Properties

Label 1452.3.m
Level $1452$
Weight $3$
Character orbit 1452.m
Rep. character $\chi_{1452}(245,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $288$
Sturm bound $792$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1452.m (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 33 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(792\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(1452, [\chi])\).

Total New Old
Modular forms 2256 288 1968
Cusp forms 1968 288 1680
Eisenstein series 288 0 288

Trace form

\( 288 q - 6 q^{3} + 8 q^{7} + 12 q^{9} + 4 q^{13} - 28 q^{15} - 56 q^{19} - 2 q^{21} + 386 q^{25} - 63 q^{27} + 10 q^{31} + 146 q^{37} + 109 q^{39} + 100 q^{43} + 34 q^{45} - 352 q^{49} + 124 q^{51} + 310 q^{57}+ \cdots + 76 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(1452, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{3}^{\mathrm{old}}(1452, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(1452, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(66, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(132, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(363, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(726, [\chi])\)\(^{\oplus 2}\)