 + 0.681919i \(0.238854\pi\)
\(270\) 0 0
\(271\) 535.232 0.119974 0.0599871 0.998199i \(-0.480894\pi\)
0.0599871 + 0.998199i \(0.480894\pi\)
\(272\) −1267.33 −0.282512
\(273\) 0 0
\(274\) 453.445 0.0999767
\(275\) 6035.47 1.32346
\(276\) 0 0
\(277\) 1338.49 0.290333 0.145166 0.989407i \(-0.453628\pi\)
0.145166 + 0.989407i \(0.453628\pi\)
\(278\) 2697.12 0.581879
\(279\) 0 0
\(280\) −149.951 −0.0320046
\(281\) 1711.37 0.363316 0.181658 0.983362i \(-0.441854\pi\)
0.181658 + 0.983362i \(0.441854\pi\)
\(282\) 0 0
\(283\) 514.418 0.108053 0.0540265 0.998540i \(-0.482794\pi\)
0.0540265 + 0.998540i \(0.482794\pi\)
\(284\) −4198.18 −0.877169
\(285\) 0 0
\(286\) 5348.47 1.10581
\(287\) −467.386 −0.0961287
\(288\) 0 0
\(289\) 1360.93 0.277006
\(290\) −214.329 −0.0433995
\(291\) 0 0
\(292\) −3841.25 −0.769837
\(293\) 6528.27 1.30166 0.650829 0.759225i \(-0.274422\pi\)
0.650829 + 0.759225i \(0.274422\pi\)
\(294\) 0 0
\(295\) 465.401 0.0918532
\(296\) −1346.58 −0.264421
\(297\) 0 0
\(298\) −3465.56 −0.673674
\(299\) 2490.28 0.481662
\(300\) 0 0
\(301\) −3674.05 −0.703551
\(302\) −6393.53 −1.21823
\(303\) 0 0
\(304\) 1760.50 0.332143
\(305\) 592.165 0.111171
\(306\) 0 0
\(307\) −4274.03 −0.794566 −0.397283 0.917696i \(-0.630047\pi\)
−0.397283 + 0.917696i \(0.630047\pi\)
\(308\) −4244.28 −0.785196
\(309\) 0 0
\(310\) 229.423 0.0420334
\(311\) 509.667 0.0929279 0.0464639 0.998920i \(-0.485205\pi\)
0.0464639 + 0.998920i \(0.485205\pi\)
\(312\) 0 0
\(313\) 2994.56 0.540775 0.270387 0.962752i \(-0.412848\pi\)
0.270387 + 0.962752i \(0.412848\pi\)
\(314\) 7043.23 1.26584
\(315\) 0 0
\(316\) 916.471 0.163150
\(317\) −5505.61 −0.975476 −0.487738 0.872990i \(-0.662178\pi\)
−0.487738 + 0.872990i \(0.662178\pi\)
\(318\) 0 0
\(319\) −6066.47 −1.06476
\(320\) 54.9114 0.00959262
\(321\) 0 0
\(322\) −1976.17 −0.342011
\(323\) −8715.37 −1.50135
\(324\) 0 0
\(325\) −6841.92 −1.16776
\(326\) −6218.73 −1.05651
\(327\) 0 0
\(328\) 171.155 0.0288123
\(329\) 6949.23 1.16451
\(330\) 0 0
\(331\) 10777.9 1.78975 0.894875 0.446316i \(-0.147264\pi\)
0.894875 + 0.446316i \(0.147264\pi\)
\(332\) −680.493 −0.112491
\(333\) 0 0
\(334\) 924.604 0.151473
\(335\) 551.730 0.0899827
\(336\) 0 0
\(337\) 4808.34 0.777232 0.388616 0.921400i \(-0.372953\pi\)
0.388616 + 0.921400i \(0.372953\pi\)
\(338\) −1669.12 −0.268604
\(339\) 0 0
\(340\) −271.839 −0.0433605
\(341\) 6493.68 1.03124
\(342\) 0 0
\(343\) −4560.19 −0.717863
\(344\) 1345.42 0.210872
\(345\) 0 0
\(346\) 1890.08 0.293674
\(347\) 343.166 0.0530897 0.0265449 0.999648i \(-0.491550\pi\)
0.0265449 + 0.999648i \(0.491550\pi\)
\(348\) 0 0
\(349\) −1971.17 −0.302334 −0.151167 0.988508i \(-0.548303\pi\)
−0.151167 + 0.988508i \(0.548303\pi\)
\(350\) 5429.41 0.829183
\(351\) 0 0
\(352\) 1554.23 0.235344
\(353\) 764.740 0.115306 0.0576530 0.998337i \(-0.481638\pi\)
0.0576530 + 0.998337i \(0.481638\pi\)
\(354\) 0 0
\(355\) −900.499 −0.134630
\(356\) −3037.43 −0.452201
\(357\) 0 0
\(358\) −8448.81 −1.24730
\(359\) 8153.31 1.19865 0.599325 0.800506i \(-0.295436\pi\)
0.599325 + 0.800506i \(0.295436\pi\)
\(360\) 0 0
\(361\) 5247.88 0.765108
\(362\) −6322.85 −0.918015
\(363\) 0 0
\(364\) 4811.39 0.692817
\(365\) −823.940 −0.118156
\(366\) 0 0
\(367\) 2939.77 0.418132 0.209066 0.977902i \(-0.432958\pi\)
0.209066 + 0.977902i \(0.432958\pi\)
\(368\) 723.662 0.102509
\(369\) 0 0
\(370\) −288.839 −0.0405838
\(371\) 10129.8 1.41756
\(372\) 0 0
\(373\) 2305.63 0.320056 0.160028 0.987112i \(-0.448842\pi\)
0.160028 + 0.987112i \(0.448842\pi\)
\(374\) −7694.25 −1.06380
\(375\) 0 0
\(376\) −2544.77 −0.349034
\(377\) 6877.06 0.939487
\(378\) 0 0
\(379\) 10193.5 1.38154 0.690769 0.723075i \(-0.257272\pi\)
0.690769 + 0.723075i \(0.257272\pi\)
\(380\) 377.623 0.0509780
\(381\) 0 0
\(382\) 1174.17 0.157267
\(383\) 5885.48 0.785206 0.392603 0.919708i \(-0.371575\pi\)
0.392603 + 0.919708i \(0.371575\pi\)
\(384\) 0 0
\(385\) −910.388 −0.120513
\(386\) −2653.71 −0.349923
\(387\) 0 0
\(388\) 6433.96 0.841842
\(389\) −2991.11 −0.389859 −0.194929 0.980817i \(-0.562448\pi\)
−0.194929 + 0.980817i \(0.562448\pi\)
\(390\) 0 0
\(391\) −3582.50 −0.463362
\(392\) −1074.08 −0.138391
\(393\) 0 0
\(394\) −4481.27 −0.573003
\(395\) 196.581 0.0250407
\(396\) 0 0
\(397\) −2919.36 −0.369064 −0.184532 0.982826i \(-0.559077\pi\)
−0.184532 + 0.982826i \(0.559077\pi\)
\(398\) 1092.60 0.137606
\(399\) 0 0
\(400\) −1988.22 −0.248528
\(401\) 5914.85 0.736592 0.368296 0.929709i \(-0.379941\pi\)
0.368296 + 0.929709i \(0.379941\pi\)
\(402\) 0 0
\(403\) −7361.35 −0.909913
\(404\) 6501.29 0.800622
\(405\) 0 0
\(406\) −5457.29 −0.667096
\(407\) −8175.41 −0.995675
\(408\) 0 0
\(409\) −3084.71 −0.372931 −0.186466 0.982461i \(-0.559703\pi\)
−0.186466 + 0.982461i \(0.559703\pi\)
\(410\) 36.7122 0.00442217
\(411\) 0 0
\(412\) −31.1291 −0.00372238
\(413\) 11850.1 1.41188
\(414\) 0 0
\(415\) −145.964 −0.0172653
\(416\) −1761.91 −0.207655
\(417\) 0 0
\(418\) 10688.4 1.25068
\(419\) −13634.8 −1.58975 −0.794873 0.606776i \(-0.792463\pi\)
−0.794873 + 0.606776i \(0.792463\pi\)
\(420\) 0 0
\(421\) −5233.11 −0.605811 −0.302905 0.953021i \(-0.597957\pi\)
−0.302905 + 0.953021i \(0.597957\pi\)
\(422\) −6015.14 −0.693869
\(423\) 0 0
\(424\) −3709.48 −0.424878
\(425\) 9842.71 1.12339
\(426\) 0 0
\(427\) 15077.8 1.70882
\(428\) −7384.34 −0.833962
\(429\) 0 0
\(430\) 288.589 0.0323651
\(431\) 1533.38 0.171370 0.0856851 0.996322i \(-0.472692\pi\)
0.0856851 + 0.996322i \(0.472692\pi\)
\(432\) 0 0
\(433\) 11955.1 1.32684 0.663422 0.748245i \(-0.269103\pi\)
0.663422 + 0.748245i \(0.269103\pi\)
\(434\) 5841.60 0.646097
\(435\) 0 0
\(436\) −6549.94 −0.719461
\(437\) 4976.59 0.544766
\(438\) 0 0
\(439\) 14824.4 1.61168 0.805841 0.592132i \(-0.201714\pi\)
0.805841 + 0.592132i \(0.201714\pi\)
\(440\) 333.379 0.0361210
\(441\) 0 0
\(442\) 8722.34 0.938641
\(443\) 9719.32 1.04239 0.521195 0.853438i \(-0.325486\pi\)
0.521195 + 0.853438i \(0.325486\pi\)
\(444\) 0 0
\(445\) −651.522 −0.0694047
\(446\) 982.417 0.104302
\(447\) 0 0
\(448\) 1398.16 0.147449
\(449\) −12202.0 −1.28251 −0.641255 0.767328i \(-0.721586\pi\)
−0.641255 + 0.767328i \(0.721586\pi\)
\(450\) 0 0
\(451\) 1039.12 0.108493
\(452\) 1571.02 0.163483
\(453\) 0 0
\(454\) −6749.67 −0.697748
\(455\) 1032.03 0.106335
\(456\) 0 0
\(457\) 7031.97 0.719784 0.359892 0.932994i \(-0.382813\pi\)
0.359892 + 0.932994i \(0.382813\pi\)
\(458\) −1032.53 −0.105342
\(459\) 0 0
\(460\) 155.224 0.0157334
\(461\) 9091.30 0.918490 0.459245 0.888310i \(-0.348120\pi\)
0.459245 + 0.888310i \(0.348120\pi\)
\(462\) 0 0
\(463\) −991.188 −0.0994912 −0.0497456 0.998762i \(-0.515841\pi\)
−0.0497456 + 0.998762i \(0.515841\pi\)
\(464\) 1998.43 0.199946
\(465\) 0 0
\(466\) 2639.67 0.262404
\(467\) 6514.04 0.645469 0.322734 0.946490i \(-0.395398\pi\)
0.322734 + 0.946490i \(0.395398\pi\)
\(468\) 0 0
\(469\) 14048.2 1.38313
\(470\) −545.847 −0.0535704
\(471\) 0 0
\(472\) −4339.45 −0.423177
\(473\) 8168.34 0.794040
\(474\) 0 0
\(475\) −13672.9 −1.32075
\(476\) −6921.62 −0.666495
\(477\) 0 0
\(478\) 1465.50 0.140231
\(479\) −18379.3 −1.75318 −0.876589 0.481240i \(-0.840187\pi\)
−0.876589 + 0.481240i \(0.840187\pi\)
\(480\) 0 0
\(481\) 9267.79 0.878534
\(482\) −7812.42 −0.738270
\(483\) 0 0
\(484\) 4112.10 0.386185
\(485\) 1380.07 0.129208
\(486\) 0 0
\(487\) −13583.7 −1.26394 −0.631968 0.774994i \(-0.717753\pi\)
−0.631968 + 0.774994i \(0.717753\pi\)
\(488\) −5521.41 −0.512177
\(489\) 0 0
\(490\) −230.388 −0.0212406
\(491\) 8330.94 0.765723 0.382862 0.923806i \(-0.374939\pi\)
0.382862 + 0.923806i \(0.374939\pi\)
\(492\) 0 0
\(493\) −9893.26 −0.903793
\(494\) −12116.6 −1.10354
\(495\) 0 0
\(496\) −2139.17 −0.193652
\(497\) −22928.7 −2.06940
\(498\) 0 0
\(499\) −16678.2 −1.49623 −0.748117 0.663567i \(-0.769042\pi\)
−0.748117 + 0.663567i \(0.769042\pi\)
\(500\) −855.464 −0.0765150
\(501\) 0 0
\(502\) 5532.48 0.491886
\(503\) −11078.4 −0.982032 −0.491016 0.871151i \(-0.663374\pi\)
−0.491016 + 0.871151i \(0.663374\pi\)
\(504\) 0 0
\(505\) 1394.51 0.122881
\(506\) 4393.51 0.385999
\(507\) 0 0
\(508\) −2524.60 −0.220494
\(509\) 9443.60 0.822358 0.411179 0.911555i \(-0.365117\pi\)
0.411179 + 0.911555i \(0.365117\pi\)
\(510\) 0 0
\(511\) −20979.3 −1.81618
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) −9340.74 −0.801561
\(515\) −6.67711 −0.000571318 0
\(516\) 0 0
\(517\) −15449.9 −1.31428
\(518\) −7354.46 −0.623815
\(519\) 0 0
\(520\) −377.925 −0.0318714
\(521\) −8981.78 −0.755276 −0.377638 0.925953i \(-0.623264\pi\)
−0.377638 + 0.925953i \(0.623264\pi\)
\(522\) 0 0
\(523\) −10294.3 −0.860686 −0.430343 0.902665i \(-0.641607\pi\)
−0.430343 + 0.902665i \(0.641607\pi\)
\(524\) 7217.00 0.601672
\(525\) 0 0
\(526\) −6290.98 −0.521482
\(527\) 10590.0 0.875343
\(528\) 0 0
\(529\) −10121.3 −0.831869
\(530\) −795.675 −0.0652111
\(531\) 0 0
\(532\) 9615.10 0.783585
\(533\) −1177.96 −0.0957284
\(534\) 0 0
\(535\) −1583.92 −0.127998
\(536\) −5144.39 −0.414560
\(537\) 0 0
\(538\) −12908.0 −1.03440
\(539\) −6521.00 −0.521112
\(540\) 0 0
\(541\) 11967.5 0.951059 0.475530 0.879700i \(-0.342256\pi\)
0.475530 + 0.879700i \(0.342256\pi\)
\(542\) −1070.46 −0.0848346
\(543\) 0 0
\(544\) 2534.66 0.199766
\(545\) −1404.95 −0.110424
\(546\) 0 0
\(547\) −16769.6 −1.31082 −0.655409 0.755274i \(-0.727504\pi\)
−0.655409 + 0.755274i \(0.727504\pi\)
\(548\) −906.890 −0.0706942
\(549\) 0 0
\(550\) −12070.9 −0.935830
\(551\) 13743.1 1.06257
\(552\) 0 0
\(553\) 5005.37 0.384901
\(554\) −2676.98 −0.205296
\(555\) 0 0
\(556\) −5394.24 −0.411451
\(557\) −7558.54 −0.574983 −0.287491 0.957783i \(-0.592821\pi\)
−0.287491 + 0.957783i \(0.592821\pi\)
\(558\) 0 0
\(559\) −9259.78 −0.700621
\(560\) 299.902 0.0226307
\(561\) 0 0
\(562\) −3422.74 −0.256903
\(563\) 8559.54 0.640749 0.320374 0.947291i \(-0.396191\pi\)
0.320374 + 0.947291i \(0.396191\pi\)
\(564\) 0 0
\(565\) 336.980 0.0250918
\(566\) −1028.84 −0.0764050
\(567\) 0 0
\(568\) 8396.36 0.620252
\(569\) 9600.85 0.707361 0.353680 0.935366i \(-0.384930\pi\)
0.353680 + 0.935366i \(0.384930\pi\)
\(570\) 0 0
\(571\) −1609.58 −0.117966 −0.0589831 0.998259i \(-0.518786\pi\)
−0.0589831 + 0.998259i \(0.518786\pi\)
\(572\) −10696.9 −0.781926
\(573\) 0 0
\(574\) 934.773 0.0679733
\(575\) −5620.31 −0.407623
\(576\) 0 0
\(577\) −13381.3 −0.965462 −0.482731 0.875769i \(-0.660355\pi\)
−0.482731 + 0.875769i \(0.660355\pi\)
\(578\) −2721.86 −0.195873
\(579\) 0 0
\(580\) 428.659 0.0306881
\(581\) −3716.56 −0.265386
\(582\) 0 0
\(583\) −22521.1 −1.59988
\(584\) 7682.51 0.544357
\(585\) 0 0
\(586\) −13056.5 −0.920411
\(587\) 1506.84 0.105952 0.0529762 0.998596i \(-0.483129\pi\)
0.0529762 + 0.998596i \(0.483129\pi\)
\(588\) 0 0
\(589\) −14710.9 −1.02912
\(590\) −930.802 −0.0649500
\(591\) 0 0
\(592\) 2693.17 0.186974
\(593\) −14995.5 −1.03844 −0.519218 0.854642i \(-0.673777\pi\)
−0.519218 + 0.854642i \(0.673777\pi\)
\(594\) 0 0
\(595\) −1484.67 −0.102295
\(596\) 6931.13 0.476359
\(597\) 0 0
\(598\) −4980.57 −0.340586
\(599\) 2722.83 0.185729 0.0928645 0.995679i \(-0.470398\pi\)
0.0928645 + 0.995679i \(0.470398\pi\)
\(600\) 0 0
\(601\) −14127.2 −0.958834 −0.479417 0.877587i \(-0.659152\pi\)
−0.479417 + 0.877587i \(0.659152\pi\)
\(602\) 7348.10 0.497486
\(603\) 0 0
\(604\) 12787.1 0.861420
\(605\) 882.036 0.0592725
\(606\) 0 0
\(607\) 8664.24 0.579358 0.289679 0.957124i \(-0.406451\pi\)
0.289679 + 0.957124i \(0.406451\pi\)
\(608\) −3521.00 −0.234861
\(609\) 0 0
\(610\) −1184.33 −0.0786100
\(611\) 17514.3 1.15966
\(612\) 0 0
\(613\) 15899.8 1.04761 0.523805 0.851838i \(-0.324512\pi\)
0.523805 + 0.851838i \(0.324512\pi\)
\(614\) 8548.06 0.561843
\(615\) 0 0
\(616\) 8488.56 0.555217
\(617\) 27133.8 1.77045 0.885223 0.465166i \(-0.154005\pi\)
0.885223 + 0.465166i \(0.154005\pi\)
\(618\) 0 0
\(619\) −9864.00 −0.640497 −0.320249 0.947334i \(-0.603766\pi\)
−0.320249 + 0.947334i \(0.603766\pi\)
\(620\) −458.846 −0.0297221
\(621\) 0 0
\(622\) −1019.33 −0.0657099
\(623\) −16589.2 −1.06682
\(624\) 0 0
\(625\) 15349.5 0.982367
\(626\) −5989.12 −0.382385
\(627\) 0 0
\(628\) −14086.5 −0.895082
\(629\) −13332.5 −0.845156
\(630\) 0 0
\(631\) −17778.4 −1.12163 −0.560814 0.827942i \(-0.689512\pi\)
−0.560814 + 0.827942i \(0.689512\pi\)
\(632\) −1832.94 −0.115365
\(633\) 0 0
\(634\) 11011.2 0.689766
\(635\) −541.520 −0.0338418
\(636\) 0 0
\(637\) 7392.33 0.459803
\(638\) 12132.9 0.752896
\(639\) 0 0
\(640\) −109.823 −0.00678301
\(641\) −7935.87 −0.488999 −0.244499 0.969649i \(-0.578624\pi\)
−0.244499 + 0.969649i \(0.578624\pi\)
\(642\) 0 0
\(643\) −17880.0 −1.09661 −0.548304 0.836279i \(-0.684726\pi\)
−0.548304 + 0.836279i \(0.684726\pi\)
\(644\) 3952.33 0.241838
\(645\) 0 0
\(646\) 17430.7 1.06162
\(647\) 2356.45 0.143186 0.0715931 0.997434i \(-0.477192\pi\)
0.0715931 + 0.997434i \(0.477192\pi\)
\(648\) 0 0
\(649\) −26345.8 −1.59347
\(650\) 13683.8 0.825730
\(651\) 0 0
\(652\) 12437.5 0.747068
\(653\) −26279.6 −1.57488 −0.787442 0.616389i \(-0.788595\pi\)
−0.787442 + 0.616389i \(0.788595\pi\)
\(654\) 0 0
\(655\) 1548.03 0.0923458
\(656\) −342.309 −0.0203734
\(657\) 0 0
\(658\) −13898.5 −0.823432
\(659\) 6300.47 0.372430 0.186215 0.982509i \(-0.440378\pi\)
0.186215 + 0.982509i \(0.440378\pi\)
\(660\) 0 0
\(661\) −7369.15 −0.433626 −0.216813 0.976213i \(-0.569566\pi\)
−0.216813 + 0.976213i \(0.569566\pi\)
\(662\) −21555.8 −1.26554
\(663\) 0 0
\(664\) 1360.99 0.0795430
\(665\) 2062.42 0.120266
\(666\) 0 0
\(667\) 5649.18 0.327942
\(668\) −1849.21 −0.107108
\(669\) 0 0
\(670\) −1103.46 −0.0636274
\(671\) −33521.7 −1.92860
\(672\) 0 0
\(673\) −19432.7 −1.11304 −0.556519 0.830835i \(-0.687863\pi\)
−0.556519 + 0.830835i \(0.687863\pi\)
\(674\) −9616.68 −0.549586
\(675\) 0 0
\(676\) 3338.24 0.189932
\(677\) −17716.4 −1.00576 −0.502878 0.864357i \(-0.667726\pi\)
−0.502878 + 0.864357i \(0.667726\pi\)
\(678\) 0 0
\(679\) 35139.5 1.98606
\(680\) 543.679 0.0306605
\(681\) 0 0
\(682\) −12987.4 −0.729196
\(683\) −6992.05 −0.391718 −0.195859 0.980632i \(-0.562749\pi\)
−0.195859 + 0.980632i \(0.562749\pi\)
\(684\) 0 0
\(685\) −194.526 −0.0108503
\(686\) 9120.37 0.507606
\(687\) 0 0
\(688\) −2690.84 −0.149109
\(689\) 25530.3 1.41165
\(690\) 0 0
\(691\) 16798.4 0.924804 0.462402 0.886670i \(-0.346988\pi\)
0.462402 + 0.886670i \(0.346988\pi\)
\(692\) −3780.16 −0.207659
\(693\) 0 0
\(694\) −686.332 −0.0375401
\(695\) −1157.05 −0.0631503
\(696\) 0 0
\(697\) 1694.60 0.0920914
\(698\) 3942.35 0.213782
\(699\) 0 0
\(700\) −10858.8 −0.586321
\(701\) −18157.5 −0.978315 −0.489158 0.872195i \(-0.662696\pi\)
−0.489158 + 0.872195i \(0.662696\pi\)
\(702\) 0 0
\(703\) 18520.8 0.993633
\(704\) −3108.47 −0.166413
\(705\) 0 0
\(706\) −1529.48 −0.0815336
\(707\) 35507.3 1.88881
\(708\) 0 0
\(709\) −25466.7 −1.34897 −0.674487 0.738286i \(-0.735635\pi\)
−0.674487 + 0.738286i \(0.735635\pi\)
\(710\) 1801.00 0.0951975
\(711\) 0 0
\(712\) 6074.86 0.319754
\(713\) −6047.00 −0.317619
\(714\) 0 0
\(715\) −2294.47 −0.120011
\(716\) 16897.6 0.881974
\(717\) 0 0
\(718\) −16306.6 −0.847573
\(719\) 30910.3 1.60328 0.801642 0.597805i \(-0.203960\pi\)
0.801642 + 0.597805i \(0.203960\pi\)
\(720\) 0 0
\(721\) −170.014 −0.00878175
\(722\) −10495.8 −0.541013
\(723\) 0 0
\(724\) 12645.7 0.649135
\(725\) −15520.8 −0.795073
\(726\) 0 0
\(727\) −14411.0 −0.735176 −0.367588 0.929989i \(-0.619816\pi\)
−0.367588 + 0.929989i \(0.619816\pi\)
\(728\) −9622.79 −0.489896
\(729\) 0 0
\(730\) 1647.88 0.0835490
\(731\) 13321.0 0.674002
\(732\) 0 0
\(733\) −10183.6 −0.513151 −0.256576 0.966524i \(-0.582594\pi\)
−0.256576 + 0.966524i \(0.582594\pi\)
\(734\) −5879.53 −0.295664
\(735\) 0 0
\(736\) −1447.32 −0.0724852
\(737\) −31232.8 −1.56102
\(738\) 0 0
\(739\) 9608.59 0.478292 0.239146 0.970984i \(-0.423133\pi\)
0.239146 + 0.970984i \(0.423133\pi\)
\(740\) 577.677 0.0286971
\(741\) 0 0
\(742\) −20259.6 −1.00236
\(743\) 28540.2 1.40921 0.704603 0.709602i \(-0.251125\pi\)
0.704603 + 0.709602i \(0.251125\pi\)
\(744\) 0 0
\(745\) 1486.71 0.0731125
\(746\) −4611.26 −0.226314
\(747\) 0 0
\(748\) 15388.5 0.752218
\(749\) −40330.1 −1.96746
\(750\) 0 0
\(751\) −3850.82 −0.187108 −0.0935542 0.995614i \(-0.529823\pi\)
−0.0935542 + 0.995614i \(0.529823\pi\)
\(752\) 5089.54 0.246804
\(753\) 0 0
\(754\) −13754.1 −0.664317
\(755\) 2742.79 0.132212
\(756\) 0 0
\(757\) −22515.6 −1.08104 −0.540518 0.841332i \(-0.681772\pi\)
−0.540518 + 0.841332i \(0.681772\pi\)
\(758\) −20386.9 −0.976895
\(759\) 0 0
\(760\) −755.246 −0.0360469
\(761\) −20128.1 −0.958795 −0.479397 0.877598i \(-0.659145\pi\)
−0.479397 + 0.877598i \(0.659145\pi\)
\(762\) 0 0
\(763\) −35773.0 −1.69734
\(764\) −2348.35 −0.111205
\(765\) 0 0
\(766\) −11771.0 −0.555225
\(767\) 29866.1 1.40600
\(768\) 0 0
\(769\) 28898.9 1.35516 0.677582 0.735447i \(-0.263028\pi\)
0.677582 + 0.735447i \(0.263028\pi\)
\(770\) 1820.78 0.0852158
\(771\) 0 0
\(772\) 5307.42 0.247433
\(773\) −40186.4 −1.86986 −0.934932 0.354827i \(-0.884540\pi\)
−0.934932 + 0.354827i \(0.884540\pi\)
\(774\) 0 0
\(775\) 16613.8 0.770046
\(776\) −12867.9 −0.595272
\(777\) 0 0
\(778\) 5982.21 0.275672
\(779\) −2354.04 −0.108270
\(780\) 0 0
\(781\) 50976.2 2.33556
\(782\) 7164.99 0.327647
\(783\) 0 0
\(784\) 2148.17 0.0978574
\(785\) −3021.51 −0.137379
\(786\) 0 0
\(787\) 13239.9 0.599684 0.299842 0.953989i \(-0.403066\pi\)
0.299842 + 0.953989i \(0.403066\pi\)
\(788\) 8962.54 0.405174
\(789\) 0 0
\(790\) −393.162 −0.0177064
\(791\) 8580.23 0.385686
\(792\) 0 0
\(793\) 38000.9 1.70170
\(794\) 5838.72 0.260968
\(795\) 0 0
\(796\) −2185.20 −0.0973019
\(797\) −25373.2 −1.12769 −0.563843 0.825882i \(-0.690678\pi\)
−0.563843 + 0.825882i \(0.690678\pi\)
\(798\) 0 0
\(799\) −25195.8 −1.11560
\(800\) 3976.44 0.175736
\(801\) 0 0
\(802\) −11829.7 −0.520849
\(803\) 46642.2 2.04977
\(804\) 0 0
\(805\) 847.766 0.0371178
\(806\) 14722.7 0.643406
\(807\) 0 0
\(808\) −13002.6 −0.566125
\(809\) 13345.4 0.579976 0.289988 0.957030i \(-0.406349\pi\)
0.289988 + 0.957030i \(0.406349\pi\)
\(810\) 0 0
\(811\) 33175.7 1.43644 0.718222 0.695815i \(-0.244956\pi\)
0.718222 + 0.695815i \(0.244956\pi\)
\(812\) 10914.6 0.471708
\(813\) 0 0
\(814\) 16350.8 0.704049
\(815\) 2667.80 0.114661
\(816\) 0 0
\(817\) −18504.8 −0.792411
\(818\) 6169.41 0.263702
\(819\) 0 0
\(820\) −73.4245 −0.00312694
\(821\) −18076.5 −0.768423 −0.384211 0.923245i \(-0.625527\pi\)
−0.384211 + 0.923245i \(0.625527\pi\)
\(822\) 0 0
\(823\) −24596.2 −1.04176 −0.520880 0.853630i \(-0.674396\pi\)
−0.520880 + 0.853630i \(0.674396\pi\)
\(824\) 62.2582 0.00263212
\(825\) 0 0
\(826\) −23700.2 −0.998350
\(827\) −7720.57 −0.324632 −0.162316 0.986739i \(-0.551896\pi\)
−0.162316 + 0.986739i \(0.551896\pi\)
\(828\) 0 0
\(829\) −12761.4 −0.534647 −0.267323 0.963607i \(-0.586139\pi\)
−0.267323 + 0.963607i \(0.586139\pi\)
\(830\) 291.928 0.0122084
\(831\) 0 0
\(832\) 3523.82 0.146835
\(833\) −10634.5 −0.442334
\(834\) 0 0
\(835\) −396.651 −0.0164391
\(836\) −21376.8 −0.884368
\(837\) 0 0
\(838\) 27269.6 1.12412
\(839\) 1787.98 0.0735731 0.0367865 0.999323i \(-0.488288\pi\)
0.0367865 + 0.999323i \(0.488288\pi\)
\(840\) 0 0
\(841\) −8788.49 −0.360346
\(842\) 10466.2 0.428373
\(843\) 0 0
\(844\) 12030.3 0.490639
\(845\) 716.045 0.0291511
\(846\) 0 0
\(847\) 22458.5 0.911080
\(848\) 7418.96 0.300434
\(849\) 0 0
\(850\) −19685.4 −0.794358
\(851\) 7613.05 0.306665
\(852\) 0 0
\(853\) −23287.5 −0.934759 −0.467380 0.884057i \(-0.654802\pi\)
−0.467380 + 0.884057i \(0.654802\pi\)
\(854\) −30155.6 −1.20832
\(855\) 0 0
\(856\) 14768.7 0.589700
\(857\) 9906.51 0.394866 0.197433 0.980316i \(-0.436740\pi\)
0.197433 + 0.980316i \(0.436740\pi\)
\(858\) 0 0
\(859\) 6761.43 0.268565 0.134282 0.990943i \(-0.457127\pi\)
0.134282 + 0.990943i \(0.457127\pi\)
\(860\) −577.178 −0.0228856
\(861\) 0 0
\(862\) −3066.77 −0.121177
\(863\) 6733.15 0.265584 0.132792 0.991144i \(-0.457606\pi\)
0.132792 + 0.991144i \(0.457606\pi\)
\(864\) 0 0
\(865\) −810.834 −0.0318719
\(866\) −23910.1 −0.938221
\(867\) 0 0
\(868\) −11683.2 −0.456859
\(869\) −11128.2 −0.434406
\(870\) 0 0
\(871\) 35406.0 1.37737
\(872\) 13099.9 0.508736
\(873\) 0 0
\(874\) −9953.18 −0.385207
\(875\) −4672.18 −0.180512
\(876\) 0 0
\(877\) 19284.6 0.742524 0.371262 0.928528i \(-0.378925\pi\)
0.371262 + 0.928528i \(0.378925\pi\)
\(878\) −29648.7 −1.13963
\(879\) 0 0
\(880\) −666.759 −0.0255414
\(881\) 38159.4 1.45928 0.729638 0.683833i \(-0.239688\pi\)
0.729638 + 0.683833i \(0.239688\pi\)
\(882\) 0 0
\(883\) −15205.9 −0.579522 −0.289761 0.957099i \(-0.593576\pi\)
−0.289761 + 0.957099i \(0.593576\pi\)
\(884\) −17444.7 −0.663720
\(885\) 0 0
\(886\) −19438.6 −0.737081
\(887\) 33530.4 1.26927 0.634634 0.772813i \(-0.281151\pi\)
0.634634 + 0.772813i \(0.281151\pi\)
\(888\) 0 0
\(889\) −13788.3 −0.520184
\(890\) 1303.04 0.0490765
\(891\) 0 0
\(892\) −1964.83 −0.0737528
\(893\) 35000.6 1.31159
\(894\) 0 0
\(895\) 3624.50 0.135367
\(896\) −2796.33 −0.104262
\(897\) 0 0
\(898\) 24404.0 0.906871
\(899\) −16699.1 −0.619519
\(900\) 0 0
\(901\) −36727.7 −1.35802
\(902\) −2078.24 −0.0767158
\(903\) 0 0
\(904\) −3142.04 −0.115600
\(905\) 2712.47 0.0996305
\(906\) 0 0
\(907\) 45928.5 1.68140 0.840700 0.541501i \(-0.182144\pi\)
0.840700 + 0.541501i \(0.182144\pi\)
\(908\) 13499.3 0.493382
\(909\) 0 0
\(910\) −2064.06 −0.0751902
\(911\) 44740.0 1.62712 0.813558 0.581484i \(-0.197528\pi\)
0.813558 + 0.581484i \(0.197528\pi\)
\(912\) 0 0
\(913\) 8262.86 0.299519
\(914\) −14063.9 −0.508964
\(915\) 0 0
\(916\) 2065.05 0.0744882
\(917\) 39416.2 1.41945
\(918\) 0 0
\(919\) −24618.1 −0.883651 −0.441826 0.897101i \(-0.645669\pi\)
−0.441826 + 0.897101i \(0.645669\pi\)
\(920\) −310.447 −0.0111252
\(921\) 0 0
\(922\) −18182.6 −0.649471
\(923\) −57787.5 −2.06078
\(924\) 0 0
\(925\) −20916.4 −0.743490
\(926\) 1982.38 0.0703509
\(927\) 0 0
\(928\) −3996.86 −0.141383
\(929\) −17898.1 −0.632097 −0.316048 0.948743i \(-0.602356\pi\)
−0.316048 + 0.948743i \(0.602356\pi\)
\(930\) 0 0
\(931\) 14772.8 0.520043
\(932\) −5279.34 −0.185548
\(933\) 0 0
\(934\) −13028.1 −0.456415
\(935\) 3300.79 0.115452
\(936\) 0 0
\(937\) −10883.8 −0.379464 −0.189732 0.981836i \(-0.560762\pi\)
−0.189732 + 0.981836i \(0.560762\pi\)
\(938\) −28096.5 −0.978020
\(939\) 0 0
\(940\) 1091.69 0.0378800
\(941\) −14329.9 −0.496431 −0.248216 0.968705i \(-0.579844\pi\)
−0.248216 + 0.968705i \(0.579844\pi\)
\(942\) 0 0
\(943\) −967.641 −0.0334154
\(944\) 8678.91 0.299231
\(945\) 0 0
\(946\) −16336.7 −0.561471
\(947\) 32112.6 1.10192 0.550960 0.834532i \(-0.314262\pi\)
0.550960 + 0.834532i \(0.314262\pi\)
\(948\) 0 0
\(949\) −52874.5 −1.80862
\(950\) 27345.8 0.933911
\(951\) 0 0
\(952\) 13843.2 0.471283
\(953\) 47431.6 1.61224 0.806118 0.591755i \(-0.201565\pi\)
0.806118 + 0.591755i \(0.201565\pi\)
\(954\) 0 0
\(955\) −503.715 −0.0170679
\(956\) −2931.00 −0.0991582
\(957\) 0 0
\(958\) 36758.6 1.23968
\(959\) −4953.05 −0.166780
\(960\) 0 0
\(961\) −11915.9 −0.399983
\(962\) −18535.6 −0.621217
\(963\) 0 0
\(964\) 15624.8 0.522036
\(965\) 1138.43 0.0379765
\(966\) 0 0
\(967\) −804.773 −0.0267629 −0.0133815 0.999910i \(-0.504260\pi\)
−0.0133815 + 0.999910i \(0.504260\pi\)
\(968\) −8224.20 −0.273074
\(969\) 0 0
\(970\) −2760.14 −0.0913636
\(971\) 5884.04 0.194467 0.0972337 0.995262i \(-0.469001\pi\)
0.0972337 + 0.995262i \(0.469001\pi\)
\(972\) 0 0
\(973\) −29461.0 −0.970686
\(974\) 27167.4 0.893738
\(975\) 0 0
\(976\) 11042.8 0.362164
\(977\) 35797.1 1.17221 0.586106 0.810234i \(-0.300660\pi\)
0.586106 + 0.810234i \(0.300660\pi\)
\(978\) 0 0
\(979\) 36881.9 1.20403
\(980\) 460.776 0.0150194
\(981\) 0 0
\(982\) −16661.9 −0.541448
\(983\) −4133.63 −0.134122 −0.0670611 0.997749i \(-0.521362\pi\)
−0.0670611 + 0.997749i \(0.521362\pi\)
\(984\) 0 0
\(985\) 1922.44 0.0621869
\(986\) 19786.5 0.639078
\(987\) 0 0
\(988\) 24233.1 0.780322
\(989\) −7606.47 −0.244562
\(990\) 0 0
\(991\) 9307.49 0.298347 0.149174 0.988811i \(-0.452339\pi\)
0.149174 + 0.988811i \(0.452339\pi\)
\(992\) 4278.33 0.136933
\(993\) 0 0
\(994\) 45857.3 1.46329
\(995\) −468.720 −0.0149341
\(996\) 0 0
\(997\) −26708.5 −0.848413 −0.424207 0.905565i \(-0.639447\pi\)
−0.424207 + 0.905565i \(0.639447\pi\)
\(998\) 33356.5 1.05800
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1458.4.a.i.1.9 15
3.2 odd 2 1458.4.a.j.1.7 15
27.5 odd 18 162.4.e.b.73.3 30
27.11 odd 18 162.4.e.b.91.3 30
27.16 even 9 54.4.e.b.13.2 30
27.22 even 9 54.4.e.b.25.2 yes 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.4.e.b.13.2 30 27.16 even 9
54.4.e.b.25.2 yes 30 27.22 even 9
162.4.e.b.73.3 30 27.5 odd 18
162.4.e.b.91.3 30 27.11 odd 18
1458.4.a.i.1.9 15 1.1 even 1 trivial
1458.4.a.j.1.7 15 3.2 odd 2