Properties

Label 1452.3.be
Level $1452$
Weight $3$
Character orbit 1452.be
Rep. character $\chi_{1452}(31,\cdot)$
Character field $\Q(\zeta_{110})$
Dimension $10560$
Sturm bound $792$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1452.be (of order \(110\) and degree \(40\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 484 \)
Character field: \(\Q(\zeta_{110})\)
Sturm bound: \(792\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(1452, [\chi])\).

Total New Old
Modular forms 21280 10560 10720
Cusp forms 20960 10560 10400
Eisenstein series 320 0 320

Trace form

\( 10560 q - 4 q^{2} - 12 q^{4} + 20 q^{8} + 7920 q^{9} - 8 q^{10} - 24 q^{12} - 42 q^{14} - 56 q^{16} - 18 q^{18} - 30 q^{20} + 54 q^{22} + 54 q^{24} + 1336 q^{25} + 150 q^{26} + 102 q^{28} - 64 q^{29} + 108 q^{30}+ \cdots - 3000 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(1452, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{3}^{\mathrm{old}}(1452, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(1452, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(484, [\chi])\)\(^{\oplus 2}\)