Properties

Label 1452.2.a.j
Level $1452$
Weight $2$
Character orbit 1452.a
Self dual yes
Analytic conductor $11.594$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,2,Mod(1,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1452.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,0,-1,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.5942783735\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 132)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + ( - 3 \beta + 1) q^{5} + ( - 2 \beta + 3) q^{7} + q^{9} + ( - 2 \beta - 3) q^{13} + (3 \beta - 1) q^{15} + ( - \beta + 4) q^{17} + ( - 5 \beta + 3) q^{19} + (2 \beta - 3) q^{21} + ( - 2 \beta + 3) q^{23}+ \cdots + ( - 5 \beta + 3) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - q^{5} + 4 q^{7} + 2 q^{9} - 8 q^{13} + q^{15} + 7 q^{17} + q^{19} - 4 q^{21} + 4 q^{23} + 13 q^{25} - 2 q^{27} - 15 q^{31} + 13 q^{35} - 12 q^{37} + 8 q^{39} + 10 q^{41} + 10 q^{43} - q^{45}+ \cdots + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
0 −1.00000 0 −3.85410 0 −0.236068 0 1.00000 0
1.2 0 −1.00000 0 2.85410 0 4.23607 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1452.2.a.j 2
3.b odd 2 1 4356.2.a.v 2
4.b odd 2 1 5808.2.a.cc 2
11.b odd 2 1 1452.2.a.i 2
11.c even 5 2 132.2.i.b 4
11.c even 5 2 1452.2.i.o 4
11.d odd 10 2 1452.2.i.j 4
11.d odd 10 2 1452.2.i.p 4
33.d even 2 1 4356.2.a.s 2
33.h odd 10 2 396.2.j.c 4
44.c even 2 1 5808.2.a.cf 2
44.h odd 10 2 528.2.y.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
132.2.i.b 4 11.c even 5 2
396.2.j.c 4 33.h odd 10 2
528.2.y.a 4 44.h odd 10 2
1452.2.a.i 2 11.b odd 2 1
1452.2.a.j 2 1.a even 1 1 trivial
1452.2.i.j 4 11.d odd 10 2
1452.2.i.o 4 11.c even 5 2
1452.2.i.p 4 11.d odd 10 2
4356.2.a.s 2 33.d even 2 1
4356.2.a.v 2 3.b odd 2 1
5808.2.a.cc 2 4.b odd 2 1
5808.2.a.cf 2 44.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1452))\):

\( T_{5}^{2} + T_{5} - 11 \) Copy content Toggle raw display
\( T_{7}^{2} - 4T_{7} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + T - 11 \) Copy content Toggle raw display
$7$ \( T^{2} - 4T - 1 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 8T + 11 \) Copy content Toggle raw display
$17$ \( T^{2} - 7T + 11 \) Copy content Toggle raw display
$19$ \( T^{2} - T - 31 \) Copy content Toggle raw display
$23$ \( T^{2} - 4T - 1 \) Copy content Toggle raw display
$29$ \( T^{2} - 20 \) Copy content Toggle raw display
$31$ \( T^{2} + 15T + 55 \) Copy content Toggle raw display
$37$ \( T^{2} + 12T + 31 \) Copy content Toggle raw display
$41$ \( T^{2} - 10T + 5 \) Copy content Toggle raw display
$43$ \( T^{2} - 10T + 5 \) Copy content Toggle raw display
$47$ \( T^{2} - 5T + 5 \) Copy content Toggle raw display
$53$ \( T^{2} + 7T - 89 \) Copy content Toggle raw display
$59$ \( T^{2} - 11T + 19 \) Copy content Toggle raw display
$61$ \( T^{2} + 3T + 1 \) Copy content Toggle raw display
$67$ \( T^{2} + 7T + 1 \) Copy content Toggle raw display
$71$ \( T^{2} + 5T + 5 \) Copy content Toggle raw display
$73$ \( T^{2} - 2T - 4 \) Copy content Toggle raw display
$79$ \( T^{2} - 24T + 139 \) Copy content Toggle raw display
$83$ \( T^{2} - 22T + 101 \) Copy content Toggle raw display
$89$ \( (T - 1)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - T - 31 \) Copy content Toggle raw display
show more
show less