Properties

Label 1456.2.cc.g.225.7
Level $1456$
Weight $2$
Character 1456.225
Analytic conductor $11.626$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1456,2,Mod(225,1456)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1456.225"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1456, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1456 = 2^{4} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1456.cc (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,2,0,0,0,0,0,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.6262185343\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 225.7
Character \(\chi\) \(=\) 1456.225
Dual form 1456.2.cc.g.673.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.266360 - 0.461349i) q^{3} +3.61008i q^{5} +(-0.866025 + 0.500000i) q^{7} +(1.35810 + 2.35231i) q^{9} +(-0.788493 - 0.455237i) q^{11} +(-2.94171 + 2.08479i) q^{13} +(1.66551 + 0.961580i) q^{15} +(-1.46831 - 2.54318i) q^{17} +(0.223125 - 0.128821i) q^{19} +0.532720i q^{21} +(-2.40672 + 4.16856i) q^{23} -8.03267 q^{25} +3.04514 q^{27} +(-1.09793 + 1.90166i) q^{29} -7.13553i q^{31} +(-0.420046 + 0.242514i) q^{33} +(-1.80504 - 3.12642i) q^{35} +(3.59529 + 2.07574i) q^{37} +(0.178264 + 1.91246i) q^{39} +(-6.85301 - 3.95658i) q^{41} +(-0.906650 - 1.57036i) q^{43} +(-8.49201 + 4.90287i) q^{45} -0.764866i q^{47} +(0.500000 - 0.866025i) q^{49} -1.56439 q^{51} -7.04212 q^{53} +(1.64344 - 2.84652i) q^{55} -0.137251i q^{57} +(6.34092 - 3.66093i) q^{59} +(4.99008 + 8.64307i) q^{61} +(-2.35231 - 1.35810i) q^{63} +(-7.52626 - 10.6198i) q^{65} +(-12.3936 - 7.15546i) q^{67} +(1.28211 + 2.22068i) q^{69} +(-7.36565 + 4.25256i) q^{71} -1.78944i q^{73} +(-2.13958 + 3.70586i) q^{75} +0.910474 q^{77} -4.79045 q^{79} +(-3.26321 + 5.65205i) q^{81} +14.1237i q^{83} +(9.18108 - 5.30070i) q^{85} +(0.584886 + 1.01305i) q^{87} +(10.0457 + 5.79987i) q^{89} +(1.50520 - 3.27634i) q^{91} +(-3.29197 - 1.90062i) q^{93} +(0.465055 + 0.805499i) q^{95} +(3.96317 - 2.28814i) q^{97} -2.47304i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{3} - 18 q^{9} - 12 q^{11} + 8 q^{17} + 12 q^{19} - 2 q^{23} - 28 q^{25} + 20 q^{27} + 2 q^{29} - 18 q^{33} + 8 q^{35} + 60 q^{37} - 18 q^{39} - 6 q^{41} - 24 q^{43} - 72 q^{45} + 12 q^{49} + 72 q^{51}+ \cdots - 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1456\mathbb{Z}\right)^\times\).

\(n\) \(561\) \(911\) \(1093\) \(1249\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.266360 0.461349i 0.153783 0.266360i −0.778832 0.627232i \(-0.784188\pi\)
0.932615 + 0.360872i \(0.117521\pi\)
\(4\) 0 0
\(5\) 3.61008i 1.61448i 0.590226 + 0.807238i \(0.299039\pi\)
−0.590226 + 0.807238i \(0.700961\pi\)
\(6\) 0 0
\(7\) −0.866025 + 0.500000i −0.327327 + 0.188982i
\(8\) 0 0
\(9\) 1.35810 + 2.35231i 0.452702 + 0.784102i
\(10\) 0 0
\(11\) −0.788493 0.455237i −0.237740 0.137259i 0.376398 0.926458i \(-0.377163\pi\)
−0.614137 + 0.789199i \(0.710496\pi\)
\(12\) 0 0
\(13\) −2.94171 + 2.08479i −0.815883 + 0.578217i
\(14\) 0 0
\(15\) 1.66551 + 0.961580i 0.430032 + 0.248279i
\(16\) 0 0
\(17\) −1.46831 2.54318i −0.356116 0.616812i 0.631192 0.775627i \(-0.282566\pi\)
−0.987308 + 0.158815i \(0.949233\pi\)
\(18\) 0 0
\(19\) 0.223125 0.128821i 0.0511884 0.0295536i −0.474187 0.880424i \(-0.657258\pi\)
0.525376 + 0.850870i \(0.323925\pi\)
\(20\) 0 0
\(21\) 0.532720i 0.116249i
\(22\) 0 0
\(23\) −2.40672 + 4.16856i −0.501836 + 0.869206i 0.498162 + 0.867084i \(0.334009\pi\)
−0.999998 + 0.00212145i \(0.999325\pi\)
\(24\) 0 0
\(25\) −8.03267 −1.60653
\(26\) 0 0
\(27\) 3.04514 0.586037
\(28\) 0 0
\(29\) −1.09793 + 1.90166i −0.203880 + 0.353130i −0.949775 0.312933i \(-0.898688\pi\)
0.745896 + 0.666063i \(0.232022\pi\)
\(30\) 0 0
\(31\) 7.13553i 1.28158i −0.767716 0.640790i \(-0.778607\pi\)
0.767716 0.640790i \(-0.221393\pi\)
\(32\) 0 0
\(33\) −0.420046 + 0.242514i −0.0731206 + 0.0422162i
\(34\) 0 0
\(35\) −1.80504 3.12642i −0.305107 0.528461i
\(36\) 0 0
\(37\) 3.59529 + 2.07574i 0.591062 + 0.341250i 0.765517 0.643415i \(-0.222483\pi\)
−0.174455 + 0.984665i \(0.555816\pi\)
\(38\) 0 0
\(39\) 0.178264 + 1.91246i 0.0285450 + 0.306238i
\(40\) 0 0
\(41\) −6.85301 3.95658i −1.07026 0.617915i −0.142007 0.989866i \(-0.545356\pi\)
−0.928252 + 0.371951i \(0.878689\pi\)
\(42\) 0 0
\(43\) −0.906650 1.57036i −0.138263 0.239478i 0.788576 0.614937i \(-0.210819\pi\)
−0.926839 + 0.375459i \(0.877485\pi\)
\(44\) 0 0
\(45\) −8.49201 + 4.90287i −1.26591 + 0.730876i
\(46\) 0 0
\(47\) 0.764866i 0.111567i −0.998443 0.0557836i \(-0.982234\pi\)
0.998443 0.0557836i \(-0.0177657\pi\)
\(48\) 0 0
\(49\) 0.500000 0.866025i 0.0714286 0.123718i
\(50\) 0 0
\(51\) −1.56439 −0.219058
\(52\) 0 0
\(53\) −7.04212 −0.967309 −0.483655 0.875259i \(-0.660691\pi\)
−0.483655 + 0.875259i \(0.660691\pi\)
\(54\) 0 0
\(55\) 1.64344 2.84652i 0.221602 0.383825i
\(56\) 0 0
\(57\) 0.137251i 0.0181794i
\(58\) 0 0
\(59\) 6.34092 3.66093i 0.825517 0.476613i −0.0267980 0.999641i \(-0.508531\pi\)
0.852315 + 0.523028i \(0.175198\pi\)
\(60\) 0 0
\(61\) 4.99008 + 8.64307i 0.638914 + 1.10663i 0.985671 + 0.168677i \(0.0539494\pi\)
−0.346757 + 0.937955i \(0.612717\pi\)
\(62\) 0 0
\(63\) −2.35231 1.35810i −0.296363 0.171105i
\(64\) 0 0
\(65\) −7.52626 10.6198i −0.933518 1.31722i
\(66\) 0 0
\(67\) −12.3936 7.15546i −1.51412 0.874178i −0.999863 0.0165424i \(-0.994734\pi\)
−0.514258 0.857636i \(-0.671933\pi\)
\(68\) 0 0
\(69\) 1.28211 + 2.22068i 0.154348 + 0.267338i
\(70\) 0 0
\(71\) −7.36565 + 4.25256i −0.874142 + 0.504686i −0.868722 0.495299i \(-0.835058\pi\)
−0.00541939 + 0.999985i \(0.501725\pi\)
\(72\) 0 0
\(73\) 1.78944i 0.209438i −0.994502 0.104719i \(-0.966606\pi\)
0.994502 0.104719i \(-0.0333944\pi\)
\(74\) 0 0
\(75\) −2.13958 + 3.70586i −0.247058 + 0.427916i
\(76\) 0 0
\(77\) 0.910474 0.103758
\(78\) 0 0
\(79\) −4.79045 −0.538967 −0.269484 0.963005i \(-0.586853\pi\)
−0.269484 + 0.963005i \(0.586853\pi\)
\(80\) 0 0
\(81\) −3.26321 + 5.65205i −0.362579 + 0.628005i
\(82\) 0 0
\(83\) 14.1237i 1.55027i 0.631794 + 0.775137i \(0.282319\pi\)
−0.631794 + 0.775137i \(0.717681\pi\)
\(84\) 0 0
\(85\) 9.18108 5.30070i 0.995828 0.574941i
\(86\) 0 0
\(87\) 0.584886 + 1.01305i 0.0627064 + 0.108611i
\(88\) 0 0
\(89\) 10.0457 + 5.79987i 1.06484 + 0.614785i 0.926767 0.375637i \(-0.122576\pi\)
0.138072 + 0.990422i \(0.455909\pi\)
\(90\) 0 0
\(91\) 1.50520 3.27634i 0.157788 0.343453i
\(92\) 0 0
\(93\) −3.29197 1.90062i −0.341361 0.197085i
\(94\) 0 0
\(95\) 0.465055 + 0.805499i 0.0477136 + 0.0826424i
\(96\) 0 0
\(97\) 3.96317 2.28814i 0.402399 0.232325i −0.285120 0.958492i \(-0.592033\pi\)
0.687519 + 0.726167i \(0.258700\pi\)
\(98\) 0 0
\(99\) 2.47304i 0.248550i
\(100\) 0 0
\(101\) −0.954236 + 1.65279i −0.0949501 + 0.164458i −0.909588 0.415512i \(-0.863602\pi\)
0.814638 + 0.579970i \(0.196936\pi\)
\(102\) 0 0
\(103\) 9.65209 0.951048 0.475524 0.879703i \(-0.342258\pi\)
0.475524 + 0.879703i \(0.342258\pi\)
\(104\) 0 0
\(105\) −1.92316 −0.187681
\(106\) 0 0
\(107\) −4.02416 + 6.97005i −0.389030 + 0.673820i −0.992319 0.123702i \(-0.960523\pi\)
0.603289 + 0.797523i \(0.293857\pi\)
\(108\) 0 0
\(109\) 10.9962i 1.05324i 0.850101 + 0.526620i \(0.176541\pi\)
−0.850101 + 0.526620i \(0.823459\pi\)
\(110\) 0 0
\(111\) 1.91528 1.10579i 0.181790 0.104957i
\(112\) 0 0
\(113\) 5.19941 + 9.00565i 0.489120 + 0.847180i 0.999922 0.0125184i \(-0.00398484\pi\)
−0.510802 + 0.859698i \(0.670652\pi\)
\(114\) 0 0
\(115\) −15.0488 8.68845i −1.40331 0.810203i
\(116\) 0 0
\(117\) −8.89922 4.08843i −0.822733 0.377976i
\(118\) 0 0
\(119\) 2.54318 + 1.46831i 0.233133 + 0.134599i
\(120\) 0 0
\(121\) −5.08552 8.80838i −0.462320 0.800762i
\(122\) 0 0
\(123\) −3.65073 + 2.10775i −0.329175 + 0.190049i
\(124\) 0 0
\(125\) 10.9482i 0.979235i
\(126\) 0 0
\(127\) −10.8413 + 18.7777i −0.962009 + 1.66625i −0.244564 + 0.969633i \(0.578645\pi\)
−0.717445 + 0.696615i \(0.754689\pi\)
\(128\) 0 0
\(129\) −0.965981 −0.0850499
\(130\) 0 0
\(131\) 3.47007 0.303182 0.151591 0.988443i \(-0.451560\pi\)
0.151591 + 0.988443i \(0.451560\pi\)
\(132\) 0 0
\(133\) −0.128821 + 0.223125i −0.0111702 + 0.0193474i
\(134\) 0 0
\(135\) 10.9932i 0.946143i
\(136\) 0 0
\(137\) 4.52594 2.61305i 0.386677 0.223248i −0.294042 0.955792i \(-0.595001\pi\)
0.680719 + 0.732544i \(0.261667\pi\)
\(138\) 0 0
\(139\) 6.43826 + 11.1514i 0.546086 + 0.945848i 0.998538 + 0.0540595i \(0.0172161\pi\)
−0.452452 + 0.891789i \(0.649451\pi\)
\(140\) 0 0
\(141\) −0.352870 0.203730i −0.0297170 0.0171571i
\(142\) 0 0
\(143\) 3.26859 0.304671i 0.273333 0.0254779i
\(144\) 0 0
\(145\) −6.86515 3.96360i −0.570120 0.329159i
\(146\) 0 0
\(147\) −0.266360 0.461349i −0.0219690 0.0380514i
\(148\) 0 0
\(149\) 0.349996 0.202070i 0.0286728 0.0165542i −0.485595 0.874184i \(-0.661397\pi\)
0.514268 + 0.857630i \(0.328064\pi\)
\(150\) 0 0
\(151\) 0.690599i 0.0562001i −0.999605 0.0281001i \(-0.991054\pi\)
0.999605 0.0281001i \(-0.00894571\pi\)
\(152\) 0 0
\(153\) 3.98823 6.90781i 0.322429 0.558463i
\(154\) 0 0
\(155\) 25.7598 2.06908
\(156\) 0 0
\(157\) 15.0585 1.20180 0.600900 0.799324i \(-0.294809\pi\)
0.600900 + 0.799324i \(0.294809\pi\)
\(158\) 0 0
\(159\) −1.87574 + 3.24887i −0.148756 + 0.257652i
\(160\) 0 0
\(161\) 4.81344i 0.379352i
\(162\) 0 0
\(163\) −4.74129 + 2.73739i −0.371367 + 0.214409i −0.674055 0.738681i \(-0.735449\pi\)
0.302689 + 0.953090i \(0.402116\pi\)
\(164\) 0 0
\(165\) −0.875493 1.51640i −0.0681571 0.118052i
\(166\) 0 0
\(167\) −11.3759 6.56788i −0.880294 0.508238i −0.00953843 0.999955i \(-0.503036\pi\)
−0.870755 + 0.491717i \(0.836370\pi\)
\(168\) 0 0
\(169\) 4.30728 12.2657i 0.331329 0.943515i
\(170\) 0 0
\(171\) 0.606054 + 0.349905i 0.0463461 + 0.0267579i
\(172\) 0 0
\(173\) 12.4954 + 21.6426i 0.950006 + 1.64546i 0.745403 + 0.666614i \(0.232257\pi\)
0.204603 + 0.978845i \(0.434410\pi\)
\(174\) 0 0
\(175\) 6.95650 4.01634i 0.525862 0.303606i
\(176\) 0 0
\(177\) 3.90050i 0.293180i
\(178\) 0 0
\(179\) −8.27646 + 14.3353i −0.618612 + 1.07147i 0.371127 + 0.928582i \(0.378971\pi\)
−0.989739 + 0.142885i \(0.954362\pi\)
\(180\) 0 0
\(181\) 20.7503 1.54236 0.771179 0.636619i \(-0.219667\pi\)
0.771179 + 0.636619i \(0.219667\pi\)
\(182\) 0 0
\(183\) 5.31663 0.393016
\(184\) 0 0
\(185\) −7.49359 + 12.9793i −0.550940 + 0.954256i
\(186\) 0 0
\(187\) 2.67371i 0.195521i
\(188\) 0 0
\(189\) −2.63717 + 1.52257i −0.191826 + 0.110751i
\(190\) 0 0
\(191\) 9.43337 + 16.3391i 0.682575 + 1.18225i 0.974192 + 0.225719i \(0.0724732\pi\)
−0.291618 + 0.956535i \(0.594193\pi\)
\(192\) 0 0
\(193\) −7.66632 4.42615i −0.551833 0.318601i 0.198028 0.980196i \(-0.436546\pi\)
−0.749861 + 0.661595i \(0.769880\pi\)
\(194\) 0 0
\(195\) −6.90412 + 0.643546i −0.494415 + 0.0460853i
\(196\) 0 0
\(197\) 4.46069 + 2.57538i 0.317811 + 0.183488i 0.650417 0.759578i \(-0.274594\pi\)
−0.332605 + 0.943066i \(0.607928\pi\)
\(198\) 0 0
\(199\) −4.30884 7.46312i −0.305445 0.529047i 0.671915 0.740628i \(-0.265472\pi\)
−0.977360 + 0.211581i \(0.932139\pi\)
\(200\) 0 0
\(201\) −6.60232 + 3.81185i −0.465692 + 0.268867i
\(202\) 0 0
\(203\) 2.19585i 0.154119i
\(204\) 0 0
\(205\) 14.2836 24.7399i 0.997609 1.72791i
\(206\) 0 0
\(207\) −13.0743 −0.908728
\(208\) 0 0
\(209\) −0.234577 −0.0162260
\(210\) 0 0
\(211\) 11.0490 19.1374i 0.760642 1.31747i −0.181877 0.983321i \(-0.558217\pi\)
0.942520 0.334150i \(-0.108449\pi\)
\(212\) 0 0
\(213\) 4.53084i 0.310448i
\(214\) 0 0
\(215\) 5.66914 3.27308i 0.386632 0.223222i
\(216\) 0 0
\(217\) 3.56777 + 6.17955i 0.242196 + 0.419495i
\(218\) 0 0
\(219\) −0.825557 0.476636i −0.0557860 0.0322081i
\(220\) 0 0
\(221\) 9.62133 + 4.42018i 0.647200 + 0.297333i
\(222\) 0 0
\(223\) −22.0108 12.7079i −1.47395 0.850986i −0.474382 0.880319i \(-0.657328\pi\)
−0.999570 + 0.0293327i \(0.990662\pi\)
\(224\) 0 0
\(225\) −10.9092 18.8953i −0.727281 1.25969i
\(226\) 0 0
\(227\) −4.55590 + 2.63035i −0.302385 + 0.174582i −0.643514 0.765434i \(-0.722524\pi\)
0.341129 + 0.940017i \(0.389191\pi\)
\(228\) 0 0
\(229\) 7.43362i 0.491228i −0.969368 0.245614i \(-0.921011\pi\)
0.969368 0.245614i \(-0.0789895\pi\)
\(230\) 0 0
\(231\) 0.242514 0.420046i 0.0159562 0.0276370i
\(232\) 0 0
\(233\) −11.4030 −0.747033 −0.373517 0.927623i \(-0.621848\pi\)
−0.373517 + 0.927623i \(0.621848\pi\)
\(234\) 0 0
\(235\) 2.76123 0.180123
\(236\) 0 0
\(237\) −1.27598 + 2.21007i −0.0828840 + 0.143559i
\(238\) 0 0
\(239\) 16.3733i 1.05910i −0.848278 0.529551i \(-0.822361\pi\)
0.848278 0.529551i \(-0.177639\pi\)
\(240\) 0 0
\(241\) 4.51905 2.60907i 0.291098 0.168065i −0.347339 0.937740i \(-0.612915\pi\)
0.638437 + 0.769674i \(0.279581\pi\)
\(242\) 0 0
\(243\) 6.30608 + 10.9225i 0.404535 + 0.700676i
\(244\) 0 0
\(245\) 3.12642 + 1.80504i 0.199740 + 0.115320i
\(246\) 0 0
\(247\) −0.387803 + 0.844123i −0.0246753 + 0.0537103i
\(248\) 0 0
\(249\) 6.51593 + 3.76198i 0.412931 + 0.238406i
\(250\) 0 0
\(251\) −5.51020 9.54395i −0.347801 0.602408i 0.638058 0.769988i \(-0.279738\pi\)
−0.985858 + 0.167580i \(0.946405\pi\)
\(252\) 0 0
\(253\) 3.79537 2.19126i 0.238613 0.137763i
\(254\) 0 0
\(255\) 5.64757i 0.353665i
\(256\) 0 0
\(257\) −13.6609 + 23.6613i −0.852143 + 1.47595i 0.0271283 + 0.999632i \(0.491364\pi\)
−0.879271 + 0.476322i \(0.841970\pi\)
\(258\) 0 0
\(259\) −4.15148 −0.257961
\(260\) 0 0
\(261\) −5.96439 −0.369187
\(262\) 0 0
\(263\) 2.54175 4.40244i 0.156731 0.271466i −0.776957 0.629554i \(-0.783238\pi\)
0.933688 + 0.358088i \(0.116571\pi\)
\(264\) 0 0
\(265\) 25.4226i 1.56170i
\(266\) 0 0
\(267\) 5.35153 3.08971i 0.327508 0.189087i
\(268\) 0 0
\(269\) −5.38662 9.32990i −0.328428 0.568854i 0.653772 0.756692i \(-0.273186\pi\)
−0.982200 + 0.187837i \(0.939852\pi\)
\(270\) 0 0
\(271\) −17.2208 9.94243i −1.04609 0.603960i −0.124537 0.992215i \(-0.539745\pi\)
−0.921552 + 0.388255i \(0.873078\pi\)
\(272\) 0 0
\(273\) −1.11061 1.56711i −0.0672172 0.0948455i
\(274\) 0 0
\(275\) 6.33371 + 3.65677i 0.381937 + 0.220511i
\(276\) 0 0
\(277\) 10.4609 + 18.1188i 0.628533 + 1.08865i 0.987846 + 0.155434i \(0.0496775\pi\)
−0.359314 + 0.933217i \(0.616989\pi\)
\(278\) 0 0
\(279\) 16.7850 9.69080i 1.00489 0.580173i
\(280\) 0 0
\(281\) 9.93537i 0.592695i −0.955080 0.296347i \(-0.904231\pi\)
0.955080 0.296347i \(-0.0957686\pi\)
\(282\) 0 0
\(283\) 5.59308 9.68751i 0.332474 0.575862i −0.650522 0.759487i \(-0.725450\pi\)
0.982996 + 0.183625i \(0.0587832\pi\)
\(284\) 0 0
\(285\) 0.495488 0.0293502
\(286\) 0 0
\(287\) 7.91317 0.467100
\(288\) 0 0
\(289\) 4.18816 7.25410i 0.246362 0.426712i
\(290\) 0 0
\(291\) 2.43787i 0.142911i
\(292\) 0 0
\(293\) 26.2472 15.1538i 1.53338 0.885297i 0.534177 0.845373i \(-0.320622\pi\)
0.999203 0.0399244i \(-0.0127117\pi\)
\(294\) 0 0
\(295\) 13.2163 + 22.8912i 0.769480 + 1.33278i
\(296\) 0 0
\(297\) −2.40107 1.38626i −0.139324 0.0804389i
\(298\) 0 0
\(299\) −1.61072 17.2802i −0.0931503 0.999340i
\(300\) 0 0
\(301\) 1.57036 + 0.906650i 0.0905143 + 0.0522585i
\(302\) 0 0
\(303\) 0.508341 + 0.880472i 0.0292034 + 0.0505818i
\(304\) 0 0
\(305\) −31.2022 + 18.0146i −1.78663 + 1.03151i
\(306\) 0 0
\(307\) 34.3173i 1.95859i 0.202428 + 0.979297i \(0.435117\pi\)
−0.202428 + 0.979297i \(0.564883\pi\)
\(308\) 0 0
\(309\) 2.57093 4.45298i 0.146255 0.253321i
\(310\) 0 0
\(311\) 29.9417 1.69784 0.848918 0.528525i \(-0.177255\pi\)
0.848918 + 0.528525i \(0.177255\pi\)
\(312\) 0 0
\(313\) −15.3150 −0.865657 −0.432828 0.901476i \(-0.642484\pi\)
−0.432828 + 0.901476i \(0.642484\pi\)
\(314\) 0 0
\(315\) 4.90287 8.49201i 0.276245 0.478471i
\(316\) 0 0
\(317\) 18.3548i 1.03091i −0.856917 0.515455i \(-0.827623\pi\)
0.856917 0.515455i \(-0.172377\pi\)
\(318\) 0 0
\(319\) 1.73141 0.999632i 0.0969406 0.0559687i
\(320\) 0 0
\(321\) 2.14375 + 3.71308i 0.119652 + 0.207244i
\(322\) 0 0
\(323\) −0.655231 0.378298i −0.0364580 0.0210491i
\(324\) 0 0
\(325\) 23.6298 16.7464i 1.31074 0.928926i
\(326\) 0 0
\(327\) 5.07306 + 2.92893i 0.280541 + 0.161970i
\(328\) 0 0
\(329\) 0.382433 + 0.662393i 0.0210842 + 0.0365189i
\(330\) 0 0
\(331\) 23.5096 13.5733i 1.29220 0.746054i 0.313159 0.949701i \(-0.398613\pi\)
0.979044 + 0.203647i \(0.0652793\pi\)
\(332\) 0 0
\(333\) 11.2763i 0.617937i
\(334\) 0 0
\(335\) 25.8318 44.7419i 1.41134 2.44451i
\(336\) 0 0
\(337\) −32.0948 −1.74832 −0.874158 0.485641i \(-0.838586\pi\)
−0.874158 + 0.485641i \(0.838586\pi\)
\(338\) 0 0
\(339\) 5.53966 0.300873
\(340\) 0 0
\(341\) −3.24836 + 5.62632i −0.175908 + 0.304682i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) −8.01682 + 4.62851i −0.431611 + 0.249191i
\(346\) 0 0
\(347\) 9.08991 + 15.7442i 0.487972 + 0.845193i 0.999904 0.0138333i \(-0.00440343\pi\)
−0.511932 + 0.859026i \(0.671070\pi\)
\(348\) 0 0
\(349\) −0.316993 0.183016i −0.0169683 0.00979664i 0.491492 0.870882i \(-0.336452\pi\)
−0.508460 + 0.861086i \(0.669785\pi\)
\(350\) 0 0
\(351\) −8.95790 + 6.34848i −0.478137 + 0.338857i
\(352\) 0 0
\(353\) 28.4201 + 16.4083i 1.51265 + 0.873327i 0.999891 + 0.0147935i \(0.00470910\pi\)
0.512757 + 0.858534i \(0.328624\pi\)
\(354\) 0 0
\(355\) −15.3521 26.5906i −0.814804 1.41128i
\(356\) 0 0
\(357\) 1.35480 0.782195i 0.0717037 0.0413982i
\(358\) 0 0
\(359\) 33.2979i 1.75740i 0.477378 + 0.878698i \(0.341587\pi\)
−0.477378 + 0.878698i \(0.658413\pi\)
\(360\) 0 0
\(361\) −9.46681 + 16.3970i −0.498253 + 0.863000i
\(362\) 0 0
\(363\) −5.41831 −0.284388
\(364\) 0 0
\(365\) 6.46003 0.338133
\(366\) 0 0
\(367\) 14.6032 25.2935i 0.762281 1.32031i −0.179392 0.983778i \(-0.557413\pi\)
0.941672 0.336531i \(-0.109254\pi\)
\(368\) 0 0
\(369\) 21.4938i 1.11892i
\(370\) 0 0
\(371\) 6.09865 3.52106i 0.316626 0.182804i
\(372\) 0 0
\(373\) 7.05484 + 12.2193i 0.365286 + 0.632693i 0.988822 0.149101i \(-0.0476380\pi\)
−0.623536 + 0.781794i \(0.714305\pi\)
\(374\) 0 0
\(375\) −5.05093 2.91616i −0.260829 0.150590i
\(376\) 0 0
\(377\) −0.734796 7.88308i −0.0378439 0.405999i
\(378\) 0 0
\(379\) −19.5621 11.2942i −1.00484 0.580144i −0.0951629 0.995462i \(-0.530337\pi\)
−0.909677 + 0.415317i \(0.863671\pi\)
\(380\) 0 0
\(381\) 5.77537 + 10.0032i 0.295881 + 0.512481i
\(382\) 0 0
\(383\) −3.14983 + 1.81856i −0.160949 + 0.0929239i −0.578311 0.815816i \(-0.696288\pi\)
0.417362 + 0.908740i \(0.362955\pi\)
\(384\) 0 0
\(385\) 3.28688i 0.167515i
\(386\) 0 0
\(387\) 2.46265 4.26544i 0.125184 0.216824i
\(388\) 0 0
\(389\) 9.36399 0.474773 0.237387 0.971415i \(-0.423709\pi\)
0.237387 + 0.971415i \(0.423709\pi\)
\(390\) 0 0
\(391\) 14.1352 0.714848
\(392\) 0 0
\(393\) 0.924288 1.60091i 0.0466242 0.0807555i
\(394\) 0 0
\(395\) 17.2939i 0.870150i
\(396\) 0 0
\(397\) 18.2814 10.5548i 0.917517 0.529729i 0.0346751 0.999399i \(-0.488960\pi\)
0.882842 + 0.469670i \(0.155627\pi\)
\(398\) 0 0
\(399\) 0.0686256 + 0.118863i 0.00343558 + 0.00595059i
\(400\) 0 0
\(401\) 31.2841 + 18.0619i 1.56225 + 0.901966i 0.997029 + 0.0770278i \(0.0245430\pi\)
0.565223 + 0.824938i \(0.308790\pi\)
\(402\) 0 0
\(403\) 14.8761 + 20.9906i 0.741032 + 1.04562i
\(404\) 0 0
\(405\) −20.4043 11.7805i −1.01390 0.585375i
\(406\) 0 0
\(407\) −1.88991 3.27342i −0.0936793 0.162257i
\(408\) 0 0
\(409\) −3.83742 + 2.21554i −0.189748 + 0.109551i −0.591865 0.806037i \(-0.701608\pi\)
0.402116 + 0.915589i \(0.368275\pi\)
\(410\) 0 0
\(411\) 2.78405i 0.137327i
\(412\) 0 0
\(413\) −3.66093 + 6.34092i −0.180143 + 0.312016i
\(414\) 0 0
\(415\) −50.9875 −2.50288
\(416\) 0 0
\(417\) 6.85957 0.335915
\(418\) 0 0
\(419\) 3.63831 6.30174i 0.177743 0.307860i −0.763364 0.645969i \(-0.776454\pi\)
0.941107 + 0.338108i \(0.109787\pi\)
\(420\) 0 0
\(421\) 34.6205i 1.68730i 0.536893 + 0.843650i \(0.319598\pi\)
−0.536893 + 0.843650i \(0.680402\pi\)
\(422\) 0 0
\(423\) 1.79920 1.03877i 0.0874801 0.0505066i
\(424\) 0 0
\(425\) 11.7944 + 20.4285i 0.572113 + 0.990929i
\(426\) 0 0
\(427\) −8.64307 4.99008i −0.418267 0.241487i
\(428\) 0 0
\(429\) 0.730062 1.58911i 0.0352477 0.0767231i
\(430\) 0 0
\(431\) 8.99073 + 5.19080i 0.433068 + 0.250032i 0.700653 0.713502i \(-0.252892\pi\)
−0.267585 + 0.963534i \(0.586226\pi\)
\(432\) 0 0
\(433\) 0.0473814 + 0.0820669i 0.00227700 + 0.00394388i 0.867162 0.498027i \(-0.165942\pi\)
−0.864885 + 0.501971i \(0.832609\pi\)
\(434\) 0 0
\(435\) −3.65720 + 2.11149i −0.175349 + 0.101238i
\(436\) 0 0
\(437\) 1.24015i 0.0593243i
\(438\) 0 0
\(439\) −6.93900 + 12.0187i −0.331180 + 0.573621i −0.982744 0.184973i \(-0.940780\pi\)
0.651563 + 0.758594i \(0.274113\pi\)
\(440\) 0 0
\(441\) 2.71621 0.129343
\(442\) 0 0
\(443\) 34.0718 1.61880 0.809400 0.587257i \(-0.199792\pi\)
0.809400 + 0.587257i \(0.199792\pi\)
\(444\) 0 0
\(445\) −20.9380 + 36.2657i −0.992556 + 1.71916i
\(446\) 0 0
\(447\) 0.215294i 0.0101830i
\(448\) 0 0
\(449\) 15.4470 8.91833i 0.728989 0.420882i −0.0890634 0.996026i \(-0.528387\pi\)
0.818052 + 0.575144i \(0.195054\pi\)
\(450\) 0 0
\(451\) 3.60237 + 6.23948i 0.169629 + 0.293806i
\(452\) 0 0
\(453\) −0.318607 0.183948i −0.0149695 0.00864262i
\(454\) 0 0
\(455\) 11.8278 + 5.43388i 0.554497 + 0.254744i
\(456\) 0 0
\(457\) 3.82457 + 2.20812i 0.178906 + 0.103291i 0.586778 0.809748i \(-0.300396\pi\)
−0.407873 + 0.913039i \(0.633729\pi\)
\(458\) 0 0
\(459\) −4.47119 7.74433i −0.208697 0.361474i
\(460\) 0 0
\(461\) −21.9618 + 12.6796i −1.02286 + 0.590550i −0.914932 0.403609i \(-0.867756\pi\)
−0.107930 + 0.994158i \(0.534422\pi\)
\(462\) 0 0
\(463\) 3.38088i 0.157123i −0.996909 0.0785615i \(-0.974967\pi\)
0.996909 0.0785615i \(-0.0250327\pi\)
\(464\) 0 0
\(465\) 6.86139 11.8843i 0.318189 0.551120i
\(466\) 0 0
\(467\) −11.8096 −0.546485 −0.273242 0.961945i \(-0.588096\pi\)
−0.273242 + 0.961945i \(0.588096\pi\)
\(468\) 0 0
\(469\) 14.3109 0.660817
\(470\) 0 0
\(471\) 4.01099 6.94723i 0.184816 0.320111i
\(472\) 0 0
\(473\) 1.65096i 0.0759113i
\(474\) 0 0
\(475\) −1.79229 + 1.03478i −0.0822359 + 0.0474789i
\(476\) 0 0
\(477\) −9.56393 16.5652i −0.437902 0.758469i
\(478\) 0 0
\(479\) 20.9061 + 12.0702i 0.955225 + 0.551499i 0.894700 0.446667i \(-0.147389\pi\)
0.0605249 + 0.998167i \(0.480723\pi\)
\(480\) 0 0
\(481\) −14.9038 + 1.38921i −0.679554 + 0.0633425i
\(482\) 0 0
\(483\) −2.22068 1.28211i −0.101044 0.0583379i
\(484\) 0 0
\(485\) 8.26036 + 14.3074i 0.375084 + 0.649664i
\(486\) 0 0
\(487\) −5.47359 + 3.16018i −0.248032 + 0.143201i −0.618863 0.785499i \(-0.712406\pi\)
0.370831 + 0.928700i \(0.379073\pi\)
\(488\) 0 0
\(489\) 2.91652i 0.131890i
\(490\) 0 0
\(491\) 10.1159 17.5213i 0.456525 0.790724i −0.542250 0.840217i \(-0.682427\pi\)
0.998774 + 0.0494933i \(0.0157606\pi\)
\(492\) 0 0
\(493\) 6.44836 0.290419
\(494\) 0 0
\(495\) 8.92786 0.401278
\(496\) 0 0
\(497\) 4.25256 7.36565i 0.190753 0.330395i
\(498\) 0 0
\(499\) 23.5570i 1.05456i 0.849692 + 0.527279i \(0.176788\pi\)
−0.849692 + 0.527279i \(0.823212\pi\)
\(500\) 0 0
\(501\) −6.06017 + 3.49884i −0.270748 + 0.156317i
\(502\) 0 0
\(503\) 5.51750 + 9.55659i 0.246013 + 0.426107i 0.962416 0.271579i \(-0.0875460\pi\)
−0.716403 + 0.697687i \(0.754213\pi\)
\(504\) 0 0
\(505\) −5.96669 3.44487i −0.265514 0.153295i
\(506\) 0 0
\(507\) −4.51148 5.25425i −0.200362 0.233349i
\(508\) 0 0
\(509\) −21.5792 12.4587i −0.956480 0.552224i −0.0613918 0.998114i \(-0.519554\pi\)
−0.895088 + 0.445890i \(0.852887\pi\)
\(510\) 0 0
\(511\) 0.894721 + 1.54970i 0.0395801 + 0.0685548i
\(512\) 0 0
\(513\) 0.679446 0.392278i 0.0299983 0.0173195i
\(514\) 0 0
\(515\) 34.8448i 1.53545i
\(516\) 0 0
\(517\) −0.348195 + 0.603092i −0.0153136 + 0.0265239i
\(518\) 0 0
\(519\) 13.3131 0.584379
\(520\) 0 0
\(521\) −17.3560 −0.760382 −0.380191 0.924908i \(-0.624142\pi\)
−0.380191 + 0.924908i \(0.624142\pi\)
\(522\) 0 0
\(523\) −9.93362 + 17.2055i −0.434367 + 0.752346i −0.997244 0.0741952i \(-0.976361\pi\)
0.562877 + 0.826541i \(0.309695\pi\)
\(524\) 0 0
\(525\) 4.27916i 0.186758i
\(526\) 0 0
\(527\) −18.1469 + 10.4771i −0.790493 + 0.456391i
\(528\) 0 0
\(529\) −0.0846157 0.146559i −0.00367894 0.00637212i
\(530\) 0 0
\(531\) 17.2233 + 9.94386i 0.747426 + 0.431527i
\(532\) 0 0
\(533\) 28.4082 2.64798i 1.23050 0.114697i
\(534\) 0 0
\(535\) −25.1624 14.5275i −1.08787 0.628080i
\(536\) 0 0
\(537\) 4.40903 + 7.63667i 0.190264 + 0.329547i
\(538\) 0 0
\(539\) −0.788493 + 0.455237i −0.0339628 + 0.0196084i
\(540\) 0 0
\(541\) 21.4083i 0.920416i 0.887811 + 0.460208i \(0.152225\pi\)
−0.887811 + 0.460208i \(0.847775\pi\)
\(542\) 0 0
\(543\) 5.52705 9.57312i 0.237188 0.410822i
\(544\) 0 0
\(545\) −39.6970 −1.70043
\(546\) 0 0
\(547\) −45.7522 −1.95622 −0.978112 0.208078i \(-0.933279\pi\)
−0.978112 + 0.208078i \(0.933279\pi\)
\(548\) 0 0
\(549\) −13.5541 + 23.4764i −0.578475 + 1.00195i
\(550\) 0 0
\(551\) 0.565744i 0.0241015i
\(552\) 0 0
\(553\) 4.14865 2.39522i 0.176418 0.101855i
\(554\) 0 0
\(555\) 3.99198 + 6.91432i 0.169450 + 0.293496i
\(556\) 0 0
\(557\) −15.8153 9.13097i −0.670116 0.386892i 0.126005 0.992030i \(-0.459785\pi\)
−0.796121 + 0.605138i \(0.793118\pi\)
\(558\) 0 0
\(559\) 5.94098 + 2.72938i 0.251277 + 0.115440i
\(560\) 0 0
\(561\) 1.23351 + 0.712168i 0.0520789 + 0.0300678i
\(562\) 0 0
\(563\) 17.6905 + 30.6408i 0.745564 + 1.29135i 0.949931 + 0.312460i \(0.101153\pi\)
−0.204367 + 0.978894i \(0.565514\pi\)
\(564\) 0 0
\(565\) −32.5111 + 18.7703i −1.36775 + 0.789672i
\(566\) 0 0
\(567\) 6.52642i 0.274084i
\(568\) 0 0
\(569\) 10.0459 17.4000i 0.421145 0.729444i −0.574907 0.818219i \(-0.694962\pi\)
0.996052 + 0.0887746i \(0.0282951\pi\)
\(570\) 0 0
\(571\) −12.7624 −0.534088 −0.267044 0.963684i \(-0.586047\pi\)
−0.267044 + 0.963684i \(0.586047\pi\)
\(572\) 0 0
\(573\) 10.0507 0.419873
\(574\) 0 0
\(575\) 19.3324 33.4847i 0.806217 1.39641i
\(576\) 0 0
\(577\) 29.6469i 1.23422i −0.786878 0.617109i \(-0.788304\pi\)
0.786878 0.617109i \(-0.211696\pi\)
\(578\) 0 0
\(579\) −4.08400 + 2.35790i −0.169725 + 0.0979909i
\(580\) 0 0
\(581\) −7.06183 12.2315i −0.292974 0.507446i
\(582\) 0 0
\(583\) 5.55266 + 3.20583i 0.229968 + 0.132772i
\(584\) 0 0
\(585\) 14.7596 32.1269i 0.610233 1.32828i
\(586\) 0 0
\(587\) 29.2832 + 16.9067i 1.20865 + 0.697812i 0.962463 0.271411i \(-0.0874903\pi\)
0.246183 + 0.969223i \(0.420824\pi\)
\(588\) 0 0
\(589\) −0.919208 1.59212i −0.0378753 0.0656020i
\(590\) 0 0
\(591\) 2.37630 1.37196i 0.0977479 0.0564348i
\(592\) 0 0
\(593\) 36.8255i 1.51224i −0.654433 0.756120i \(-0.727093\pi\)
0.654433 0.756120i \(-0.272907\pi\)
\(594\) 0 0
\(595\) −5.30070 + 9.18108i −0.217307 + 0.376388i
\(596\) 0 0
\(597\) −4.59080 −0.187889
\(598\) 0 0
\(599\) 9.49676 0.388027 0.194014 0.980999i \(-0.437849\pi\)
0.194014 + 0.980999i \(0.437849\pi\)
\(600\) 0 0
\(601\) 12.7832 22.1412i 0.521438 0.903157i −0.478251 0.878223i \(-0.658729\pi\)
0.999689 0.0249337i \(-0.00793746\pi\)
\(602\) 0 0
\(603\) 38.8714i 1.58297i
\(604\) 0 0
\(605\) 31.7989 18.3591i 1.29281 0.746405i
\(606\) 0 0
\(607\) −1.09834 1.90238i −0.0445803 0.0772153i 0.842874 0.538111i \(-0.180862\pi\)
−0.887455 + 0.460895i \(0.847528\pi\)
\(608\) 0 0
\(609\) −1.01305 0.584886i −0.0410510 0.0237008i
\(610\) 0 0
\(611\) 1.59459 + 2.25001i 0.0645101 + 0.0910257i
\(612\) 0 0
\(613\) −1.02232 0.590239i −0.0412913 0.0238395i 0.479212 0.877699i \(-0.340922\pi\)
−0.520504 + 0.853860i \(0.674256\pi\)
\(614\) 0 0
\(615\) −7.60915 13.1794i −0.306830 0.531446i
\(616\) 0 0
\(617\) 30.1687 17.4179i 1.21455 0.701218i 0.250799 0.968039i \(-0.419307\pi\)
0.963746 + 0.266821i \(0.0859733\pi\)
\(618\) 0 0
\(619\) 23.1480i 0.930398i −0.885206 0.465199i \(-0.845983\pi\)
0.885206 0.465199i \(-0.154017\pi\)
\(620\) 0 0
\(621\) −7.32880 + 12.6938i −0.294095 + 0.509387i
\(622\) 0 0
\(623\) −11.5997 −0.464734
\(624\) 0 0
\(625\) −0.639556 −0.0255823
\(626\) 0 0
\(627\) −0.0624818 + 0.108222i −0.00249528 + 0.00432196i
\(628\) 0 0
\(629\) 12.1913i 0.486099i
\(630\) 0 0
\(631\) −40.1591 + 23.1859i −1.59871 + 0.923014i −0.606971 + 0.794724i \(0.707616\pi\)
−0.991737 + 0.128290i \(0.959051\pi\)
\(632\) 0 0
\(633\) −5.88600 10.1949i −0.233948 0.405209i
\(634\) 0 0
\(635\) −67.7889 39.1379i −2.69012 1.55314i
\(636\) 0 0
\(637\) 0.334629 + 3.58999i 0.0132585 + 0.142241i
\(638\) 0 0
\(639\) −20.0066 11.5508i −0.791451 0.456944i
\(640\) 0 0
\(641\) 3.77661 + 6.54128i 0.149167 + 0.258365i 0.930920 0.365223i \(-0.119007\pi\)
−0.781753 + 0.623589i \(0.785674\pi\)
\(642\) 0 0
\(643\) 22.0811 12.7485i 0.870795 0.502754i 0.00318261 0.999995i \(-0.498987\pi\)
0.867612 + 0.497241i \(0.165654\pi\)
\(644\) 0 0
\(645\) 3.48727i 0.137311i
\(646\) 0 0
\(647\) −16.5563 + 28.6763i −0.650894 + 1.12738i 0.332012 + 0.943275i \(0.392273\pi\)
−0.982906 + 0.184107i \(0.941061\pi\)
\(648\) 0 0
\(649\) −6.66636 −0.261678
\(650\) 0 0
\(651\) 3.80124 0.148982
\(652\) 0 0
\(653\) −3.94442 + 6.83194i −0.154357 + 0.267355i −0.932825 0.360330i \(-0.882664\pi\)
0.778468 + 0.627685i \(0.215997\pi\)
\(654\) 0 0
\(655\) 12.5272i 0.489480i
\(656\) 0 0
\(657\) 4.20932 2.43025i 0.164221 0.0948131i
\(658\) 0 0
\(659\) 14.3089 + 24.7837i 0.557394 + 0.965435i 0.997713 + 0.0675937i \(0.0215322\pi\)
−0.440319 + 0.897842i \(0.645134\pi\)
\(660\) 0 0
\(661\) −28.0320 16.1843i −1.09032 0.629495i −0.156656 0.987653i \(-0.550071\pi\)
−0.933661 + 0.358158i \(0.883405\pi\)
\(662\) 0 0
\(663\) 4.60198 3.26143i 0.178726 0.126663i
\(664\) 0 0
\(665\) −0.805499 0.465055i −0.0312359 0.0180341i
\(666\) 0 0
\(667\) −5.28480 9.15354i −0.204628 0.354427i
\(668\) 0 0
\(669\) −11.7256 + 6.76977i −0.453337 + 0.261734i
\(670\) 0 0
\(671\) 9.08667i 0.350787i
\(672\) 0 0
\(673\) 9.24041 16.0049i 0.356192 0.616942i −0.631130 0.775677i \(-0.717408\pi\)
0.987321 + 0.158736i \(0.0507417\pi\)
\(674\) 0 0
\(675\) −24.4606 −0.941488
\(676\) 0 0
\(677\) −14.2876 −0.549119 −0.274559 0.961570i \(-0.588532\pi\)
−0.274559 + 0.961570i \(0.588532\pi\)
\(678\) 0 0
\(679\) −2.28814 + 3.96317i −0.0878107 + 0.152093i
\(680\) 0 0
\(681\) 2.80248i 0.107391i
\(682\) 0 0
\(683\) −24.5575 + 14.1783i −0.939665 + 0.542516i −0.889855 0.456243i \(-0.849195\pi\)
−0.0498098 + 0.998759i \(0.515862\pi\)
\(684\) 0 0
\(685\) 9.43332 + 16.3390i 0.360429 + 0.624281i
\(686\) 0 0
\(687\) −3.42949 1.98002i −0.130843 0.0755424i
\(688\) 0 0
\(689\) 20.7158 14.6813i 0.789211 0.559315i
\(690\) 0 0
\(691\) 5.84731 + 3.37595i 0.222442 + 0.128427i 0.607081 0.794640i \(-0.292341\pi\)
−0.384638 + 0.923067i \(0.625674\pi\)
\(692\) 0 0
\(693\) 1.23652 + 2.14171i 0.0469715 + 0.0813570i
\(694\) 0 0
\(695\) −40.2574 + 23.2426i −1.52705 + 0.881643i
\(696\) 0 0
\(697\) 23.2379i 0.880198i
\(698\) 0 0
\(699\) −3.03729 + 5.26075i −0.114881 + 0.198980i
\(700\) 0 0
\(701\) −35.7504 −1.35028 −0.675138 0.737692i \(-0.735916\pi\)
−0.675138 + 0.737692i \(0.735916\pi\)
\(702\) 0 0
\(703\) 1.06960 0.0403407
\(704\) 0 0
\(705\) 0.735480 1.27389i 0.0276998 0.0479774i
\(706\) 0 0
\(707\) 1.90847i 0.0717755i
\(708\) 0 0
\(709\) −31.4534 + 18.1597i −1.18126 + 0.682000i −0.956305 0.292369i \(-0.905556\pi\)
−0.224954 + 0.974369i \(0.572223\pi\)
\(710\) 0 0
\(711\) −6.50593 11.2686i −0.243991 0.422605i
\(712\) 0 0
\(713\) 29.7449 + 17.1732i 1.11396 + 0.643143i
\(714\) 0 0
\(715\) 1.09989 + 11.7999i 0.0411335 + 0.441290i
\(716\) 0 0
\(717\) −7.55380 4.36119i −0.282102 0.162872i
\(718\) 0 0
\(719\) 10.6885 + 18.5130i 0.398612 + 0.690417i 0.993555 0.113351i \(-0.0361585\pi\)
−0.594942 + 0.803768i \(0.702825\pi\)
\(720\) 0 0
\(721\) −8.35895 + 4.82604i −0.311304 + 0.179731i
\(722\) 0 0
\(723\) 2.77981i 0.103382i
\(724\) 0 0
\(725\) 8.81927 15.2754i 0.327540 0.567315i
\(726\) 0 0
\(727\) −29.3652 −1.08909 −0.544547 0.838730i \(-0.683299\pi\)
−0.544547 + 0.838730i \(0.683299\pi\)
\(728\) 0 0
\(729\) −12.8605 −0.476316
\(730\) 0 0
\(731\) −2.66248 + 4.61155i −0.0984754 + 0.170564i
\(732\) 0 0
\(733\) 29.0055i 1.07134i −0.844426 0.535672i \(-0.820058\pi\)
0.844426 0.535672i \(-0.179942\pi\)
\(734\) 0 0
\(735\) 1.66551 0.961580i 0.0614331 0.0354684i
\(736\) 0 0
\(737\) 6.51485 + 11.2841i 0.239978 + 0.415654i
\(738\) 0 0
\(739\) −12.7973 7.38854i −0.470757 0.271792i 0.245800 0.969321i \(-0.420950\pi\)
−0.716557 + 0.697529i \(0.754283\pi\)
\(740\) 0 0
\(741\) 0.286140 + 0.403753i 0.0105116 + 0.0148322i
\(742\) 0 0
\(743\) −15.4881 8.94208i −0.568205 0.328053i 0.188227 0.982126i \(-0.439726\pi\)
−0.756432 + 0.654072i \(0.773059\pi\)
\(744\) 0 0
\(745\) 0.729490 + 1.26351i 0.0267264 + 0.0462915i
\(746\) 0 0
\(747\) −33.2232 + 19.1814i −1.21557 + 0.701811i
\(748\) 0 0
\(749\) 8.04832i 0.294079i
\(750\) 0 0
\(751\) 13.0547 22.6115i 0.476374 0.825104i −0.523259 0.852173i \(-0.675284\pi\)
0.999634 + 0.0270692i \(0.00861745\pi\)
\(752\) 0 0
\(753\) −5.87078 −0.213943
\(754\) 0 0
\(755\) 2.49312 0.0907338
\(756\) 0 0
\(757\) 7.59547 13.1557i 0.276062 0.478154i −0.694340 0.719647i \(-0.744304\pi\)
0.970403 + 0.241493i \(0.0776371\pi\)
\(758\) 0 0
\(759\) 2.33465i 0.0847425i
\(760\) 0 0
\(761\) 7.17839 4.14445i 0.260216 0.150236i −0.364217 0.931314i \(-0.618663\pi\)
0.624433 + 0.781078i \(0.285330\pi\)
\(762\) 0 0
\(763\) −5.49808 9.52295i −0.199044 0.344754i
\(764\) 0 0
\(765\) 24.9377 + 14.3978i 0.901626 + 0.520554i
\(766\) 0 0
\(767\) −11.0208 + 23.9889i −0.397940 + 0.866189i
\(768\) 0 0
\(769\) 20.0965 + 11.6027i 0.724699 + 0.418405i 0.816480 0.577374i \(-0.195923\pi\)
−0.0917808 + 0.995779i \(0.529256\pi\)
\(770\) 0 0
\(771\) 7.27742 + 12.6049i 0.262090 + 0.453953i
\(772\) 0 0
\(773\) −30.8325 + 17.8012i −1.10897 + 0.640263i −0.938562 0.345111i \(-0.887841\pi\)
−0.170407 + 0.985374i \(0.554508\pi\)
\(774\) 0 0
\(775\) 57.3174i 2.05890i
\(776\) 0 0
\(777\) −1.10579 + 1.91528i −0.0396699 + 0.0687103i
\(778\) 0 0
\(779\) −2.03877 −0.0730464
\(780\) 0 0
\(781\) 7.74369 0.277091
\(782\) 0 0
\(783\) −3.34333 + 5.79082i −0.119481 + 0.206947i
\(784\) 0 0
\(785\) 54.3624i 1.94028i
\(786\) 0 0
\(787\) −11.3347 + 6.54411i −0.404039 + 0.233272i −0.688225 0.725497i \(-0.741610\pi\)
0.284186 + 0.958769i \(0.408277\pi\)
\(788\) 0 0
\(789\) −1.35404 2.34526i −0.0482051 0.0834936i
\(790\) 0 0
\(791\) −9.00565 5.19941i −0.320204 0.184870i
\(792\) 0 0
\(793\) −32.6984 15.0221i −1.16115 0.533450i
\(794\) 0 0
\(795\) −11.7287 6.77156i −0.415974 0.240162i
\(796\) 0 0
\(797\) 13.5036 + 23.3889i 0.478322 + 0.828478i 0.999691 0.0248533i \(-0.00791185\pi\)
−0.521369 + 0.853331i \(0.674579\pi\)
\(798\) 0 0
\(799\) −1.94519 + 1.12306i −0.0688159 + 0.0397309i
\(800\) 0 0
\(801\) 31.5073i 1.11326i
\(802\) 0 0
\(803\) −0.814620 + 1.41096i −0.0287473 + 0.0497918i
\(804\) 0 0
\(805\) 17.3769 0.612456
\(806\) 0 0
\(807\) −5.73912 −0.202027
\(808\) 0 0
\(809\) 20.0830 34.7847i 0.706080 1.22297i −0.260221 0.965549i \(-0.583795\pi\)
0.966300 0.257417i \(-0.0828713\pi\)
\(810\) 0 0
\(811\) 2.28814i 0.0803475i −0.999193 0.0401738i \(-0.987209\pi\)
0.999193 0.0401738i \(-0.0127911\pi\)
\(812\) 0 0
\(813\) −9.17386 + 5.29653i −0.321741 + 0.185757i
\(814\) 0 0
\(815\) −9.88219 17.1164i −0.346158 0.599563i
\(816\) 0 0
\(817\) −0.404593 0.233592i −0.0141549 0.00817234i
\(818\) 0 0
\(819\) 9.75116 0.908924i 0.340733 0.0317604i
\(820\) 0 0
\(821\) −32.1548 18.5646i −1.12221 0.647907i −0.180245 0.983622i \(-0.557689\pi\)
−0.941964 + 0.335714i \(0.891022\pi\)
\(822\) 0 0
\(823\) 21.6549 + 37.5074i 0.754842 + 1.30743i 0.945453 + 0.325760i \(0.105620\pi\)
−0.190610 + 0.981666i \(0.561047\pi\)
\(824\) 0 0
\(825\) 3.37409 1.94803i 0.117471 0.0678218i
\(826\) 0 0
\(827\) 42.5097i 1.47821i 0.673591 + 0.739104i \(0.264751\pi\)
−0.673591 + 0.739104i \(0.735249\pi\)
\(828\) 0 0
\(829\) 13.2928 23.0238i 0.461678 0.799649i −0.537367 0.843348i \(-0.680581\pi\)
0.999045 + 0.0436993i \(0.0139143\pi\)
\(830\) 0 0
\(831\) 11.1454 0.386630
\(832\) 0 0
\(833\) −2.93661 −0.101748
\(834\) 0 0
\(835\) 23.7106 41.0679i 0.820538 1.42121i
\(836\) 0 0
\(837\) 21.7287i 0.751053i
\(838\) 0 0
\(839\) −12.9346 + 7.46781i −0.446553 + 0.257817i −0.706373 0.707840i \(-0.749670\pi\)
0.259820 + 0.965657i \(0.416337\pi\)
\(840\) 0 0
\(841\) 12.0891 + 20.9390i 0.416866 + 0.722033i
\(842\) 0 0
\(843\) −4.58367 2.64638i −0.157870 0.0911463i
\(844\) 0 0
\(845\) 44.2801 + 15.5496i 1.52328 + 0.534924i
\(846\) 0 0
\(847\) 8.80838 + 5.08552i 0.302659 + 0.174740i
\(848\) 0 0
\(849\) −2.97955 5.16073i −0.102258 0.177116i
\(850\) 0 0
\(851\) −17.3057 + 9.99146i −0.593232 + 0.342503i
\(852\) 0 0
\(853\) 7.37904i 0.252653i −0.991989 0.126327i \(-0.959681\pi\)
0.991989 0.126327i \(-0.0403188\pi\)
\(854\) 0 0
\(855\) −1.26319 + 2.18790i −0.0432001 + 0.0748247i
\(856\) 0 0
\(857\) −43.4305 −1.48356 −0.741779 0.670644i \(-0.766018\pi\)
−0.741779 + 0.670644i \(0.766018\pi\)
\(858\) 0 0
\(859\) 57.0429 1.94628 0.973139 0.230220i \(-0.0739445\pi\)
0.973139 + 0.230220i \(0.0739445\pi\)
\(860\) 0 0
\(861\) 2.10775 3.65073i 0.0718319 0.124417i
\(862\) 0 0
\(863\) 15.2795i 0.520121i −0.965592 0.260060i \(-0.916257\pi\)
0.965592 0.260060i \(-0.0837425\pi\)
\(864\) 0 0
\(865\) −78.1316 + 45.1093i −2.65655 + 1.53376i
\(866\) 0 0
\(867\) −2.23111 3.86440i −0.0757726 0.131242i
\(868\) 0 0
\(869\) 3.77723 + 2.18079i 0.128134 + 0.0739781i
\(870\) 0 0
\(871\) 51.3760 4.78885i 1.74081 0.162264i
\(872\) 0 0
\(873\) 10.7648 + 6.21506i 0.364333 + 0.210348i
\(874\) 0 0
\(875\) 5.47409 + 9.48140i 0.185058 + 0.320530i
\(876\) 0 0
\(877\) −37.4073 + 21.5971i −1.26315 + 0.729282i −0.973684 0.227904i \(-0.926813\pi\)
−0.289471 + 0.957187i \(0.593479\pi\)
\(878\) 0 0
\(879\) 16.1455i 0.544574i
\(880\) 0 0
\(881\) 3.84139 6.65348i 0.129420 0.224161i −0.794032 0.607876i \(-0.792022\pi\)
0.923452 + 0.383714i \(0.125355\pi\)
\(882\) 0 0
\(883\) 37.5753 1.26451 0.632254 0.774761i \(-0.282130\pi\)
0.632254 + 0.774761i \(0.282130\pi\)
\(884\) 0 0
\(885\) 14.0811 0.473332
\(886\) 0 0
\(887\) −21.7098 + 37.6024i −0.728943 + 1.26257i 0.228387 + 0.973570i \(0.426655\pi\)
−0.957330 + 0.288996i \(0.906679\pi\)
\(888\) 0 0
\(889\) 21.6826i 0.727210i
\(890\) 0 0
\(891\) 5.14604 2.97107i 0.172399 0.0995346i
\(892\) 0 0
\(893\) −0.0985310 0.170661i −0.00329721 0.00571094i
\(894\) 0 0
\(895\) −51.7514 29.8787i −1.72986 0.998734i
\(896\) 0 0
\(897\) −8.40123 3.85965i −0.280509 0.128870i
\(898\) 0 0
\(899\) 13.5694 + 7.83428i 0.452564 + 0.261288i
\(900\) 0 0
\(901\) 10.3400 + 17.9094i 0.344475 + 0.596647i
\(902\) 0 0
\(903\) 0.836564 0.482991i 0.0278391 0.0160729i
\(904\) 0 0
\(905\) 74.9102i 2.49010i
\(906\) 0 0
\(907\) −27.4248 + 47.5011i −0.910625 + 1.57725i −0.0974426 + 0.995241i \(0.531066\pi\)
−0.813183 + 0.582008i \(0.802267\pi\)
\(908\) 0 0
\(909\) −5.18381 −0.171936
\(910\) 0 0
\(911\) 52.4156 1.73660 0.868302 0.496035i \(-0.165211\pi\)
0.868302 + 0.496035i \(0.165211\pi\)
\(912\) 0 0
\(913\) 6.42961 11.1364i 0.212789 0.368561i
\(914\) 0 0
\(915\) 19.1934i 0.634516i
\(916\) 0 0
\(917\) −3.00517 + 1.73504i −0.0992395 + 0.0572960i
\(918\) 0 0
\(919\) −9.59839 16.6249i −0.316622 0.548405i 0.663159 0.748478i \(-0.269215\pi\)
−0.979781 + 0.200074i \(0.935882\pi\)
\(920\) 0 0
\(921\) 15.8323 + 9.14076i 0.521691 + 0.301198i
\(922\) 0 0
\(923\) 12.8019 27.8656i 0.421379 0.917209i
\(924\) 0 0
\(925\) −28.8798 16.6737i −0.949561 0.548229i
\(926\) 0 0
\(927\) 13.1085 + 22.7047i 0.430541 + 0.745719i
\(928\) 0 0
\(929\) 11.0196 6.36218i 0.361542 0.208736i −0.308215 0.951317i \(-0.599732\pi\)
0.669757 + 0.742580i \(0.266398\pi\)
\(930\) 0 0
\(931\) 0.257642i 0.00844389i
\(932\) 0 0
\(933\) 7.97526 13.8136i 0.261098 0.452235i
\(934\) 0 0
\(935\) −9.65229 −0.315664
\(936\) 0 0
\(937\) 0.0926021 0.00302518 0.00151259 0.999999i \(-0.499519\pi\)
0.00151259 + 0.999999i \(0.499519\pi\)
\(938\) 0 0
\(939\) −4.07931 + 7.06557i −0.133123 + 0.230576i
\(940\) 0 0
\(941\) 5.26900i 0.171765i −0.996305 0.0858823i \(-0.972629\pi\)
0.996305 0.0858823i \(-0.0273709\pi\)
\(942\) 0 0
\(943\) 32.9865 19.0448i 1.07419 0.620184i
\(944\) 0 0
\(945\) −5.49659 9.52038i −0.178804 0.309698i
\(946\) 0 0
\(947\) 35.2974 + 20.3790i 1.14701 + 0.662228i 0.948158 0.317801i \(-0.102944\pi\)
0.198855 + 0.980029i \(0.436278\pi\)
\(948\) 0 0
\(949\) 3.73062 + 5.26402i 0.121101 + 0.170877i
\(950\) 0 0
\(951\) −8.46797 4.88899i −0.274593 0.158536i
\(952\) 0 0
\(953\) −8.14075 14.1002i −0.263705 0.456750i 0.703519 0.710677i \(-0.251611\pi\)
−0.967223 + 0.253927i \(0.918278\pi\)
\(954\) 0 0
\(955\) −58.9854 + 34.0552i −1.90872 + 1.10200i
\(956\) 0 0
\(957\) 1.06505i 0.0344281i
\(958\) 0 0
\(959\) −2.61305 + 4.52594i −0.0843799 + 0.146150i
\(960\) 0 0
\(961\) −19.9158 −0.642446
\(962\) 0 0
\(963\) −21.8609 −0.704459
\(964\) 0 0
\(965\) 15.9787 27.6760i 0.514374 0.890922i
\(966\) 0 0
\(967\) 8.98682i 0.288997i 0.989505 + 0.144498i \(0.0461568\pi\)
−0.989505 + 0.144498i \(0.953843\pi\)
\(968\) 0 0
\(969\) −0.349054 + 0.201527i −0.0112132 + 0.00647397i
\(970\) 0 0
\(971\) −16.7196 28.9592i −0.536557 0.929345i −0.999086 0.0427404i \(-0.986391\pi\)
0.462529 0.886604i \(-0.346942\pi\)
\(972\) 0 0
\(973\) −11.1514 6.43826i −0.357497 0.206401i
\(974\) 0 0
\(975\) −1.43193 15.3621i −0.0458586 0.491982i
\(976\) 0 0
\(977\) 3.81934 + 2.20510i 0.122192 + 0.0705473i 0.559850 0.828594i \(-0.310859\pi\)
−0.437658 + 0.899141i \(0.644192\pi\)
\(978\) 0 0
\(979\) −5.28063 9.14632i −0.168770 0.292318i
\(980\) 0 0
\(981\) −25.8663 + 14.9339i −0.825848 + 0.476804i
\(982\) 0 0
\(983\) 9.75675i 0.311192i 0.987821 + 0.155596i \(0.0497298\pi\)
−0.987821 + 0.155596i \(0.950270\pi\)
\(984\) 0 0
\(985\) −9.29733 + 16.1035i −0.296238 + 0.513099i
\(986\) 0 0
\(987\) 0.407459 0.0129696
\(988\) 0 0
\(989\) 8.72822 0.277541
\(990\) 0 0
\(991\) 26.2747 45.5091i 0.834643 1.44564i −0.0596771 0.998218i \(-0.519007\pi\)
0.894320 0.447427i \(-0.147660\pi\)
\(992\) 0 0
\(993\) 14.4615i 0.458922i
\(994\) 0 0
\(995\) 26.9425 15.5552i 0.854133 0.493134i
\(996\) 0 0
\(997\) −23.3898 40.5123i −0.740761 1.28304i −0.952149 0.305634i \(-0.901132\pi\)
0.211388 0.977402i \(-0.432202\pi\)
\(998\) 0 0
\(999\) 10.9482 + 6.32092i 0.346384 + 0.199985i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1456.2.cc.g.225.7 24
4.3 odd 2 728.2.bm.c.225.6 24
13.10 even 6 inner 1456.2.cc.g.673.7 24
52.7 even 12 9464.2.a.bm.1.7 12
52.19 even 12 9464.2.a.bl.1.7 12
52.23 odd 6 728.2.bm.c.673.6 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.bm.c.225.6 24 4.3 odd 2
728.2.bm.c.673.6 yes 24 52.23 odd 6
1456.2.cc.g.225.7 24 1.1 even 1 trivial
1456.2.cc.g.673.7 24 13.10 even 6 inner
9464.2.a.bl.1.7 12 52.19 even 12
9464.2.a.bm.1.7 12 52.7 even 12